Arena-independent Memory Bounds for Nash Equilibria in Reachability Games

James C. A. Main

UMONS – Université de Mons and F.R.S.-FNRS, Belgium

CFV - February 9, 2024

Talk overview

- We consider turn-based multiplayer games on graphs with reachability and shortest-path objectives.
- We focus on constrained Nash equilibria in these games.
- Traditional constructions for finite-memory constrained Nash equilibria usually yield strategies with a size dependent on the arena.

In this talk

We provide constructions for finite-memory Nash equilibria in shortest-path and reachability games that depend only on the number of players.

- We take inspiration from the proof of the folk theorem for repeated games (e.g., [OR94]¹).
- The constructions presented here apply to infinite arenas.

¹Osborne and Rubinstein, A course in game theory.

Table of contents

1 Reachability and shortest-path games

2 Strategies in zero-sum games

3 Arena-independent memory bounds

Table of contents

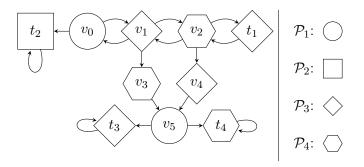
1 Reachability and shortest-path games

2 Strategies in zero-sum games

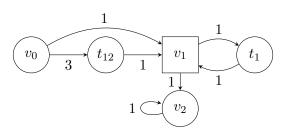
3 Arena-independent memory bounds

Multiplayer games on graphs

- lacktriangle An arena is a graph with vertices partitioned between the n players.
- Plays are infinite sequences of vertices consistent with the edges, e.g., $v_0v_1v_2(v_1v_0)^{\omega}$. A history is a finite prefix of a play.
- In a game, each player has a cost function $cost_i$: $Plays(A) \to \overline{\mathbb{R}}$.



Reachability and shortest-path games



- The reachability cost function is given by a target set $T \subseteq V$.
- A shortest-path cost function is described by a weight function $w \colon E \to \mathbb{N}$ and a target T. For any play $\pi = v_0 v_1 v_2 \ldots$,

$$\mathsf{SPath}_w^T(\pi) = \begin{cases} +\infty & \text{if } T \text{ is not visited in } \pi \\ \sum_{\ell=0}^{r-1} w((v_\ell, v_{\ell+1})) & \text{else, where } r = \min\{r' \mid v_{r'} \in T\} \end{cases}$$

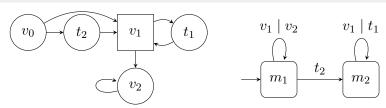
■ We omit weight of 1 from illustrations in the following.

Strategies

- A strategy $\sigma_i \colon V^*V_i \to V$ of \mathcal{P}_i maps a history to a vertex.
- A strategy profile $\sigma = (\sigma_i)_{i \leq n}$ is a tuple with one strategy per player.

Finite-memory strategies

A strategy is finite-memory if it can be encoded by a Mealy machine $(M, m_{\mathsf{init}}, \mathsf{up}, \mathsf{nxt}_i)$ where M is a finite set, $m_{\mathsf{init}} \in M$, $\mathsf{up} \colon M \times V \to M$ is an update function and $\mathsf{nxt} \colon M \times V_i \to V$ is a next-move function.



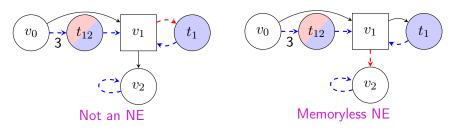
Nash equilibria

Nash equilibrium

A strategy profile σ is a Nash equilibrium (NE) from $v_0 \in V$ if no player has an incentive to unilaterally deviate from σ , i.e., for all $i \leq n$ and all strategies σ_i' of \mathcal{P}_i :

$$cost_i(Out(\sigma, v_0)) \le cost_i(Out((\sigma'_i, \sigma_{-i}), v_0)).$$

■ Consider the shortest-path game with $T_1 = \{t_{12}, t_1\}$ and $T_2 = \{t_{12}\}$.



■ Incomparable NE cost profiles may co-exist and some require memory.

Table of contents

1 Reachability and shortest-path games

2 Strategies in zero-sum games

3 Arena-independent memory bounds

Zero-sum games

■ We use strategies from two-player zero-sum games to construct NEs.

Zero-sum game

A two-player game $\mathcal{G} = (\mathcal{A}, (\mathsf{cost}_1, \mathsf{cost}_2))$ is zero-sum if $\mathsf{cost}_1 = -\mathsf{cost}_2$.

- A strategy σ_1 of \mathcal{P}_1 ensures $c \in \overline{\mathbb{R}}$ from v if for all strategies σ_2 of \mathcal{P}_2 , $\operatorname{cost}_1(\operatorname{Out}((\sigma_1,\sigma_2),v)) \leq c$. For \mathcal{P}_2 , we reverse the inequality.
- The value of v, val(v), is the infimum cost \mathcal{P}_1 can ensure from it.
- A strategy σ_i of \mathcal{P}_i is optimal from v if it ensures val(v).

Coalition game

Given a game \mathcal{G} and a player \mathcal{P}_i , we let \mathcal{G}_i be the zero-sum game on the same graph where all other players ally against \mathcal{P}_i .

Zero-sum reachability games

In a zero-sum reachability game with target T, vertices are either:

- in $W_1(\mathsf{Reach}(T))$, from which \mathcal{P}_1 can force a visit to T;
- in $W_2(\mathsf{Safe}(T))$, from which \mathcal{P}_2 can avoid T infinitely.

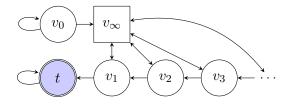
Theorem ([Maz01]²)

In a zero-sum reachability game, both players have uniform optimal (i.e., winning) memoryless strategies.

²Mazala. "Infinite Games".

Shortest-path games

- In a shortest-path game, \mathcal{P}_1 has a memoryless uniform optimal strategy.
- lacksquare However, \mathcal{P}_2 may not have an optimal strategy.



Theorem

In a zero-sum shortest-path game, for all $\alpha \in \mathbb{N}$, there exists a memoryless strategy σ_2^{α} of \mathcal{P}_2 such that, for all $v \in V$:

- 1 if $v \in W_2(\mathsf{Safe}(T))$, T cannot be visited from v under σ_2^{α} ;
- 2 σ_2^{α} ensures a cost of at least min{val(v), α }.

Table of contents

1 Reachability and shortest-path games

2 Strategies in zero-sum games

3 Arena-independent memory bounds

Simplifying NE outcomes

- Not all outcomes can be induced by finite-memory strategy profiles.
- We simplify NE outcomes via a characterisation based on:
 - values of vertices in coalition shortest-path games \mathcal{G}_i ;
 - winning regions in coalition reachability games.

Lemma (NE outcomes with a simple decomposition)

Let $\rho=v_0v_1v_2\dots$ be an NE outcome in an n-player shortest-path game. There exists an NE outcome π from v_0 that can be decomposed as $h_1 \cdot \ldots \cdot h_k \cdot \pi'$ such that

- 1 h_j is a simple history ending in the jth visited target;
- 2 π' is a simple play or of the form hc^{ω} with hc a simple history;
- 3 for all $j \leq k$, $w(h_j)$ is minimum among histories sharing their first and last vertices with h_j that traverse a subset of the vertices of h_j ;
- 4 for all $i \leq n$, $\operatorname{SPath}_{w}^{T_{i}}(\pi) \leq \operatorname{SPath}_{w}^{T_{i}}(\rho)$.

Obtaining arena-independent memory bounds

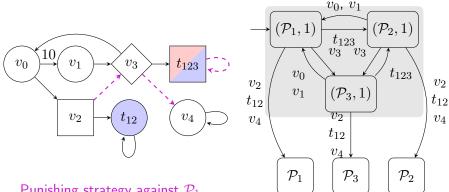
- An outcome with k segments can be achieved by a Mealy machine with k states.
- We build on these Mealy machines and include information to track deviations.
- We punish players with memoryless strategies when they deviate from the intended outcome to obtain NEs.

When to punish?

The key is to not punish all deviations: we tolerate deviations that do not exit the current segment.

An example with a single segment

- Let $T_1 = T_2 = \{t_{12}, t_{123}\}$ and $T_3 = \{t_{123}\}$.
- Considered NE outcome $v_0v_1v_3t_{123}^{\omega}$: focus on $v_0v_1v_3t_{123}$.



Punishing strategy against \mathcal{P}_1

General result

Theorem (shortest-path games)

For all NE outcomes π from v_0 in a shortest-path game, there exists a finite-memory NE σ from v_0 with strategies of memory at most n^2+2n such that $\operatorname{SPath}_{w}^{T_i}(\operatorname{Out}(\sigma,v_0)) \leq \operatorname{SPath}_{w}^{T_i}(\pi)$ for all $i \leq n$.

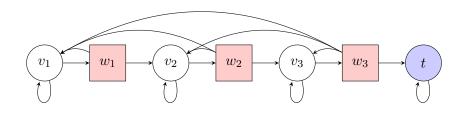
In reachability games, we can refine the memory bounds.

Theorem (Reachability games)

For all NE outcomes π from v_0 in a reachability game, there exists a finite-memory NE σ with strategies of memory at most n^2 such that the same targets are visited in π and in $\operatorname{Out}(\sigma, v_0)$.

Beyond reachability games

- A Büchi objective for $T \subseteq V$ requires that T is visited infinitely often.
- It is not possible to obtain arena-independent memory bounds for Büchi objectives, e.g., below with $T_1 = \{t\}$ and $T_2 = \{w_1, w_2, w_3\}$.
- Below, 3 memory states are needed and it generalises for all $k \ge 1$.



Theorem

In any Büchi game, from any NE we can build a finite-memory NE such that the same objectives are satisfied, even in infinite arenas.

References I

```
Brihaye, Thomas et al. "On relevant equilibria in reachability games". In: J. Comput. Syst. Sci. 119 (2021), pp. 211–230. DOI: 10.1016/j.jcss.2021.02.009. URL: https://doi.org/10.1016/j.jcss.2021.02.009.

Mazala, René. "Infinite Games". In: Automata, Logics, and Infinite Games: A Guide to Current Research [outcome of a Dagstuhl seminar, February 2001]. Ed. by Erich Grädel, Wolfgang Thomas, and Thomas Wilke. Vol. 2500. Lecture Notes in Computer Science. Springer, 2001, pp. 23–42. DOI: 10.1007/3-540-36387-4\_2. URL:
```

Osborne, Martin J. and Ariel Rubinstein. *A course in game theory*. The MIT Press, 1994.

https://doi.org/10.1007/3-540-36387-4_2.

Obtaining finite-memory NEs

- Finite-memory strategy profiles have ultimately periodic outcomes in finite arenas.
- We therefore have to simplify NE outcomes for them to result from a finite-memory strategy profile.

How do we proceed?

- 1 We rely on a characterisation of plays that can result from NEs.
- We use the characterisation to derive from any outcome another that results from a finite-memory NE.

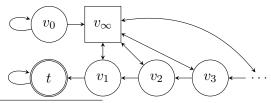
When does a play result from an NE?

■ In finite arenas, we have the following characterisation of NE outcomes in shortest-path games [BBGT21]³:

Theorem ([BBGT21])

Let $\pi=v_0v_1\dots$ be a play and let $(T_i)_{i=1}^n$ be the targets. Then π is an outcome of an NE from v_0 in $\mathcal G$ if and only for all $1\leq i\leq n,\ \ell\leq r_i$, it holds that $\operatorname{SPath}_w^{T_i}(\pi_{\geq \ell})\leq \operatorname{val}_i(v_\ell)$ where $r_i=\inf\{r\in\mathbb N\mid v_r\in T_i\}$.

- However, it does not hold as is in infinite arenas.
- Counterexample: the play v_0^{ω} , assuming $T_1 = \{t\}$, $T_2 = V$.



³Brihaye et al., "On relevant equilibria in reachability games".

Characterising NE outcomes

In infinite games, we must consider the winning regions in the reachability game.

Theorem

Let $\pi = v_0 v_1 \dots$ be a play and let $(T_i)_{i=1}^n$ be the targets. Then π is the outcome of an NE from v_0 in $\mathcal G$ iff for all $1 \le i \le n$ and $\ell \in \mathbb N$, we have

- 1 if T_i does not occur in π , then $v_\ell \notin W_i(\mathsf{Reach}(T_i))$ and
- 2 if T_i occurs in π , then $\ell \leq r_i$, implies that $\operatorname{SPath}_w^{T_i}(\pi_{\geq \ell}) \leq \operatorname{val}_i(v_\ell)$ where $r_i = \min\{r \in \mathbb{N} \mid v_r \in T_i\}$.

Proof idea. (\iff) We construct an NE $(\sigma_i)_{i=1}^n$ from v_0 by letting for all $1 \le i \le n$:

- \blacksquare if h is a prefix $v_0 \dots v_k$ of π , $\sigma_i(h) = v_{k+1}$ and
- otherwise, if h is not a prefix of π and \mathcal{P}_j is responsible for deviating, let $\sigma_i(h) = \sigma_{-j}(\operatorname{last}(h))$ for some \mathcal{P}_j -punishing memoryless strategy.

Simplifying NE outcomes

Lemma

Let $\rho = v_0 v_1 v_2 \dots$ be an NE outcome in an n-player shortest-path game. There exists an NE outcome π from v_0 that can be decomposed as $h_1 \cdot \dots \cdot h_k \cdot \pi'$ such that

- 1 h_j is a simple history ending in the jth visited target;
- 2 π' is a simple play or of the form hc^{ω} with hc a simple history;
- 3 for all $j \leq k$, $w(h_j)$ is minimum among histories sharing their first and last vertices with h_j that traverse a subset of the vertices of h_j ;
- 4 for all $i \leq n$, $\operatorname{SPath}_w^{T_i}(\pi) \leq \operatorname{SPath}_w^{T_i}(\rho)$.

Proof idea. We apply the following steps.

- Decompose ρ similarly to condition 1, replace each obtained history by a simple one of minimal weight.
- Change the suffix to loop in the first cycle along it if applicable.
- The resulting π is an NE outcome by the characterisation.

Negative weights

- In a setting with negative weights, in the presence of a negative cycle, there can be NE cost profiles that require an arbitrarily large memory size.
- If $T_1 = \{t\}$ and $T_2 = V$, for all $n \in \mathbb{N}_0$, the play $(v_0v_1)^nt^\omega$ is an NE outcome that requires a memory of size n and gives a cost of -n for \mathcal{P}_1 .

