On the Structure of Expected Payoff Sets in Multi-Objective Markov Decision Processes

James C. A. Main Mickaël Randour

F.R.S.-FNRS and UMONS - Université de Mons, Belgium

CFV - October 11, 2024

Random strategies and multiple objectives

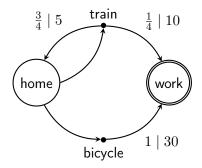
- We study Markov decision processes with multiple payoffs.
- In general, the satisfaction of multi-objective queries requires randomised strategies.

Main questions

- What is the relationship between expected payoffs of pure strategies and expected payoffs of general strategies?
- What type of randomisation do we need for multi-objective queries?

 \rightarrow Goal: results for the broadest possible class of payoffs.

Markov decision processes



Markov decision process ${\cal M}$

- **Finite** state space S
- Finite action space A
- Randomised transitions

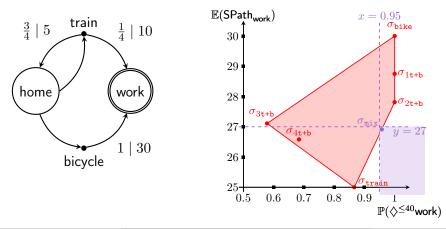
Plays are sequences in $(SA)^{\omega}$ coherent with transitions.

- A strategy is a function $\sigma \colon (SA)^*S \to \mathcal{D}(A)$
- A strategy σ is **pure** if it is not randomised.
- A strategy σ and initial state s induce a distribution \mathbb{P}_s^{σ} over plays.
- A payoff is a measurable function $f: \mathsf{Plays}(\mathcal{M}) \to \overline{\mathbb{R}}$.
- \blacksquare We let $\mathbb{E}^{\sigma}_{s}(f) = \int_{\pi \in \mathsf{Plays}(\mathcal{M})} f(\pi) \mathrm{d}\mathbb{P}^{\sigma}_{s}(\pi).$

Multi-objective Markov decision processes

We consider two goals:

- reaching work under 40 minutes with high probability;
- minimising the expectancy of the time to reach work.



What are good payoffs?

To provide formal results, we need to constrain considered payoffs. $\rightsquigarrow \mathbb{E}_s^{\sigma}(f)$ should be well-defined for all strategies.

Good payoff functions

Three types of good payoffs:

- non-negative payoffs: $f \ge 0$;
- **non-positive** payoffs: $f \leq 0$;
- universally integrable payoffs: $\mathbb{E}_s^{\sigma}(|f|) \in \mathbb{R}$ for all strategies σ and all $s \in S$.

For a multi-dimensional payoff $\overline{f} = (f_1, \ldots, f_d)$ and $s \in S$, we let:

•
$$\mathsf{Pay}_s(\bar{f}) = \{ \mathbb{E}_s^{\sigma}(\bar{f}) \mid \sigma \text{ strategy} \};$$

• $\mathsf{Pay}^{\mathsf{pure}}_{s}(\bar{f}) = \{\mathbb{E}^{\sigma}_{s}(\bar{f}) \mid \sigma \text{ pure strategy}\}.$

Universally integrable payoffs

In the introductory example, we had $\mathsf{Pay}_{\mathsf{home}}(\bar{f}) = \operatorname{conv}(\mathsf{Pay}_{\mathsf{home}}^{\mathsf{pure}}(\bar{f})).$

When does this generalise?

Theorem

Let $\overline{f} = (f_1, \ldots, f_d)$ be universally integrable. Then, for all states s,

 $\mathsf{Pay}_s(\bar{f}) = \operatorname{conv}(\mathsf{Pay}^{\mathsf{pure}}_s(\bar{f})).$

In particular, to match the expected payoff of any strategy, it suffices to:

- **mix** d + 1 pure strategies;
- consider strategies use randomisation at most d along any play.

Sequel: proof of a weaker result

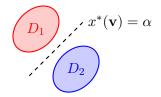
If \bar{f} is universally integrable, then $cl(\mathsf{Pay}_s(\bar{f})) = cl(conv(\mathsf{Pay}_s^{\mathsf{pure}}(\bar{f}))).$

Universally integrable payoffs A simpler proof

Non-direct inclusion: $\operatorname{Pay}_{s}(\overline{f}) \subseteq \operatorname{cl}(\operatorname{conv}(\operatorname{Pay}_{s}^{\operatorname{pure}}(\overline{f})))$. Let σ be a strategy and $\mathbf{q} = \mathbb{E}_{s}^{\sigma}(\overline{f})$. Assume $\mathbf{q} \notin \operatorname{cl}(\operatorname{conv}(\operatorname{Pay}_{s}^{\operatorname{pure}}(\overline{f})))$. Main idea: reduction to a one-dimensional payoff.

Theorem (Hyperplane separation theorem)

Let D_1 , $D_2 \subseteq \mathbb{R}^d$ be disjoint convex sets. If D_1 is closed and D_2 is compact, then there exists a linear form $x^* \colon \mathbb{R}^d \to \mathbb{R}$ and $\varepsilon > 0$ such that for all $\mathbf{p}_1 \in D_1$ and $\mathbf{p}_2 \in D_2$, $x^*(\mathbf{p}_1) + \varepsilon < x^*(\mathbf{p}_2)$.



Universally integrable payoffs A simpler proof

Non-direct inclusion: $\operatorname{Pay}_{s}(\overline{f}) \subseteq \operatorname{cl}(\operatorname{conv}(\operatorname{Pay}_{s}^{\operatorname{pure}}(\overline{f})))$. Let σ be a strategy and $\mathbf{q} = \mathbb{E}_{s}^{\sigma}(\overline{f})$. Assume $\mathbf{q} \notin \operatorname{cl}(\operatorname{conv}(\operatorname{Pay}_{s}^{\operatorname{pure}}(\overline{f})))$. Main idea: reduction to a one-dimensional payoff.

• There exists a linear form x^* such that, for all **pure strategies** τ ,

 $x^*(\mathbb{E}^{\tau}_s(\bar{f})) < x^*(\mathbf{q}).$

• By linearity, we obtain that for all pure strategies τ ,

 $\mathbb{E}_s^{\tau}(x^*(\bar{f})) < \mathbb{E}_s^{\sigma}(x^*(\bar{f})).$

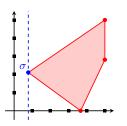
Lemma

Let f be universally integrable. For all strategies σ , there exists a pure strategy τ such that $\mathbb{E}_s^{\sigma}(f) \leq \mathbb{E}_s^{\tau}(f)$.

Universally integrable payoffs Compact case

What happens if $Pay_s(\bar{f})$ is **compact** ?

- The argument can be adapted if $Pay_s(\bar{f})$ is polyhedral.
- However, good hyperplanes do not generally exist for all extreme points despite $Pay_s(\bar{f}) = conv(extr(Pay_s(\bar{f})))$.



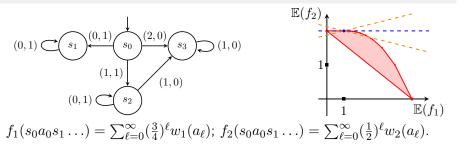
- Consider a vertex \mathbf{q} obtained by σ .
- There is a hyperplane intersecting Pay_s(*f*) only at **q**.
- There exists a linear form x^* such that σ is optimal from s for $x^* \circ \overline{f}$.

 $\rightsquigarrow \mathbf{q} \in \mathsf{Pay}^{\mathsf{pure}}_s(\bar{f})$

Universally integrable payoffs Compact case

What happens if $Pay_s(\bar{f})$ is **compact** ?

- The argument can be adapted if $Pay_s(\bar{f})$ is polyhedral.
- However, good hyperplanes do not generally exist for all extreme points despite $Pay_s(\bar{f}) = conv(extr(Pay_s(\bar{f})))$.



Beyond universally integrable payoffs Example

Payoffs

1 reaching $t \rightsquigarrow f_1 = \mathbb{1}_{\diamondsuit t}$;

2 sum of weights
$$\rightsquigarrow f_2 = \sum_{\ell=0}^{\infty} w(c_\ell).$$

- We have $(1, +\infty) \in \mathsf{Pay}_s(\bar{f})$ via σ such that for all $\ell \in \mathbb{N}$:

$$\sigma(s(as)^{\ell})(a) = \begin{cases} \frac{1}{2} & \text{if } \ell \in 2^{\mathbb{N}} \\ 1 & \text{if } \ell \notin 2^{\mathbb{N}} \end{cases}$$

 \rightarrow The theorem does not generalise.

Beyond universally integrable payoffs

Theorem

Let $\overline{f} = (f_1, \ldots, f_d)$ be a good payoff and $s \in S$. For all strategies σ , all $\varepsilon > 0$ and all $M \in \mathbb{R}$, there exist finitely many pure strategies τ_1, \ldots, τ_n and coefficients $\alpha_1, \ldots, \alpha_n \in [0, 1]$ such that $\sum_m^n \alpha_m = 1$ and for all $1 \le j \le d$: **•** if $\mathbb{E}_s^{\sigma}(f_j) = +\infty$, then $\sum_{m=1}^n \alpha_m \mathbb{E}_s^{\tau_m}(f_j) \ge M$, **•** if $\mathbb{E}_s^{\sigma}(f_j) = -\infty$, then $\sum_{m=1}^n \alpha_m \mathbb{E}_s^{\tau_m}(f_j) \le -M$, and, **•** otherwise, if $\mathbb{E}_s^{\sigma}(f_j) \in \mathbb{R}$, $\mathbb{E}_s^{\sigma}(f_j) - \varepsilon \le \sum_{m=1}^n \alpha_m \mathbb{E}_s^{\tau_m}(f_j) \le \mathbb{E}_s^{\sigma}(f_j) + \varepsilon$.

Informally, we have

 $\operatorname{cl}(\mathsf{Pay}_s(\bar{f})) = \operatorname{cl}(\operatorname{conv}(\mathsf{Pay}_s^{\mathsf{pure}}(\bar{f}))).$

Thank you for your attention !

Universally integrable payoffs General argument: sketch

Proof goal

For all strategies σ , $\mathbf{q} = \mathbb{E}_s^{\sigma}(\bar{f}) \in \operatorname{conv}(\mathsf{Pay}_s^{\mathsf{pure}}(\mathbf{q}))$.

- Construct linear map *L*_q such that:
 - a σ is lexicographically optimal for $L_{\mathbf{q}} \circ \overline{f}$;
 - $\mathbf{b} \ \mathbf{q} \in \operatorname{ri}(\mathsf{Pay}_s(\bar{f}) \cap V) \text{ where } V = \{ \mathbf{p} \in \mathbb{R}^d \mid L_{\mathbf{q}}(\mathbf{p}) = L_{\mathbf{q}}(\mathbf{q}) \}.$
- Show that $\operatorname{ri}(\operatorname{\mathsf{Pay}}_s(\bar{f}) \cap V) = \operatorname{ri}(\operatorname{conv}(\operatorname{\mathsf{Pay}}^{\operatorname{\mathsf{pure}}}_s(\bar{f})) \cap V)$, i.e.,

 $\operatorname{cl}(\mathsf{Pay}_s(\bar{f}) \cap V) = \operatorname{cl}(\operatorname{conv}(\mathsf{Pay}^{\mathsf{pure}}_s(\bar{f})) \cap V)$

Key lemma

If \bar{f} is universally integrable, then for all strategies σ and all $s \in S$, there exists a pure strategy τ such that

$$\mathbb{E}_s^{\sigma}(\bar{f}) \leq_{\mathsf{lex}} \mathbb{E}_s^{\tau}(\bar{f}).$$

A set of expected payoffs that is not closed

For $j \in \{1,2\}$, we consider the payoff f_j such that, for all plays $s_0 a_0 s_1 \dots$,

$$f_j(s_0 a_0 s_1 \dots) = \mathbb{1}_{\mathsf{Reach}(\{t\})}(s_0 a_0 s_1 \dots) \cdot \sum_{\ell=0} \left(\frac{3}{4}\right)^\ell w_j(a_\ell).$$

$$\overset{b}{(1,0)} \textcircled{s} \overset{a}{(0,1)} \textcircled{t} \overset{a}{(0,1)} \overset{a}{(0,1)}$$

