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Random strategies and multiple objectives

We study Markov decision processes with multiple payoffs.
In general, the satisfaction of multi-objective queries requires
randomised strategies.

Main questions

What is the relationship between expected payoffs of pure strategies
and expected payoffs of general strategies?
What type of randomisation do we need for multi-objective queries?

→ Goal: results for the broadest possible class of payoffs.
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Markov decision processes

home work
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4 | 10 Markov decision processM

Finite state space S
Finite action space A
Randomised transitions

Plays are sequences in (SA)ω coherent
with transitions.

A strategy is a function σ : (SA)∗S → D(A)

A strategy σ is pure if it is not randomised.
A strategy σ and initial state s induce a distribution Pσs over plays.
A payoff is a measurable function f : Plays(M)→ R̄.
We let Eσs (f) =

∫
π∈Plays(M) f(π)dPσs (π).
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Multi-objective Markov decision processes

We consider two goals:
reaching work under 40 minutes with high probability;
minimising the expectancy of the time to reach work.
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What are good payoffs?

To provide formal results, we need to constrain considered payoffs.
 Eσs (f) should be well-defined for all strategies.

Good payoff functions

Three types of good payoffs:
non-negative payoffs: f ≥ 0;
non-positive payoffs: f ≤ 0;
universally integrable payoffs: Eσs (|f |) ∈ R for all strategies σ and
all s ∈ S.

For a multi-dimensional payoff f̄ = (f1, . . . , fd) and s ∈ S, we let:
Pays(f̄) = {Eσs (f̄) | σ strategy};
Paypures (f̄) = {Eσs (f̄) | σ pure strategy}.
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Universally integrable payoffs

In the introductory example, we had Payhome(f̄) = conv(Paypurehome(f̄)).

When does this generalise?

Theorem
Let f̄ = (f1, . . . , fd) be universally integrable. Then, for all states s,

Pays(f̄) = conv(Paypures (f̄)).

In particular, to match the expected payoff of any strategy, it suffices to:
mix d+ 1 pure strategies;
consider strategies use randomisation at most d along any play.

Sequel: proof of a weaker result

If f̄ is universally integrable, then cl(Pays(f̄)) = cl(conv(Paypures (f̄))).
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Universally integrable payoffs
A simpler proof

Non-direct inclusion: Pays(f̄) ⊆ cl(conv(Paypures (f̄))).
Let σ be a strategy and q = Eσs (f̄). Assume q /∈ cl(conv(Paypures (f̄))).
Main idea: reduction to a one-dimensional payoff.

Theorem (Hyperplane separation theorem)

Let D1, D2 ⊆ Rd be disjoint convex sets. If D1 is closed and D2 is
compact, then there exists a linear form x∗ : Rd → R and ε > 0 such
that for all p1 ∈ D1 and p2 ∈ D2, x∗(p1) + ε < x∗(p2).

D1

D2

x∗(v) = α
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Universally integrable payoffs
A simpler proof

Non-direct inclusion: Pays(f̄) ⊆ cl(conv(Paypures (f̄))).
Let σ be a strategy and q = Eσs (f̄). Assume q /∈ cl(conv(Paypures (f̄))).
Main idea: reduction to a one-dimensional payoff.

There exists a linear form x∗ such that, for all pure strategies τ,

x∗(Eτs(f̄)) < x∗(q).

By linearity, we obtain that for all pure strategies τ,

Eτs(x∗(f̄)) < Eσs (x∗(f̄)).

Lemma
Let f be universally integrable. For all strategies σ, there exists a pure
strategy τ such that Eσs (f) ≤ Eτs(f).
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Universally integrable payoffs
Compact case

What happens if Pays(f̄) is compact ?

The argument can be adapted if Pays(f̄) is polyhedral.
However, good hyperplanes do not generally exist for all extreme
points despite Pays(f̄) = conv(extr(Pays(f̄))).

σ

Consider a vertex q obtained by σ.
There is a hyperplane intersecting Pays(f̄)
only at q.
There exists a linear form x∗ such that σ is
optimal from s for x∗ ◦ f̄ .

 q ∈ Paypures (f̄)
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Universally integrable payoffs
Compact case

What happens if Pays(f̄) is compact ?

The argument can be adapted if Pays(f̄) is polyhedral.
However, good hyperplanes do not generally exist for all extreme
points despite Pays(f̄) = conv(extr(Pays(f̄))).

s0s1

s2

s3
(0, 1)

(1, 1)

(2, 0)

(1, 0)

(0, 1)

(0, 1)

(1, 0)

E(f1)

E(f2)

1

1

f1(s0a0s1 . . .) =
∑∞
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Beyond universally integrable payoffs
Example

s t
b

0

a
1

b
0

Payoffs

1 reaching t  f1 = 1♦t;
2 sum of weights  f2 =

∑∞
`=0w(c`).

Eσa
s (f2) = +∞ =⇒ f2 is not universally integrable.

Paypures (f̄) = {(0,+∞)} ∪ {(1, `) | ` ∈ N}.
=⇒ conv(Paypures (f̄)) = ({1} × R≥0) ∪ ([0, 1[× {+∞}).

We have (1,+∞) ∈ Pays(f̄) via σ such that for all ` ∈ N:

σ(s(as)`)(a) =

{
1
2 if ` ∈ 2N

1 if ` /∈ 2N

→ The theorem does not generalise.
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Beyond universally integrable payoffs

Theorem
Let f̄ = (f1, . . . , fd) be a good payoff and s ∈ S.
For all strategies σ, all ε > 0 and all M ∈ R, there exist finitely many pure
strategies τ1, . . . , τn and coefficients α1, . . . , αn ∈ [0, 1] such that∑n

m αm = 1 and for all 1 ≤ j ≤ d:
if Eσs (fj) = +∞, then

∑n
m=1 αmE

τm
s (fj) ≥M ,

if Eσs (fj) = −∞, then
∑n

m=1 αmE
τm
s (fj) ≤ −M , and,

otherwise, if Eσs (fj) ∈ R,
Eσs (fj)− ε ≤

∑n
m=1 αmE

τm
s (fj) ≤ Eσs (fj) + ε.

Informally, we have
cl(Pays(f̄)) = cl(conv(Paypures (f̄))).

Thank you for your attention !
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Universally integrable payoffs
General argument: sketch

Proof goal

For all strategies σ, q = Eσs (f̄) ∈ conv(Paypures (q)).

Construct linear map Lq such that:
a σ is lexicographically optimal for Lq ◦ f̄ ;
b q ∈ ri(Pays(f̄) ∩ V ) where V = {p ∈ Rd | Lq(p) = Lq(q)}.

Show that ri(Pays(f̄) ∩ V ) = ri(conv(Paypures (f̄)) ∩ V ), i.e.,

cl(Pays(f̄) ∩ V ) = cl(conv(Paypures (f̄)) ∩ V )

Key lemma

If f̄ is universally integrable, then for all strategies σ and all s ∈ S, there
exists a pure strategy τ such that

Eσs (f̄) ≤lex Eτs(f̄).
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A set of expected payoffs that is not closed

For j ∈ {1, 2}, we consider the payoff fj such that, for all plays s0a0s1 . . .,

fj(s0a0s1 . . .) = 1Reach({t})(s0a0s1 . . .) ·
∑
`=0

(
3

4

)`
wj(a`).
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