On the Structure of Expected Payoff Sets in Multi-Objective Markov Decision Processes

James C. A. Main Mickaël Randour

F.R.S.-FNRS and UMONS – Université de Mons, Belgium

CFV – October 11, 2024

Random strategies and multiple objectives

We study Markov decision processes with multiple payoffs. \blacksquare In general, the satisfaction of multi-objective queries requires randomised strategies.

Main questions

- What is the relationship between expected payoffs of pure strategies and expected payoffs of general strategies?
- What type of randomisation do we need for multi-objective queries?

 \rightarrow Goal: results for the broadest possible class of payoffs.

Markov decision processes

Markov decision process M

- **Finite state space** S
- **Finite action space** A
- **Randomised transitions**

Plays are sequences in $(SA)^\omega$ coherent with transitions.

- A strategy is a function $\sigma: (SA)^*S \to \mathcal{D}(A)$
- A strategy σ is **pure** if it is not randomised.
- A strategy σ and initial state s induce a distribution \mathbb{P}_{s}^{σ} over plays.
- A **payoff** is a measurable function $f : \text{Plays}(\mathcal{M}) \to \mathbb{R}$.

• We let
$$
\mathbb{E}_s^{\sigma}(f) = \int_{\pi \in \text{Plays}(\mathcal{M})} f(\pi) d\mathbb{P}_s^{\sigma}(\pi)
$$
.

Multi-objective Markov decision processes

We consider two goals:

reaching work under 40 minutes with high probability;

minimising the expectancy of the time to reach work.

What are good payoffs?

To provide formal results, we need to constrain considered payoffs. $\leadsto \mathbb{E}_s^\sigma(f)$ should be well-defined for all strategies.

Good payoff functions

Three types of **good** payoffs:

- non-negative payoffs: $f \geq 0$;
- non-positive payoffs: $f < 0$;
- universally integrable payoffs: $\mathbb{E}^{\sigma}_s(|f|) \in \mathbb{R}$ for all strategies σ and all $s \in S$.

For a **multi-dimensional payoff** $\bar{f} = (f_1, \ldots, f_d)$ and $s \in S$, we let:

\n- $$
\text{Pay}_s(\bar{f}) = \{ \mathbb{E}_s^{\sigma}(\bar{f}) \mid \sigma \text{ strategy} \};
$$
\n- $\text{Pay}_s^{\text{pure}}(\bar{f}) = \{ \mathbb{E}_s^{\sigma}(\bar{f}) \mid \sigma \text{ pure strategy} \}.$
\n

Universally integrable payoffs

In the introductory example, we had $\mathsf{Pay}_{\mathsf{home}}(\bar{f}) = \mathrm{conv}(\mathsf{Pay}_{\mathsf{home}}^{\mathsf{pure}}(\bar{f})).$

When does this generalise?

Theorem

Let $\bar{f} = (f_1, \ldots, f_d)$ be universally integrable. Then, for all states s,

 $\mathsf{Pay}_s(\bar{f}) = \mathrm{conv}(\mathsf{Pay}^{\mathsf{pure}}_s(\bar{f})).$

In particular, to match the expected payoff of any strategy, it suffices to:

- \blacksquare mix $d+1$ pure strategies;
- **E** consider strategies use **randomisation at most** d along any play.

Sequel: proof of a weaker result

If \bar{f} is universally integrable, then $\mathrm{cl}(\mathsf{Pay}_s(\bar{f})) = \mathrm{cl}(\mathrm{conv}(\mathsf{Pay}_s^{\mathsf{pure}}(\bar{f}))).$

Universally integrable payoffs A simpler proof

Non-direct inclusion: $\mathsf{Pay}_s(\bar{f}) \subseteq \mathrm{cl}(\mathrm{conv}(\mathsf{Pay}^{\mathsf{pure}}_s(\bar{f}))).$ Let σ be a strategy and $\mathbf{q} = \mathbb{E}_s^{\sigma}(\bar{f}).$ Assume $\mathbf{q} \notin \text{cl}(\text{conv}(\mathsf{Pay}^{\text{pure}}_s(\bar{f}))).$ Main idea: reduction to a one-dimensional payoff.

Theorem (Hyperplane separation theorem)

Let D_1 , $D_2 \subseteq \mathbb{R}^d$ be disjoint convex sets. If D_1 is closed and D_2 is compact, then there exists a linear form $x^* \colon \mathbb{R}^d \to \mathbb{R}$ and $\varepsilon > 0$ such that for all $\mathbf{p}_1 \in D_1$ and $\mathbf{p}_2 \in D_2$, $x^*(\mathbf{p}_1) + \varepsilon < x^*(\mathbf{p}_2)$.

Universally integrable payoffs A simpler proof

Non-direct inclusion: $\mathsf{Pay}_s(\bar{f}) \subseteq \mathrm{cl}(\mathrm{conv}(\mathsf{Pay}^{\mathsf{pure}}_s(\bar{f}))).$ Let σ be a strategy and $\mathbf{q} = \mathbb{E}_s^{\sigma}(\bar{f}).$ Assume $\mathbf{q} \notin \text{cl}(\text{conv}(\mathsf{Pay}^{\text{pure}}_s(\bar{f}))).$ Main idea: reduction to a one-dimensional payoff.

There exists a linear form x^* such that, for all pure strategies $\tau,$

$$
x^*(\mathbb{E}_s^{\tau}(\bar{f})) < x^*(\mathbf{q}).
$$

By linearity, we obtain that for all pure strategies τ ,

$$
\mathbb{E}_s^{\tau}(x^*(\bar{f})) < \mathbb{E}_s^{\sigma}(x^*(\bar{f})).
$$

Lemma

Let f be universally integrable. For all strategies σ , there exists a pure strategy τ such that $\mathbb{E}_s^{\sigma}(f) \leq \mathbb{E}_s^{\tau}(f)$.

Universally integrable payoffs Compact case

What happens if $\mathsf{Pay}_s(\bar{f})$ is $\mathsf{compact}~?$

- The argument can be adapted if $\mathsf{Pay}_s(\bar{f})$ is $\mathsf{polyhedral}.$
- **However, good hyperplanes do not generally exist for all extreme** points despite $\mathsf{Pay}_s(\bar{f}) = \text{conv}(\text{extr}(\mathsf{Pay}_s(\bar{f}))).$

- **Consider a vertex q obtained by** σ **.**
- There is a hyperplane intersecting $\mathsf{Pay}_s(\bar{f})$ only at q.
- There exists a linear form x^* such that σ is **optimal** from s for $x^* \circ \bar{f}$.

 $\leadsto \mathbf{q} \in \mathsf{Pay}^{\mathsf{pure}}_s(\bar{f})$

Universally integrable payoffs Compact case

What happens if $\mathsf{Pay}_s(\bar{f})$ is $\mathsf{compact}~?$

- The argument can be adapted if $\mathsf{Pay}_s(\bar{f})$ is $\mathsf{polyhedral}.$
- **However, good hyperplanes do not generally exist for all extreme** points despite $\mathsf{Pay}_s(\bar{f}) = \mathrm{conv}(\mathrm{extr}(\mathsf{Pay}_s(\bar{f}))).$

Beyond universally integrable payoffs Example

Payoffs

$$
\begin{array}{c}\n a \\
1\n\end{array}\n\begin{array}{c}\n C \\
0\n\end{array}\n\begin{array}{c}\n b \\
0\n\end{array}\n\begin{array}{c}\n D \\
0\n\end{array}\n\end{array}
$$

1 reaching $t \leadsto f_1 = \mathbb{1}_{\diamondsuit t}$;

2 sum of weights
$$
\leadsto f_2 = \sum_{\ell=0}^{\infty} w(c_{\ell}).
$$

 $\mathbb{E}_s^{\sigma_a}(f_2)=+\infty \implies f_2$ is not universally integrable. $\mathsf{Pay}^{\mathsf{pure}}_s(\bar f) = \{(0, +\infty)\} \cup \{(1, \ell) \mid \ell \in \mathbb{N}\}.$ \implies conv(Pay_s^{pure}(\bar{f})) = ({1} × R_{≥0}) ∪ ([0, 1[× {+∞}). We have $(1, +\infty) \in \mathsf{Pay}_s(\bar{f})$ via σ such that for all $\ell \in \mathbb{N}$:

$$
\sigma(s(as)^{\ell})(a) = \begin{cases} \frac{1}{2} & \text{if } \ell \in 2^{\mathbb{N}} \\ 1 & \text{if } \ell \notin 2^{\mathbb{N}} \end{cases}
$$

 \rightarrow The theorem does not generalise.

J. Main [Payoff Sets in Multi-Objective MDPs](#page-0-0) 9 / 10

Beyond universally integrable payoffs

Theorem

Let $f = (f_1, \ldots, f_d)$ be a good payoff and $s \in S$. For all strategies σ , all $\varepsilon > 0$ and all $M \in \mathbb{R}$, there exist finitely many pure strategies τ_1, \ldots, τ_n and coefficients $\alpha_1, \ldots, \alpha_n \in [0,1]$ such that $\sum_{m}^{n} \alpha_m = 1$ and for all $1 \leq j \leq d$: $\frac{n}{m} \alpha_m = 1$ and for all $1 \leq j \leq d$: if $\mathbb{E}_{s}^{\sigma}(f_j) = +\infty$, then $\sum_{m=1}^{n} \alpha_m \mathbb{E}_{s}^{\tau_m}(f_j) \geq M$, if $\mathbb{E}^{\sigma}_s(f_j)=-\infty$, then $\sum_{m=1}^n \alpha_m \mathbb{E}^{\tau_m}_s(f_j) \leq -M$, and, otherwise, if $\mathbb{E}_{s}^{\sigma}(f_j) \in \mathbb{R}$, $\mathbb{E}_{s}^{\sigma}(f_j) - \varepsilon \leq \sum_{m=1}^{n} \alpha_m \mathbb{E}_{s}^{\tau_m}(f_j) \leq \mathbb{E}_{s}^{\sigma}(f_j) + \varepsilon.$

Informally, we have

 $\operatorname{cl}(\mathsf{Pay}_s(\bar{f})) = \operatorname{cl}(\operatorname{conv}(\mathsf{Pay}^{\operatorname{pure}}_s(\bar{f}))).$

Thank you for your attention !

Universally integrable payoffs General argument: sketch

Proof goal

For all strategies σ , $\mathbf{q} = \mathbb{E}^{\sigma}_s(\bar{f}) \in \text{conv}(\mathsf{Pay}^{\textsf{pure}}_s(\mathbf{q})).$

Gonstruct linear map L_{q} such that: a σ is lexicographically optimal for $L_{\mathbf{q}}\circ\bar{f};$ **b** $q \in \text{ri}(\text{Pay}_s(\bar{f}) \cap V)$ where $V = \{p \in \mathbb{R}^d \mid L_q(p) = L_q(q)\}.$ Show that $\mathrm{ri}(\mathsf{Pay}_s(\bar{f}) \cap V) = \mathrm{ri}(\mathrm{conv}(\mathsf{Pay}^{\mathsf{pure}}_s(\bar{f})) \cap V)$, i.e., $\operatorname{cl}(\mathsf{Pay}_s(\bar{f}) \cap V) = \operatorname{cl}(\operatorname{conv}(\mathsf{Pay}^{\mathsf{pure}}_s(\bar{f})) \cap V)$

Key lemma

If f is universally integrable, then for all strategies σ and all $s \in S$, there exists a pure strategy τ such that

$$
\mathbb{E}^{\sigma}_s(\bar f) \leq_{\text{lex}} \mathbb{E}^{\tau}_s(\bar f).
$$

A set of expected payoffs that is not closed

For $j \in \{1,2\}$, we consider the payoff f_j such that, for all plays $s_0a_0s_1 \ldots$,

$$
f_j(s_0 a_0 s_1 \ldots) = \mathbb{1}_{\mathsf{Reach}(\{t\})}(s_0 a_0 s_1 \ldots) \cdot \sum_{\ell=0} \left(\frac{3}{4}\right)^{\ell} w_j(a_{\ell}).
$$

