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Introduction

Window objectives have been studied in discrete-time settings:
in turn-based games with mean-payoff and total-payoff
objectives [CDRR15];
in turn-based games with parity objectives [BHR16];
in Markov decision processes for parity and mean-payoff
objectives [BDOR20].

We have extended window parity objectives to a continuous-time setting,
for timed automata and timed games  time is not measured as steps !

Intuition of window parity objectives

A window parity objective for a fixed bound λ requires that, in all
configurations occurring in a play, we see a good window for the parity
objective, i.e., a time frame of size less than λ such that the smallest
priority in this time frame is even.
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Timed automata

Timed automata [AD94] are used to model real-time systems.
The elapse of time is measured by a finite number of clock variables,
or clocks, that progress at the same rate.
Clock constraints are conjunctions of conditions of the form x ≤ c,
x < c, x ≥ c and x > c where x is a clock and c a natural number.

`0
x ≤ 2

`1
true

`2
x ≤ 2

(x > 1, a,∅) (x ≥ 3, a, {x})

(true, a, {x})

Timed automata consist of:
a finite set of locations constrained by invariants with a distinguished
initial location `init and
a finite set of edges labeled by guards, actions and clocks to reset.
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Timed automata
Semantics

A timed automaton gives rise to an uncountable transition system.
States of this transition system are pairs of locations and clock
valuations (i.e., mappings C → R≥0). The initial state is (`init,0

C).
Moves are pairs (d, a) where d ∈ R≥0 is a delay and a is an action of
the timed automaton or a special standby action ⊥.
Transitions are constrained by the invariants and guards of the timed
automaton.

One can wait in a location of a timed automaton as long as its
invariant is satisfied.
One can traverse an edge of a timed automaton after a delay d if the
invariant of the current location and the guard of the edge are satisfied
after d time units, and the invariant of the target location is satisfied
after resetting the clocks specified on the edge.
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Timed games

We consider two-player games played on timed automata.
A timed game is given by a timed automaton and a partition of the
actions of the timed automaton in P1 actions and P2 actions.
These games are concurrent: at each round, both players present a
move and the play proceeds following a fastest move – a transition is
chosen non-deterministically if both players present moves with the
same delay.

`1
true

`0
x ≤ 2

`2
x ≤ 2

(x ≥ 1, a2,∅)

(x ≥ 1, a1, {x})

(true, a1, {x})

Example 1: (`0, 0) ((1, a1), (1, a2)) (`1, 1)

Example 2: (`0, 0) ((1, a1), (1, a2)) (`2, 0)
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Timed games

Plays are non-terminating: a play is an infinite sequence of alternating
states of the transition system underlying the timed automaton and
pairs consisting of P1 and P2 moves.
A strategy for Pi is a function mapping histories (i.e., finite prefixes of
plays) to moves of Pi.
An objective is a set of plays that represents the specification to be
enforced.
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The passage of time in timed games

It is possible to have a play in which a finite amount of time passes.
Example: (`0, 0)(( 1

2 ,⊥), ( 1
2 ,⊥))(`0,

1
2 )(( 1

4 ,⊥), ( 1
4 ,⊥))(`0,

3
4 ) . . .

`0
x ≤ 1

`2
true

(x = 1, a1, {x})

Plays in which the sum of delays converges are called time-convergent.
Otherwise, a play is referred to as time-divergent.

Time-convergent plays are not physically meaningful...

 we do not want P1 to enforce his objective by making time converge !
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Winning in timed games

Due to the phenomenon of time-convergence, we distinguish
objectives and winning conditions, following [dAFH+03].
Given an objective, we say a play belongs to its associated winning
condition if one of the two following conditions is fulfilled:

the play is time-divergent and satisfies the objective;
the play is time-convergent and from some point on, transitions in the
play cannot be achieved by P1’s moves.

We say a strategy is winning from some initial state if all plays starting
in this state consistent with the strategy satisfy the winning condition.

Realizability problem

Given an objective, check whether P1 has a winning strategy from the
initial state.
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Objectives of interest

Safety objective: for a set of locations F , the safety objective over F ,
denoted by Safe(F ), consists of sequences of states along which no
location in F ever appears.
Co-Büchi objective: for a set of locations F , the co-Büchi objective
over F , denoted by coBüchi(F ), consists of sequences of states along
which no location in F appears infinitely often.
Parity objective: given a priority function p mapping a non-negative
integer to locations, consists of sequences of states along which the
smallest priority appearing infinitely often is even.

James C. A. Main Timed Games with Window Parity Objectives Journées du GT Vérif 9 / 24



A motivation for windows

For the classical parity objective, there are no timing constraints
between odd priorities and smaller even priorities.

`0
x ≤ 2

1

`1
true

2

`2
x ≤ 2

0

(true, a1,∅) (true, a2, {x})

(true, a1, {x})

Through the window mechanism, one can specify such timing
constraints.
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Good windows

The window objectives are based on the notion of good windows.
Fix a bound λ on the length of windows. A good window for the
parity objective is a window in which:

strictly less than λ time units elapse and
the smallest priority appearing in the window is even.

`0
x ≤ 2

1

`1
true

2

`2
x ≤ 2

0

(true, a1,∅) (true, a2, {x})

(true, a1, {x})

Examples for λ = 2:[
(`0, 0)((1, a1), (2,⊥))(`1, 1)((5,⊥), (12 , a2))(`2, 0)((0, a1), (1,⊥))

]ω
 good window at the start[
(`0, 0)((1, a1), (2,⊥))(`1, 1)((5,⊥), (32 , a2))(`2, 0)((0, a1), (1,⊥))

]ω
 bad window at the start
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Some convenient notation

For two moves m(1) = (d(1), a(1)), m(2) = (d(2), a(2)), write

delay(m(1),m(2)) = min{d(1), d(2)}.

Let π = (`0, v0)(m
(1)
0 ,m

(2)
0 )(`1, v1) . . . be a play. Set, for any n ∈ N

and d ≤ delay(m
(1)
n ,m

(2)
n ), π+d

n→ to be the play

(`n, vn+d)(m(1)
n −d,m(2)

n −d)(`n+1, vn+1)(m
(1)
n+1,m

(2)
n+1)(`n+2, vn+2) . . .
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Good windows

Let π = (`0, v0)(m
(1)
0 ,m

(2)
0 )(`1, v1) . . . be a play.

Timed good window parity objective: the window at the start of the
play is good. Formally, we define π ∈ TGW(λ) if and only if

∃n,
(

min
0≤k≤n

p(`k)

)
mod 2 = 0 ∧

n−1∑
k=0

delay(m
(1)
k ,m

(2)
k ) < λ.

We say that the window opened at some step j closes at step n if n
satisfies

( min
j≤k≤n

p(`k)) mod 2 = 0 ∧ ∀ j ≤ n′ < n, ( min
j≤k≤n′

p(`k)) mod 2 = 1.

If a window does not close in strictly less than λ time units, we say
that this window is bad.
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Timed window parity objectives

Let π = (`0, v0)(m
(1)
0 ,m

(2)
0 )(`1, v1) . . . be a play.

Direct timed window parity objective: there is a good window at all
steps. We say that π ∈ DTW(λ) if and only if

∀n, ∀ d ∈ [0, delay(m(1)
n ,m(2)

n )], π+d
n→ ∈ TGW(λ).

The above is equivalent to the simpler statement:

∀n, π+0
n→ ∈ TGW(λ).

`j `j+1 `n−1 `n

Timed window parity objective: the direct window parity objective
holds from some point on; π ∈ TW(λ) holds if and only if

∃n, π+0
n→ ∈ DTW(λ).
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Inductive property of windows

The key to our reduction-based algorithm is the inductive property of
windows.

Inductive property of windows

Along all plays of a timed game, for all j, if the window opened at step j
closes at step n in strictly less than λ time units, then for all j ≤ j′ ≤ n,
the window opened at step j′ is good.

`j `j′ `n

p(`n) = minj≤k≤n p(`k)
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Inductive property of windows

 The inductive property implies that it suffices to keep track of one
window at a time.

One can reduce the realizability problem for the direct timed window
parity objective to the realizability problem for the safety objective.
One can reduce the realizability problem for the timed window parity
objective to the realizability problem for the co-Büchi objective.
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Reduction

We expand timed automata to include information on the current
window use this information to detect bad windows.
We expand locations to encode the current lowest priority of the
window or a special value bad to be avoided.
We introduce a new clock z to measure how long the current window
has been open.
We change guards and invariants so that bad locations are visited
whenever a bad window is witnessed.
For each player, we add a new action to enter and exit bad locations,
written β1 and β2.

Key ingredient of the reduction  time-divergence
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Example of the reduction

`0
x ≤ 2

1

`1
true

2

`2
x ≤ 2

0

(true, a1,∅) (true, a2, {x})

(true, a1, {x})

(`0, 1)
x ≤ 2 ∧ z ≤ λ

(`1, 1)
z ≤ λ

(`0, bad)
z = 0

(`1, bad)
z = 0

(`2, 0)
x ≤ 2

(`1, 2)
true

(z < λ, a1,∅)

(z = λ, β, {z})(true, β,∅) (z = λ, β, {z})

(z < λ, a2, {x})

(true, a2, {x, z})

(true, β,∅)

(true, a1, {x, z})
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Correctness of the reduction

Correctness can be proven using two mappings: an expansion mapping Ex
and a projection mapping Pr over histories and plays:

Ex maps plays of a timed game to plays of its expansion;
Pr maps plays of an expanded timed game to plays of the original one.

Theorem
For all time-divergent plays π, π satisfies DTW(λ) (resp. TW(λ)) if and
only if Ex(π) satisfies Safe(Bad) (resp. coBüchi(Bad)).

Theorem
For all time-divergent initial plays π of an expanded timed game, π satisfies
Safe(Bad) (resp. coBüchi(Bad)) if and only if Pr(π) satisfies DTW(λ)
(resp. TW(λ)).
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Correctness of the reduction

The mappings Ex and Pr can be used to translate winning strategies
between a timed game and its expansion.

The expansion mapping can be used to translate strategies of an
expanded timed game to strategies of the original timed game.

Roughly: σ̄ translated to σ̄ ◦ Ex

To obtain a well-defined strategy, we replace any β1 by ⊥.
The projection mapping can be used to translate strategies of a timed
game to strategies of its expansion.

Roughly: σ translated to σ ◦ Pr

To obtain a well-defined strategy, we use (d, β1) for some d to replace
illegal moves and (0, β1) when in a bad location.
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Correctness of the reduction

For a timed game G, let G(λ) denote its expansion.

Theorem
Let sinit be the initial state of G and s̄init be the initial state of G(λ).

There is a winning strategy σ for P1 for the objective DTW(λ) from
sinit in G if and only if there is a winning strategy σ̄ for P1 for the
objective Safe(Bad) from s̄init in G(λ).
There is a winning strategy σ for P1 for the objective TW(λ) from
sinit in G if and only if there is a winning strategy σ̄ for P1 for the
objective coBüchi(Bad) from s̄init in G(λ).
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Multi-dimensional objectives and complexity

The reduction can be adapted for conjunctions of direct timed window
parity objectives and conjunctions of timed window parity objectives.
By the inductive property, we need only keep track of one window per
dimension.
The construction is similar: locations are expanded with vectors of
priorities and one new clock per objective is introduced.

Complexity of the reduction-based algorithm

In the single-dimensional case, we have a polynomial-time reduction to
the realizability problem for timed safety or co-Büchi games, which is
an EXPTIME-complete problem.
In the multi-dimensional case, we also have an EXPTIME complexity
for our algorithm.
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Verification of timed automata

Verification problem for timed automata

Given an objective, check whether all time-divergent paths of the timed
automata satisfy the objective.

We can use the same reduction as for timed games to handle
verification of timed automata with window parity objectives.
The verification problem for the one-dimensional direct/non-direct
timed window parity objective can be reduced in polynomial time to
the verification problem for the safety/co-Büchi objective.
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Complexity overview

One can show that realizability in timed games and verification of timed
automata with safety objectives can be respectively reduced to realizability
in timed games and verification in timed automata with timed window
parity objectives. This yields EXPTIME-hardness in the case of games and
PSPACE-hardness in the case of automata.

Complexity summary
Single dimension Multiple dimensions

Timed automata PSPACE-complete PSPACE-complete
Timed games EXPTIME-complete EXPTIME-complete

Games (untimed) [BHR16] P-complete EXPTIME-complete
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Complexity lower bound

We can show EXPTIME-hardness by reducing the realizability problem
for timed safety games to the realizability problem for timed window
parity games.
Due to time-convergence and divergence, we cannot use a sink state
with an odd priority.

`1
true

`0
x ≤ 2

`2
x ≤ 2

(x ≥ 1, a2,∅)

(x ≥ 1, a1, {x})

(true, a1, {x})

`′1
true

`′0
x ≤ 2

`′2
x ≤ 2

(x ≥ 1, a2,∅) (x ≥ 1, a1, {x})

(true, a1, {x})

0 0 1

11 1
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What happens if we change the semantics of winning ?
Bonus

In these theorems, time-divergence plays an important role.

Theorem
For all time-divergent plays π, π satisfies DTW(λ) (resp. TW(λ)) if and
only if Ex(π) satisfies Safe(Bad) (resp. coBüchi(Bad)).

Theorem
For all time-divergent initial plays π of an expanded timed game, π satisfies
Safe(Bad) (resp. coBüchi(Bad)) if and only if Pr(π) satisfies DTW(λ)
(resp. TW(λ)).

Thanks to time-divergence, not satisfying the good window objective is
equivalent to witnessing a bad window.

 not true for all time-convergent plays !
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What happens if we change the semantics of winning ?
Bonus

Consider the play π defined by:

(`0, 0) ((1, a1), (2,⊥)) (`1, 0)

((1, a1), (1/2, a2)) (`1, 1/2)

((1/2, a1), (1/4, a2))(`1, 3/4) . . .

`0
x ≤ 2

1

`1
true

2

`2
x ≤ 2

0

(true, a1, {x}) (x ≥ 1, a1, {x})

(true, a2,∅)

(true, a1, {x})

↪→ no good window but no bad window either for λ = 2

James C. A. Main Timed Games with Window Parity Objectives Journées du GT Vérif 5 / 7



What happens if we change the semantics of winning ?
Bonus

It is not sufficient to only consider a safety/Co-Büchi objective in the
expanded game if we remove our time-divergence hypothesis.

Can we weaken our theorem’s hypotheses ?

Erroneous theorem
For all time-divergent plays π, π satisfies DTW(λ) (resp. TW(λ)) if and
only if Ex(π) satisfies Safe(Bad) (resp. coBüchi(Bad)).

 problem with the direction “ ⇐= ”

What more should we ask of Ex(π) ?
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What happens if we change the semantics of winning ?
Bonus

Plays that are problematic are those that have windows that do not
close, but are always of size strictly less than λ.

How do we know a window is closed in the expanded game ?

A window is closed if and only if its smallest priority is even.

Alternate theorem 1
For all time-divergent plays π, π satisfies DTW(λ) (resp. TW(λ)) if and
only if Ex(π) satisfies Safe(Bad) (resp. coBüchi(Bad)) and Büchi(Even).

Alternate theorem 2
For all time-divergent initial plays π of an expanded timed game, π satisfies
Safe(Bad) ∩ Büchi(Even) (resp. coBüchi(Bad) ∩ Büchi(Even)) if and only
if Pr(π) satisfies DTW(λ) (resp. TW(λ)).
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