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In general, one can define randomised strategies in different ways.
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Introduction

In general, one can define randomised strategies in different ways.

Mixed strategies Behavioural strategies

In general, these two classes of strategies are not comparable.
Kuhn’s theorem [Aum64]1: in games of perfect recall any mixed
strategy has an equivalent behavioural strategy and vice-versa.

Focus of this talk
A Kuhn-inspired classification of finite-memory strategies.
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Setting: finite stochastic games

We consider two-player stochastic games.
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Essential characteristics

Finite state space S = S1 � S2 and action space A.
Probabilistic transition function δ : S ×A → D(S).
No deadlocks.
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Strategies

Definition
A strategy of Pi is a function σi : (SA)

∗Si → D(A).
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Strategies

Definition
A strategy of Pi is a function σi : (SA)

∗Si → D(A).

We compare strategies independently of any objective or payoff.
Equality is too restrictive: two different strategies may induce the
same behaviour in practice.
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Outcome-equivalence

Given two strategies σ1 and σ2, and an initial state sinit ∈ S, we define a
probability distribution on the set of plays in the usual way: for any history
h = s0a0s1 . . . sn with s0 = sinit, we set

Pσ1,σ2
s (Cyl(h)) =

n−1�

k=0

σi(k)(s0a0 . . . sk) · δ(sk, ak, sk+1)

where Cyl(h) is the set of plays with h as a prefix, and i(k) = 1 if sk ∈ S1

and 2 otherwise.
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s (Cyl(h)) =

n−1�

k=0

σi(k)(s0a0 . . . sk) · δ(sk, ak, sk+1)

where Cyl(h) is the set of plays with h as a prefix, and i(k) = 1 if sk ∈ S1

and 2 otherwise.

Outcome-equivalence

Two strategies σ1 and τ1 of P1 are outcome-equivalent if for all strategies
σ2 of P2 and all initial states sinit ∈ S, we have

Pσ1,σ2
sinit

= Pτ1,σ2
sinit

.
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Randomised finite-memory strategies

In general, strategies can use unlimited memory, which is unrealistic in
practice.

J. C. A. Main, M. Randour Revisiting Kuhn’s Theorem Under FM Assumptions GT Vérif’22 9 / 24



Randomised finite-memory strategies

In general, strategies can use unlimited memory, which is unrealistic in
practice.

Definition
A strategy σi of Pi is finite-memory if it is induced by a stochastic Mealy
machine M = (M,µinit,αnext,αup) where

M is a finite set of memory states;
µinit ∈ D(M) is an initial distribution;
αnext : M × Si → D(A) is a stochastic next-move function;
αup : M × S ×A → D(M) is a stochastic memory update function.
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Randomised finite-memory strategies

In general, strategies can use unlimited memory, which is unrealistic in
practice.

Definition
A strategy σi of Pi is finite-memory if it is induced by a stochastic Mealy
machine M = (M,µinit,αnext,αup) where

M is a finite set of memory states;
µinit ∈ D(M) is an initial distribution;
αnext : M × Si → D(A) is a stochastic next-move function;
αup : M × S ×A → D(M) is a stochastic memory update function.

We can classify Mealy machines following whether their initialisation,
updates and outputs are randomised or deterministic.
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All classes of Mealy machines are not equally powerful

Some classes of Mealy machines allow richer behaviours than others.
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All classes of Mealy machines are not equally powerful

Some classes of Mealy machines allow richer behaviours than others.
For instance, the strategy illustrated on the right cannot be emulated
with randomisation only in the outputs.
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Our results

We use acronyms to define classes of Mealy machines: we use XYZ where
X, Y, Z ∈ {D, R} where D stands for deterministic and R for random, and

X characterises initialisation,
Y characterises outputs (next-move function),
Z characterises updates.
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X, Y, Z ∈ {D, R} where D stands for deterministic and R for random, and

X characterises initialisation,
Y characterises outputs (next-move function),
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DRR = RRR = RDR

DDR RRD

DRD

RDD

DDD
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Illustrating a finite-memory strategy

In the sequel, we will illustrate fragments of Mealy machines for Pi as
follows.
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RDD ⊆ DRD: trading random initialisation for outputs

We fix an RDD Mealy machine M = (M,µinit,αnext,αup).
We use an adaptation of the subset construction to go from M to a
DRD Mealy machine.
State space of functions f : supp(µinit) → (M ∪ {⊥}):

We simulate the strategy from each initial state.
If an action is inconsistent with one of the simulations, we stop it
(symbolised by ⊥).
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RRR ⊆ DRR: determinising initialisation

We fix an RRR Mealy machine M = (M,µinit,αnext,αup).
To derive a DRR Mealy machine from M, we add a new initial state
mnew to the memory state space.
We use stochastic updates to return to M from mnew. Transition
probabilities are chosen so the distribution over memory states is the
same in M and the DRR Mealy machine after the first step.
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RRR ⊆ RDR: determinising outputs

We fix an RRR Mealy machine M = (M,µinit,αnext,αup).
To derive a RDR Mealy machine from M, we expand the state space
by augmenting memory states with pure memoryless strategies
σi : Si → A.
We use stochastic initialisation and updates to integrate the
randomisation over actions in the transitions.
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RRR ⊆ RDR: determinising outputs

We fix an RRR Mealy machine M = (M,µinit,αnext,αup).
To derive a RDR Mealy machine from M, we expand the state space
by augmenting memory states with pure memoryless strategies
σi : Si → A.
We use stochastic initialisation and updates to integrate the
randomisation over actions in the transitions.

Naive construction � memory state space grows by a factor of |A||Si|

�→ We can do better:

Theorem
There exists an RDR Mealy machine with |M | · |Si| · |A| states whose
induced strategy is outcome-equivalent to M.
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RRR ⊆ RDR: choosing pure memoryless strategies

Consider a game such that Si = {s1, s2, s3}, and A = {a1, a2, a3}.
Assume that for a memory state m ∈ M , we have:

αnext(m, s1)(a1) = αnext(m, s1)(a2) =
1
2 ;

αnext(m, s2)(a1) = αnext(m, s2)(a2) = αnext(m, s2)(a3) =
1
3 ;

αnext(m, s3)(a1) =
1
3 , αnext(m, s3)(a2) =

1
6 and αnext(m, s3)(a3) =

1
2 .
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1
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3 ;

αnext(m, s3)(a1) =
1
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1
6 and αnext(m, s3)(a3) =

1
2 .

We represent the actions in a table to derive the pure memoryless
strategies and their probabilities.

s1 a1 a2

s2 a1 a2 a3

s3 a1 a2 a3
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We represent the actions in a table to derive the pure memoryless
strategies and their probabilities.

s1 a1 a2

s2 a1 a2 a3

s3 a1 a2 a3

σk σ1 σ2 σ3 σ4

x1 = 0 x2 =
1
3 x3 =

1
2 x4 =

2
3 x5 = 1
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RRR ⊆ RDR: exploiting the memoryless strategies

For each memory state m ∈ M , we determine pure memoryless
strategies σm

1 , . . . , σm
�(m) and their respective probabilities pm1 , . . . ,

pm�(m).

We split transitions that enter m into transitions that go to the states
(m,σm

j ): a transition of probability q into m yields a transition with
probability q · pmj into (m,σm

j ).

m
q ...

(m,σm
1 )

(m,σm
�(m))

q · pm1

q · pm�(m)
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Differences between classes

We discuss the following aspects:
The chain of inclusions DDD � RDD � DRD � RRD � RRR is strict.
It holds that DDR � RRD and RDD � DDR.

DRR = RRR = RDR

DDR RRD

DRD

RDD

DDD
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Strictness: RDD � DRD

In a one-player deterministic game, RDD strategies have finitely many
outcomes.
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Strictness: RDD � DRD

In a one-player deterministic game, RDD strategies have finitely many
outcomes.
The DRD strategy depicted below has no RDD equivalent.

Game

s ab

Witness of RDD � DRD

m0

a | 1
2b | 1

2
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Strictness: DDR � RRD

The number of memory states in which we can find ourselves as a play
goes on cannot increase for an RRD strategy..
To have a positive probability of never using a, we must eventually be
in a memory state m such that αnext(m, s)(a) = 0 with positive
probability.

Game

s ab

Can be adapted to witness DDR � RRD
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1
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Taxonomy in settings of partial information

Up to now, we have discussed a classification of strategies in a setting
of perfect information.

� Can we weaken this hypothesis ?

It is not necessary to see the states themselves.
For the inclusion RDD ⊆ DRD, we rely on the visibility of actions in
our subset construction.
For the inclusion RRR ⊆ DRR, we also use the visibility of actions in
conditional probabilities.

Partial information
The classification holds in games where Pi can see their actions and
distinguish the owner of states from their observations.
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Collapses – invisible actions

What happens to the lattice in full generality ? If we assume nothing on
the visibility of actions ?

Two inclusions of our lattice no longer hold. We have:
RDD�DRD;
RRR�DRR (we even have RDD�DRR).

Intuitively, for a strategy with deterministic outputs (i.e., in a subclass
of RDR), the output actions are encoded in the Mealy machine itself.
� such strategies allow the same behaviours whether actions are
visible or not.
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General lattice: no hypotheses on actions

RRR = RDR

DRR RRD

DDR DRD RDD

DDD
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Subgame perfect equilibria and Kuhn’s theorem

In the statement of Kuhn’s theorem and our classification, the output
of the strategies along inconsistent branches histories are completely
disregarded.
In other words, our classification approach is not relevant for the study
of subgame perfect equilibria, for which these inconsistent histories are
nonetheless taken in account.
However, the output of a finite-memory strategy along an inconsistent
history is not well-defined.
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