Verifying Concisely Represented Strategies in One-Counter Markov Decision Processes

Michal Ajdarów² James C. A. Main¹ Petr Novotný² Mickael Randour¹

¹F.R.S.-FNRS and UMONS – Université de Mons, Belgium

²Masaryk University, Brno, Czech Republic

Journées Annuelles du GT Vérif 2024

Verifying one-counter Markov decision processes

- We study one-counter Markov decision processes (OC-MDPs).
 - Markov decision process (MDP): models systems with non-determinism and randomness.
 - **Counter**: can be incremented, decremented, left unchanged.
- An OC-MDP induces a countable-state MDP.

Verification problem

Given a **strategy**, an **objective** and a **threshold**, is the probability of the objective being satisfied no less than the threshold ?

- We focus on a class of memoryless strategies of the infinite MDP that admit a finite representation.
- We study variants of **reachability objectives**.

2 One-counter Markov decision processes and interval strategies

Table of contents

1 Markov decision processes

2 One-counter Markov decision processes and interval strategies

Markov decision process (MDP) \mathcal{M}

- Finite or countable state space S.
- **Finite** action space A.
- **Randomised** transition function $\delta \colon S \times A \to \mathcal{D}(S)$.

Plays are sequences in $(SA)^{\omega}$ coherent with transitions. \rightsquigarrow **Example**: $s_0as_1bs_1...$

Strategies and induced Markov chains

- A strategy is a function $\sigma : (SA)^*S \to \mathcal{D}(A)$.
- σ is memoryless if its choices depend only on the current state.
- We view memoryless strategies as functions $S \to \mathcal{D}(A)$.
- A memoryless strategy σ induces a Markov chain over S.

2 One-counter Markov decision processes and interval strategies

One-counter Markov decision processes

One-counter MDP (OC-MDP) \mathcal{Q}

- **Finite** MDP (Q, A, δ) .
- Weight function $w: Q \times A \rightarrow \{-1, 0, 1\}.$

MDP $\mathcal{M}^{\leq \infty}(\mathcal{Q})$ induced by \mathcal{Q}

- Countable MDP over $S = Q \times \mathbb{N}.$
- State transitions via δ .
- Counter updates via w.

Interval strategies

We study two classes of memoryless strategies of $\mathcal{M}^{\leq\infty}(\mathcal{Q}).$

• Open-ended interval strategies (OEIS): σ is an OEIS if there exists $k_0 \in \mathbb{N}$ such that, for all $q \in Q$ and all $k \ge k_0$, $\sigma(q, k) = \sigma(q, k_0)$.

Representing an OEIS

An OEIS is described by a finite partition \mathcal{I} of \mathbb{N}_0 into intervals and a function $Q \times \mathcal{I} \to \mathcal{D}(A)$.

• Cyclic interval strategies (CIS): σ is a CIS if there exists $\rho \in \mathbb{N}_0$ such that, for all $q \in Q$ and all $k \in \mathbb{N}_0$, $\sigma(q, k) = \sigma(q, k + \rho)$.

Representing a CIS

A CIS is described by a **period** ρ , a **partition** \mathcal{I} of $\llbracket 1, \rho \rrbracket$ into intervals and a **function** $Q \times \mathcal{I} \to \mathcal{D}(A)$.

Conciseness of interval strategies

- Let σ be an interval strategy of $\mathcal{M}^{\leq \infty}(\mathcal{Q})$.
- There exists a strategy of Q that induces the same behaviour as σ when an initial counter value is fixed \rightsquigarrow memory = counter value.

OEISs may require infinite memory

The OEIS σ such that:

$$\bullet \ \sigma(p,1) = b$$

•
$$\sigma(p,k) = a$$
 for all $k \ge 2$.

requires infinite memory in Q.

CISs correspond to exponential-size finite-memory strategies of Q.

Objectives

Let $Q = (Q, A, \delta, w)$ be an OC-MDP. We consider two objectives for a target $T \subseteq Q$.

- State reachability: $\operatorname{Reach}(T)$ is the set of plays visiting T.
- Selective termination: Term(*T*) is the set of plays for which counter value 0 is reached in *T*.

Interval strategy verification problem

Decide whether $\mathbb{P}^{\sigma}_{\mathcal{M}^{\leq \infty}(\mathcal{Q}), s_{\text{init}}}(\Omega) \geq \alpha$ given an interval strategy σ , an objective $\Omega \in \{\text{Reach}(T), \text{Term}(T)\}$, a threshold $\alpha \in \mathbb{Q} \cap [0, 1]$ and an initial configuration $s_{\text{init}} \in Q \times \mathbb{N}$.

Goal: explain how to solve the interval strategy verification problem in **polynomial space**.

2 One-counter Markov decision processes and interval strategies

Verification and interval strategies

- We develop techniques to analyse the infinite Markov chain induced by an interval strategy.
- For OEISs, we reduce to the analysis of a finite Markov chain.
- For CISs, we reduce to the analysis of a **one-counter** Markov chain.
- \rightarrow We focus on an OEIS σ based on a partition ${\mathcal I}$ from here.

Main idea: compressing the configuration space

- For each interval $I \in \mathcal{I}$:
 - we only keep a subset of the configurations in $Q \times I$ and
 - we aggregate several transitions of $\mathcal{M}^{\leq \infty}(\mathcal{Q})$ into one.

 \rightsquigarrow We define a compressed Markov chain $\mathcal{C}_{\mathcal{I}}^{\sigma}$.

Compressing the unbounded interval

- Let $I \in \mathcal{I}$ be the unbounded interval, i.e., $Q \times I$ is infinite.
- We keep only one configuration per state.

Example: σ choosing a in all states for the interval $\mathbb{N}_0 = \llbracket 1, \infty \rrbracket$.

→ Transition probabilities can be irrational.

Theorem ([KEM06]¹)

The transition probabilities of $C_{\mathcal{I}}^{\sigma}$ with respect to $Q \times I$ are the least non-negative solution of a quadratic system of equations.

¹Kucera et al., "Model Checking Probabilistic Pushdown Automata", LMCS 2006.

Compressing bounded intervals Motivation

- Let $I \in \mathcal{I}$ be bounded.
- The set of configurations $Q \times I$ is finite.

Why do we want to compress bounded intervals ?

- The bounds of *I* are encoded in **binary**.
- Thus $Q \times I$ is of exponential size.
- Goal: polynomial-size compressed Markov chain.

Compressing bounded intervals State space and transition structure

Main idea: retain configurations by considering counter changes by powers of two.

- The construction requires that $|I| = 2^x 1$ for some $x \in \mathbb{N}_0$.
- We retain at most 2x 1 counter values.

Compressing bounded intervals Transition probabilities

Example: σ playing uniformly at random for the interval [1, 15].

→ Transition probabilities can require exponential-size representations.

Theorem

The transition probabilities of $C_{\mathcal{I}}^{\sigma}$ with respect to $Q \times I$ are the least non-negative solution of a quadratic system of equations.

Verification via compressed Markov chains

Summary: compressed Markov chain $C_{\mathcal{I}}^{\sigma}$

- Polynomial-size state space.
- Transition probabilities given by **polynomial-size equations systems**.
- Preserves termination probabilities.

For CISs, we can use the same approach to derive a **compressed one-counter Markov chain**.

Unbounded counter		Bounded counter
OEIS	CIS	OEIS
co-ETR	co-ETR	P ^{PosSLP}
Square-root sum-hard [EWY10] ²		Square-root sum-hard

²Etessami et al., "Quasi-Birth-Death Processes, Tree-Like QBDs, Probabilistic 1-Counter Automata, and Pushdown Systems", Perform. Evaluation 2010.

Verifying Concisely Represented Strategies in OC-MDPs GT Vérif 2024 18 / 18

References I

Kousha Etessami, Dominik Wojtczak, and Mihalis Yannakakis. "Quasi-Birth-Death Processes, Tree-Like QBDs, Probabilistic 1-Counter Automata, and Pushdown Systems". In: *Perform. Evaluation* 67.9 (2010), pp. 837–857. DOI: 10.1016/J.PEVA.2009.12.009. URL: https://doi.org/10.1016/j.peva.2009.12.009.

Antonín Kucera, Javier Esparza, and Richard Mayr. "Model Checking Probabilistic Pushdown Automata". In: *Log. Methods Comput. Sci.* 2.1 (2006). DOI: 10.2168/LMCS-2(1:2)2006. URL: https://doi.org/10.2168/LMCS-2(1:2)2006.