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Verifying one-counter Markov decision processes

We study one-counter Markov decision processes (OC-MDPs).
Markov decision process (MDP): models systems with
non-determinism and randomness.
Counter: can be incremented, decremented, left unchanged.

An OC-MDP induces a countable-state MDP.

Verification problem

Given a strategy, an objective and a threshold, is the probability of the
objective being satisfied no less than the threshold ?

We focus on a class of memoryless strategies of the infinite MDP
that admit a finite representation.
We study variants of reachability objectives.
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Markov decision processes

Markov decision process (MDP)M

Finite or countable state space S.
Finite action space A.
Randomised transition function δ : S ×A→ D(S).
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Plays are sequences in (SA)ω coherent with transitions.
 Example: s0as1bs1. . .
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Strategies and induced Markov chains

A strategy is a function σ : (SA)∗S → D(A).
σ is memoryless if its choices depend only on the current state.
We view memoryless strategies as functions S → D(A).
A memoryless strategy σ induces a Markov chain over S.
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One-counter Markov decision processes

One-counter MDP (OC-MDP) Q

Finite MDP (Q,A, δ).
Weight function
w : Q×A→ {−1, 0, 1}.
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MDPM≤∞(Q) induced by Q

Countable MDP over
S = Q× N.
State transitions via δ.
Counter updates via w.
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Interval strategies

We study two classes of memoryless strategies ofM≤∞(Q).
Open-ended interval strategies (OEIS): σ is an OEIS if there exists
k0 ∈ N such that, for all q ∈ Q and all k ≥ k0, σ(q, k) = σ(q, k0).

Representing an OEIS

An OEIS is described by a finite partition I of N0 into intervals and a
function Q× I → D(A).

Cyclic interval strategies (CIS): σ is a CIS if there exists ρ ∈ N0

such that, for all q ∈ Q and all k ∈ N0, σ(q, k) = σ(q, k + ρ).

Representing a CIS

A CIS is described by a period ρ, a partition I of J1, ρK into intervals and
a function Q× I → D(A).
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Conciseness of interval strategies

Let σ be an interval strategy ofM≤∞(Q).
There exists a strategy of Q that induces the same behaviour as σ
when an initial counter value is fixed  memory = counter value.

OEISs may require infinite memory

The OEIS σ such that:
σ(p, 1) = b

σ(p, k) = a for all k ≥ 2.
requires infinite memory in Q.
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CISs correspond to exponential-size finite-memory strategies of Q.
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Objectives

Let Q = (Q,A, δ, w) be an OC-MDP. We consider two objectives for a
target T ⊆ Q.

State reachability: Reach(T ) is the set of plays visiting T .
Selective termination: Term(T ) is the set of plays for which
counter value 0 is reached in T .

Interval strategy verification problem

Decide whether PσM≤∞(Q),sinit
(Ω) ≥ α given an interval strategy σ, an

objective Ω ∈ {Reach(T ),Term(T )}, a threshold α ∈ Q ∩ [0, 1] and an
initial configuration sinit ∈ Q× N.

Goal: explain how to solve the interval strategy verification problem in
polynomial space.
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Verification and interval strategies

We develop techniques to analyse the infinite Markov chain induced
by an interval strategy.
For OEISs, we reduce to the analysis of a finite Markov chain.
For CISs, we reduce to the analysis of a one-counter Markov chain.

→ We focus on an OEIS σ based on a partition I from here.

Main idea: compressing the configuration space

For each interval I ∈ I:
we only keep a subset of the configurations in Q× I and
we aggregate several transitions ofM≤∞(Q) into one.

 We define a compressed Markov chain CσI .
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Compressing the unbounded interval

Let I ∈ I be the unbounded interval, i.e., Q× I is infinite.
We keep only one configuration per state.

Example: σ choosing a in all states for the interval N0 = J1,∞K.
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 Transition probabilities can be irrational.

Theorem ([KEM06]1)

The transition probabilities of CσI with respect to Q× I are the least
non-negative solution of a quadratic system of equations.

1Kucera et al., “Model Checking Probabilistic Pushdown Automata”, LMCS 2006.
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Compressing bounded intervals
Motivation

Let I ∈ I be bounded.
The set of configurations Q× I is finite.

Why do we want to compress bounded intervals ?

The bounds of I are encoded in binary.
Thus Q× I is of exponential size.
Goal: polynomial-size compressed Markov chain.
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Compressing bounded intervals
State space and transition structure

Main idea: retain configurations by considering counter changes by
powers of two.

q, 0 q, 1 q, 2 q, 4 q, 6 q, 7 q, 8

The construction requires that |I| = 2x − 1 for some x ∈ N0.
We retain at most 2x− 1 counter values.

J. Main Verifying Concisely Represented Strategies in OC-MDPs GT Vérif 2024 16 / 18



Compressing bounded intervals
Transition probabilities

Example: σ playing uniformly at random for the interval J1, 15K.

q0 q1

a | 1

b | 0

a | −1
q0, 1 q1, 0

q0, 2

1
2

1
2

q0, 4

1
4

3
4

q0, 8

q0, 16

1
16

1
25615

16

255
256

 Transition probabilities can require exponential-size representations.

Theorem
The transition probabilities of CσI with respect to Q× I are the least
non-negative solution of a quadratic system of equations.
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Verification via compressed Markov chains

Summary: compressed Markov chain CσI
Polynomial-size state space.
Transition probabilities given by polynomial-size equations systems.
Preserves termination probabilities.

For CISs, we can use the same approach to derive a compressed
one-counter Markov chain.

Unbounded counter Bounded counter
OEIS CIS OEIS
co-ETR co-ETR PPosSLP

Square-root sum-hard [EWY10]2 Square-root sum-hard

2Etessami et al., “Quasi-Birth-Death Processes, Tree-Like QBDs, Probabilistic
1-Counter Automata, and Pushdown Systems”, Perform. Evaluation 2010.
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