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Talk overview

We consider turn-based multiplayer games on graphs with reachability
and shortest-path objectives.
We focus on constrained Nash equilibria in these games.
Traditional constructions for finite-memory constrained Nash equilibria
usually yield strategies with a size dependent on the arena.

In this talk
We provide constructions for finite-memory Nash equilibria in shortest-path
and reachability games that depend only on the number of players.

The constructions presented here apply to infinite arenas.
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Multiplayer games on graphs

An arena is a graph with vertices partitioned between the n players.
Plays are infinite sequences of vertices consistent with the edges, e.g.,
v0v1v2(v1v0)

ω. A history is a finite prefix of a play.
In a game, each player has a cost function costi : Plays(A)→ R.
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Reachability and shortest-path games
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The reachability cost function is given by a target set T ⊆ V .
A shortest-path cost function is described by a weight function
w : E → N and a target T . For any play π = v0v1v2 . . .,

SPathTw(π) =

{
+∞ if T is not visited in π∑r−1

`=0 w((v`, v`+1)) else, where r = min{r′ | vr′ ∈ T}

We omit weight of 1 from illustrations in the following.
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Strategies

A strategy σi : V ∗Vi → V of Pi maps a history to a vertex.
A strategy profile σ = (σi)i≤n is a tuple with one strategy per player.

Finite-memory strategies

A strategy is finite-memory if it can be encoded by a Mealy machine
(M,minit, up, nxti) where M is a finite set, minit ∈M , up : M × V →M
is an update function and nxt : M × Vi → V is a next-move function.
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Nash equilibria

Nash equilibrium

A strategy profile σ is a Nash equilibrium (NE) from v0 ∈ V if no player
has an incentive to unilaterally deviate from σ, i.e., for all i ≤ n and all
strategies σ′i of Pi:

costi(Out(σ, v0)) ≤ costi(Out((σ
′
i, σ−i), v0)).

Consider the shortest-path game with T1 = {t12, t1} and T2 = {t12}.

v0 t12 v1

v2

t1
3

Not an NE

v0 t12 v1

v2

t1
3

Memoryless NE

Incomparable NE cost profiles may co-exist and some require memory.
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Zero-sum games

We rely on properties of two-player zero-sum games to construct NEs.

Zero-sum game

A two-player game G = (A, (cost1, cost2)) is zero-sum if cost1 = −cost2.

A strategy σ1 of P1 ensures c ∈ R from v if for all strategies σ2 of P2,
cost1(Out((σ1, σ2), v)) ≤ c. For P2, we reverse the inequality.
The value of v, val(v), is the infimum cost P1 can ensure from it.
A strategy σi of Pi is optimal from v if it ensures val(v).
From multi-player games, we derive zero-sum games that oppose one
player to the others.

Coalition game

Given a game G and a player Pi, we let Gi be the zero-sum game on the
same graph where all other players ally against Pi.
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Zero-sum reachability and shortest-path games

In a zero-sum reachability game with target T , vertices are either:
in W1(Reach(T )), from which P1 can force a visit to T ;
in W2(Safe(T )), from which P2 can avoid T infinitely.

Theorem ([Maz01]1)

In a zero-sum reachability game, both players have uniform optimal (i.e.,
winning) memoryless strategies.

In a shortest-path game, P2 may not have an optimal strategy.

Theorem
In a zero-sum shortest-path game, for all α ∈ N, there exists a memoryless
strategy σα2 of P2 such that, for all v ∈ V :

1 if v ∈W2(Safe(T )), T cannot be visited from v under σα2 ;
2 σα2 ensures a cost of at least min{val(v), α}.
1Mazala, “Infinite Games”.
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Simplifying NE outcomes

Not all outcomes can be induced by finite-memory strategy profiles.
We simplify NE outcomes via a characterisation based on:

values of vertices in coalition shortest-path games Gi;
winning regions in coalition reachability games.

Lemma (NE outcomes with a simple decomposition)

Let ρ = v0v1v2 . . . be an NE outcome in an n-player shortest-path game.
There exists an NE outcome π from v0 that can be decomposed as
h1 · . . . · hk · π′ such that

1 hj is a simple history ending in the jth visited target;
2 π′ is a simple play or of the form hcω with hc a simple history;
3 for all j ≤ k, w(hj) is minimum among histories sharing their first and

last vertices with hj that traverse a subset of the vertices of hj ;
4 for all i ≤ n, SPathTiw (π) ≤ SPathTiw (ρ).

J. C. A. Main Arena-independent NE Memory Bounds 13 / 16



Obtaining arena-independent memory bounds

An outcome with k segments can be achieved by a Mealy machine
with k states.
We build on these Mealy machines and include information to track
deviations.
We punish players with memoryless strategies when they deviate from
the intended outcome to obtain NEs.

When to punish?

The key is to not punish all deviations: we tolerate deviations that do not
exit the current segment.
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An example with a single segment

Let T1 = T2 = {t12, t123} and T3 = {t123}.
Considered NE outcome v0v1v3tω123: focus on v0v1v3t123.
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Punishing strategy against P1
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General result

Theorem (shortest-path games)

For all NE outcomes π from v0 in a shortest-path game, there exists a
finite-memory NE σ from v0 with strategies of memory at most n2 + 2n
such that SPathTiw (Out(σ, v0)) ≤ SPathTiw (π) for all i ≤ n.

In reachability games, we can refine the memory bounds.

Theorem (Reachability games)

For all NE outcomes π from v0 in a reachability game, there exists a
finite-memory NE σ with strategies of memory at most n2 such that the
same targets are visited in π and in Out(σ, v0).
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No optimal strategy in zero-sum shortest-path games

In a zero-sum shortest-path game, P1 has a memoryless uniform
optimal strategy.
However, P2 does not have an optimal strategy in general.

v0 v∞

v1 v2 v3 . . .t

In this game, val(vj) = j for all j ∈ N0 ∪ {∞}.
However, no matter the strategy of P2 from v∞, P2 cannot prevent a
visit to t.
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Obtaining finite-memory NEs

Finite-memory strategy profiles have ultimately periodic outcomes in
finite arenas.
We therefore have to simplify NE outcomes for them to result from a
finite-memory strategy profile.

How do we proceed?

1 We rely on a characterisation of plays that can result from NEs.
2 We use the characterisation to derive from any outcome another that

results from a finite-memory NE.
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When does a play result from an NE?

In finite arenas, we have the following characterisation of NE
outcomes in shortest-path games [BBGT21]2:

Theorem ([BBGT21])

Let π = v0v1 . . . be a play and let (Ti)ni=1 be the targets. Then π is an
outcome of an NE from v0 in G if and only for all 1 ≤ i ≤ n, ` ≤ ri, it
holds that SPathTiw (π≥`) ≤ vali(v`) where ri = inf{r ∈ N | vr ∈ Ti}.

However, it does not hold as is in infinite arenas.
Counterexample: the play vω0 , assuming T1 = {t}, T2 = V .

v0 v∞

v1 v2 v3 . . .t

2Brihaye et al., “On relevant equilibria in reachability games”.
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Characterising NE outcomes

In infinite games, we must consider the winning regions in the
reachability game.

Theorem
Let π = v0v1 . . . be a play and let (Ti)ni=1 be the targets. Then π is the
outcome of an NE from v0 in G iff for all 1 ≤ i ≤ n and ` ∈ N, we have

1 if Ti does not occur in π, then v` /∈Wi(Reach(Ti)) and
2 if Ti occurs in π, then ` ≤ ri, implies that SPathTiw (π≥`) ≤ vali(v`)

where ri = min{r ∈ N | vr ∈ Ti}.

Proof idea. (⇐= ) We construct an NE (σi)
n
i=1 from v0 by letting for all

1 ≤ i ≤ n:
if h is a prefix v0 . . . vk of π, σi(h) = vk+1 and
otherwise, if h is not a prefix of π and Pj is responsible for deviating,
let σi(h) = σ−j(last(h)) for some Pj-punishing memoryless strategy.
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Simplifying NE outcomes

Lemma
Let ρ = v0v1v2 . . . be an NE outcome in an n-player shortest-path game.
There exists an NE outcome π from v0 that can be decomposed as
h1 · . . . · hk · π′ such that

1 hj is a simple history ending in the jth visited target;
2 π′ is a simple play or of the form hcω with hc a simple history;
3 for all j ≤ k, w(hj) is minimum among histories sharing their first and

last vertices with hj that traverse a subset of the vertices of hj ;
4 for all i ≤ n, SPathTiw (π) ≤ SPathTiw (ρ).

Proof idea. We apply the following steps.
Decompose ρ similarly to condition 1, replace each obtained history by
a simple one of minimal weight.
Change the suffix to loop in the first cycle along it if applicable.
The resulting π is an NE outcome by the characterisation.
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Negative weights

In a setting with negative weights, in the presence of a negative cycle,
there can be NE cost profiles that require an arbitrarily large memory
size.
If T1 = {t} and T2 = V , for all n ∈ N0, the play (v0v1)

ntω is an NE
outcome that requires a memory of size n and gives a cost of −n for
P1.

v0 v1 t

−1

0
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Büchi games

A Büchi objective for T ⊆ V requires that T is visited infinitely often.
It is not possible to obtain arena-independent memory bounds for
Büchi objectives, e.g., below with T1 = {t} and T2 = {w1, w2, w3}.
We require 3 memory states and it generalises for all n ≥ 1.

v1 w1 v2 w2 v3 w3 t

Theorem
In any Büchi game, from any NE we can build a finite-memory NE such
that the same objectives are satisfied.
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