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Talk overview

We discuss games on graphs and randomised strategies.
In general, such strategies can be defined in different ways.

Mixed strategies Behavioural strategies

In general, these two classes of strategies are not comparable.
Kuhn’s theorem [Aum64]1: in games of perfect recall any mixed
strategy has an equivalent behavioural strategy and vice-versa.

In this talk
We provide a classification of randomised finite-memory strategies.

1Aumann, “28. Mixed and Behavior Strategies in Infinite Extensive Games”.
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Concurrent games on finite graphs

We consider two-player stochastic concurrent games on finite graphs.

s0s1 s2

(a, a)
(b, b)

(a, b)

(b, a)

1
2

1
2

(a, a) (a, a)

Essential characteristics

Finite state space S and action spaces A1 for P1, A2 for P2.
Partial probabilistic transition function δ : S ×A1 ×A2 → D(S).
No deadlocks.
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Plays and strategies

A play is a sequence s0a
(1)
0 a

(2)
0 s1 . . . ∈ (SA1A2)

ω obtained via the
rules described previously.
A history is a prefix of a play ending in a state.

Definition
A (behavioural) strategy of Pi is a function σi : Hist(G)→ D(Ai).

A strategy is pure if it is not randomised.

A play or history s0a
(1)
0 a

(2)
0 . . . is consistent with a strategy σi of Pi if

for all k ∈ N, σi(s0a
(1)
0 a

(2)
0 . . . sk)(a

(i)
k ) > 0.

Strategies σ1 of P1 and σ2 of P2 induce, from any initial state sinit, a
probability distribution Pσ1,σ2sinit over plays.
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Comparing strategies

Two different strategies of a player may exhibit the same behaviour.

s ab

s

s

s s

s

s s

a b

a b a b

Strategy that always uses action a
surely.

s

s

s s

s

s s

a b

a b a b

Strategy that always uses action a
and switches to action b if it occurs.
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Outcome-equivalence

When comparing two strategies, equality does not provide an accurate
measure of equivalence.

Outcome-equivalence

Two strategies σ1 and τ1 are outcome-equivalent if, for all histories
h ∈ Hist(G), h consistent with σ1 implies σ1(h) = τ1(h).

Equivalently, two strategies σ1 and τ1 of P1 are outcome-equivalent if
for all strategies σ2 of P2 and all initial states sinit ∈ S, we have

Pσ1,σ2sinit
= Pτ1,σ2sinit

.
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Randomised finite-memory strategies

In general, optimal strategies may require unlimited memory, which is
unrealistic for practical applications.
Finite-memory strategies are defined as finite automata with outputs.

Definition
A strategy σi of Pi is finite-memory if it can be induced by a stochastic
Mealy machineM = (M,µinit, αnext, αup) where

M is a finite set of memory states;
µinit ∈ D(M) is an initial distribution;
αnext : M × S → D(A) is a stochastic next-move function;
αup : M × S ×A1 ×A2 → D(M) is a stochastic memory update
function.

We can classify Mealy machines following whether their initialisation,
updates and outputs are randomised or deterministic.
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Randomised finite-memory strategies
Example

We illustrate a finite-memory strategy in the game below.

s0 s1s2

(a, a)
(b, b)

(a, b)

(b, a)

(a, a)(a, a)

m0

m1 m2

s0 : a, b | 12

1
2

1
2

s0 : a | 1 s0 : a, b | 12
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All classes of Mealy machines are not equally powerful

Some classes of Mealy machines allow richer behaviours than others.

Example

In the game below, P1 cannot surely ensure that the state s1 is visited
almost-surely using finite-memory strategies derived from Mealy machines
that use randomisation only in the initialisation.

s0 s1

(a, a)
(b, b)

(a, b)
(b, a)

Randomised initialisation ≈ mixing a finite number of pure finite-memory
strategies.
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A classification of finite-memory strategies

We use acronyms to define classes of Mealy machines: we use XYZ where
X, Y, Z ∈ {D, R} where D stands for deterministic and R for random, and

X characterises initialisation,
Y characterises outputs (next-move function),
Z characterises updates.

DRR = RRR = RDR

DDR RRD

DRD

RDD

DDD
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Taxonomy in broader settings

We have only considered two-player games.
However, the classification we have discussed here applies also in
multi-player games.
It also applies in games of imperfect information assuming a player can
see their own actions.

It is not necessary to see the states themselves.

However, if actions cannot be observed, then the two inclusions RDD
⊆ DRD and RRR ⊆ DRR do not hold.

J. C. A. Main, M. Randour Different Strokes in Randomised Strategies 15 / 15
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Downsides of more powerful strategies

RRR strategies can induce strategies that are complicated to
understand in general.

This is undesirable in contexts where explainability of the behaviour of
strategies is important.

RRR strategies are less amenable to computational analyses.
Determining, given an RRR strategy of P1, an initial state and a set of
states F , whether the strategy is positively winning for Safe(F ) is
undecidable2, even in turn-based games.
Therefore, it is hard to verify a given RRR strategy.

2Gimbert and Oualhadj, “Probabilistic Automata on Finite Words: Decidable and
Undecidable Problems”.
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Advantages of more powerful strategies

Allowing more randomisation allows one to capture more interesting
behaviours.
In some cases, memory can be traded off with randomisation;
choosing a richer model of randomised finite-memory strategies yields
more concise strategies3.

Example

P1 wants to visit the states s1 and s2 infinitely often almost-surely.

s0s1 s2

b

a

b

a

Memory is necessary to play without randomisation but not otherwise.
3Chatterjee, de Alfaro, and Henzinger, “Trading Memory for Randomness”; Horn,

“Random Fruits on the Zielonka Tree”.
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Distinguishing classes

All non-inclusions can be witnessed in a one-player game with a single
state and two actions.

DRR = RRR = RDR

DDR RRD

DRD

RDD

DDD

Goal of this section
Show the difference between classes by means of example objectives from
the literature for which the larger class is sufficient and not the other.
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Distinguishing classes
DDD vs. RDD

We show that the classes DDD and RDD do not coincide.

DRR = RRR = RDR

DDR RRD

DRD

RDD

DDD
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Multi-objective reachability in Markov decision processes
DDD vs. RDD

We consider one-player games with several reachability objectives
Reach(F1), . . . , Reach(Fk) given by target sets F1, . . . , Fk.
A strategy σ1 achieves at least v ∈ [0, 1]k from an initial state sinit if
vi ≤ Pσ1sinit(Reach(Fi)) for all 1 ≤ i ≤ k.
RDD strategies can achieve vectors that DDD strategies cannot.

Example4

Let F1 = {s1} and F2 = {s2}. The vector (12 ,
1
2) cannot be achieved by a

pure strategy, but can be achieved by an RDD strategy.

s0s1 s2
ba

4Randour, Raskin, and Sankur, “Percentile queries in multi-dimensional Markov
decision processes”.
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Multi-objective reachability in Markov decision processes
DDD vs. RDD

Theorem (Consequence of [EKVY08]5)

RDD strategies suffice to achieve any vector for multi-objective reachability
with absorbing targets in Markov decision processes.

The set of vectors that can be achieved by some strategy is a convex
polyhedral set.
The vertices of this set of vectors can be achieved by pure memoryless
strategies.
Any vector can be achieved by an RDD strategy that is randomly
initialised to these memoryless strategies.

5Etessami et al., “Multi-Objective Model Checking of Markov Decision Processes”.
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Distinguishing classes
RDD vs. DRD

We have seen previously that the classes RDD and DRD do not
coincide.

DRR = RRR = RDR

DDR RRD

DRD

RDD

DDD
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Concurrent reachability games

In concurrent reachability games, RDD strategies may not suffice.

Example

There is no almost-surely winning RDD strategy for P1 for the reachability
objective with target {s1}.

s0 s1

(a, a)
(b, b)

(a, b)
(b, a)

However, DRD strategies suffice to win almost-surely.

Theorem ([dAHK07]6)

Memoryless randomised strategies (DRD strategies with one memory state)
suffice to win almost-surely in concurrent reachability games.

6de Alfaro, Henzinger, and Kupferman, “Concurrent reachability games”.
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Distinguishing classes
DRD vs. RRD

We show that the classes DRD and RRD do not coincide.

DRR = RRR = RDR

DDR RRD

DRD

RDD

DDD
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Concurrent safety games

DRD strategies do not suffice to win positively in concurrent safety
games.7

Example

There is no positively winning DRD strategy for P1 for the safety objective
with bad state s1.

s0 s1s2

(k, r)
(t, h)

(k, h)

(t, r)

However, there exists a positively winning RRD strategy.

7de Alfaro, Henzinger, and Kupferman, “Concurrent reachability games”.
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Concurrent safety games

A positively winning strategy for the safety objective defined from s1 is
illustrated below.
We only depict outputs and updates in s0.

s0 s1s2

(k, r)
(t, h)

(k, h)

(t, r)
m0

1
2

m1

1
2

k | 1

k | 12 t | 12

Theorem ([CDH10]8)

RRR strategies suffice to win positively in concurrent safety games.

8Cristau, David, and Horn, “How do we remember the past in randomised strategies?”
J. C. A. Main, M. Randour Different Strokes in Randomised Strategies 15 / 32



Distinguishing classes
RRD vs. RRR

We show that the classes RRD and RRR do not coincide.

DRR = RRR = RDR

DDR RRD

DRD

RDD

DDD

For this section, we assume that one of the players has imperfect
information.
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Safety games of imperfect information

We consider the safety objective to avoid visiting s⊥.
P1 can only observe his own actions and when it is their turn to play.
We omit the actions of P2 to lighten the illustration.

s0s1 s⊥

sa

sb

s′a

s′b

b

a
a

b

b

a

To win positively, P1 must have a positive probability of using a same
action without ever changing again from any point on.

J. C. A. Main, M. Randour Different Strokes in Randomised Strategies 17 / 32



Safety games of imperfect information

No RRD strategy has the property needed to win positively.
The strategy below is positively winning for P1 in the previous game.

m0

ma

mb

© : a, b | 12

1
3

1
3

1
3

© : a | 1

© : b | 1

Theorem ([BGG17]9)

RRR strategies suffice to win positively in safety games of imperfect
information.

9Bertrand, Genest, and Gimbert, “Qualitative Determinacy and Decidability of
Stochastic Games with Signals”.
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Remaining inclusions

Goal of this section: non-trivial inclusions of the lattice

RDD ⊆ DRD,
RRR ⊆ DRR,
RRR ⊆ RDR,

DRR = RRR = RDR

DDR RRD

DRD

RDD

DDD
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Illustrating a finite-memory strategy

In the sequel, we will illustrate fragments of Mealy machines for Pi as
follows.
For the sake of readability, we assume that memory updates do not
depend on actions of P3−i.

mrinit

m1

m2

m3

s ∈ S

a1 | p1

a2 | p2

q1

q2

1
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RDD ⊆ DRD: trading random initialisation for outputs

We fix an RDD Mealy machineM = (M,µinit, αnext, αup).
We use an adaptation of the subset construction to go fromM to a
DRD Mealy machine.
State space of functions f : supp(µinit)→ (M ∪ {⊥}):

We simulate the strategy from each initial state.
If an action is inconsistent with one of the simulations, we stop it
(symbolised by ⊥).

m1r1

ma
1

mb
1

m2r2

ma
2

mb′
2

s

t

a

b

s

t

a

b′

(m1,m2)

(ma
1,m

a
2)

(mb
1,⊥)

(⊥,mb′
2 )

s

a | 1

t
b | r1

b′ | r2
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RRR ⊆ DRR: determinising initialisation

We fix an RRR Mealy machineM = (M,µinit, αnext, αup).
To derive a DRR Mealy machine fromM, we add a new initial state
mnew to the memory state space.
We use stochastic updates to return toM from mnew. Transition
probabilities are chosen so the distribution over memory states is the
same inM and the DRR Mealy machine after the first step.

m1
init

r1

m1

m2

m3m2
init

r2

s

a | p1

b | p′1

11

q1

q′1

s b | 1 1

mnew

m1

m2

s

a | r1 · p1

b | r1 · p′1 + r2 · 1

m3

1

r1·p′1·q1
r1·p′1+r2·1

r1·p′1·q′1+r2·1·1
r1·p′1+r2·1
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RRR ⊆ RDR: determinising outputs

We fix an RRR Mealy machineM = (M,µinit, αnext, αup).
To derive an RDR Mealy machine fromM, we expand the state space
by augmenting memory states with pure memoryless strategies
σi : Si → A.
We use stochastic initialisation and updates to integrate the
randomisation over actions in the transitions.

Naive construction  memory state space grows by a factor of |A||Si|

↪→ We can do better:

Theorem
There exists an RDR Mealy machine with |M | · |Si| · |A| states whose
induced strategy is outcome-equivalent toM.
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RRR ⊆ RDR: choosing pure memoryless strategies

Consider a game such that Si = {s1, s2, s3}, and A = {a1, a2, a3}.
Assume that for a memory state m ∈M , we have:

αnext(m, s1)(a1) = αnext(m, s1)(a2) =
1
2 ;

αnext(m, s2)(a1) = αnext(m, s2)(a2) = αnext(m, s2)(a3) =
1
3 ;

αnext(m, s3)(a1) =
1
3 , αnext(m, s3)(a2) =

1
6 and αnext(m, s3)(a3) =

1
2 .

We represent the actions in a table to derive the pure memoryless
strategies and their probabilities.

s1 a1 a2

s2 a1 a2 a3

s3 a1 a2 a3

σk σ1 σ2 σ3 σ4

x1 = 0 x2 =
1
3 x3 =

1
2 x4 =

2
3 x5 = 1
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RRR ⊆ RDR: exploiting the memoryless strategies

For each memory state m ∈M , we determine pure memoryless
strategies σm1 , . . . , σm`(m) and their respective probabilities pm1 , . . . ,
pm`(m).

We split transitions that enter m into transitions that go to the states
(m,σmj ): a transition of probability q into m yields a transition with
probability q · pmj into (m,σmj ).

m
q ...

(m,σm1 )

(m,σm`(m))

q · pm1

q · pm`(m)
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Differences between classes

We illustrate the strictness properties in a one-player game with a single
state and two actions.

The chain of inclusions DDD ( RDD ( DRD ( RRD ( RRR is strict.
It holds that DDR * RRD and RDD * DDR.

DRR = RRR = RDR

DDR RRD

DRD

RDD

DDD
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Strictness: RDD ( DRD

In a one-player deterministic game, RDD strategies have finitely many
outcomes.
The DRD strategy depicted below has no RDD equivalent.

Game

s ab

Witness of RDD ( DRD

m0

a | 12b | 12
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Strictness: DDR * RRD

The number of memory states in which we can find ourselves as a play
goes on cannot increase for an RRD strategy.
To have a positive probability of never using a, we must eventually be
in a memory state m such that αnext(m, s)(a) = 0 with positive
probability.

Game

s ab

Can be adapted to witness DDR * RRD

m0

m1 m2
b | 1

1
2

1
2

a | 12

b | 12
b | 1
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Collapses – invisible actions

What happens to the lattice in full generality ? If we assume nothing on
the visibility of actions ?

Two inclusions of our lattice no longer hold. We have:
RDD*DRD;
RRR*DRR (we even have RDD*DRR).

Intuitively, for a strategy with deterministic outputs (i.e., in a subclass
of RDR), the output actions are encoded in the Mealy machine itself.
 such strategies allow the same behaviours whether actions are
visible or not.
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General lattice: no hypotheses on actions

RRR = RDR

DRR RRD

DDR DRD RDD

DDD
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Subgame perfect equilibria and Kuhn’s theorem

In the statement of Kuhn’s theorem and our classification, the output
of the strategies along inconsistent branches histories are completely
disregarded.
In other words, our classification approach is not relevant for the study
of subgame perfect equilibria, for which these inconsistent histories are
nonetheless taken in account.
However, the output of a finite-memory strategy along an inconsistent
history is not well-defined.
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Strategies

Definition
A (behavioural) strategy of Pi is a function σi : Hist(G)→ D(Ai).

Strategies can use both memory and randomisation in general.

Memory is necessary in general

Assume P1 (©) wants to force visits to both {s1, s′1} and {s2, s′2}.

s0

s1

s2

s′0

s′1

s′2

a

b

a

b

a

b

a

b
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Strategies

Definition
A (behavioural) strategy of Pi is a function σi : Hist(G)→ D(Ai).

Strategies can use both memory and randomisation in general.

Randomisation is necessary in general

Assume P1 wants to visit {s1} almost-surely no matter the strategy of P2.

s0 s1

(a, a)
(b, b)

(a, b)
(b, a)
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