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Talk overview

We consider turn-based multiplayer games on graphs with
reachability and shortest-path objectives.
We focus on constrained Nash equilibria in these games.

Main question

What do players have to remember in NEs of reachability games?

Traditional constructions make the players remember the whole
outcome to enforce an NE.
We provide an alternative approach that implies arena-independent
memory bounds for NEs.
The constructions presented here apply to infinite arenas.
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Multiplayer games on graphs

An arena is a (possibly infinite) graph with vertices partitioned
between n players.

v0t2 v1 v2 t1

v3t3 t4

Plays are infinite sequences of vertices consistent with the edges.
A history is a finite prefix of a play.
In a game, each player has a cost function costi : Plays(A)→ R.
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Shortest-path games

A shortest-path cost function is described by:
a weight function w : E → N and
a target T ⊆ V .

v0 t12 v1

v2

t1
3 1

1

1

1

1
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For any play π = v0v1v2 . . .,

SPathTw(π) =

{
+∞ if T is not visited in π∑r−1

`=0 w((v`, v`+1)) else, where r = min{r′ | vr′ ∈ T}
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Strategies

A strategy σi : V ∗Vi → V of Pi maps a history to a vertex.
A strategy profile σ = (σi)i≤n is a tuple with one strategy per player.

Finite-memory strategies

A strategy is finite-memory if it can be encoded by a Mealy machine
(M,minit, up, nxti) where M is a finite set, minit ∈M , up : M × V →M
is an update function and nxt : M × Vi → V is a next-move function.

v0 t2 v1

v2

t1

m1 m2
t2

v1 | v2 v1 | t1

v0, t1, v2 v0, t1, v2
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Nash equilibria

Nash equilibrium

A strategy profile σ is a Nash equilibrium (NE) from v0 ∈ V if no player
has an incentive to unilaterally deviate from σ, i.e., for all i ≤ n and all
strategies σ′i of Pi:

costi(Out(σ, v0)) ≤ costi(Out((σ
′
i, σ−i), v0)).

Let T1 = {t12, t1}, T2 = {t12} and all unspecified weights be 1.

v0 t12 v1

v2

t1
3

NE with cost (2,+∞)

v0 t12 v1

v2

t1
3

NE with cost (3, 3)

→ Incomparable NE cost profiles may co-exist.
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Nash equilibria and memory (1/2)

Need for memory

Some NE cost profiles may require memory to be achieved.

Let Ti = {ti} for all i ∈ {1, 2, 3} and all weights be 0.

v0t1

t2

t3

1st

2nd 3rd

Memory may be necessary to visit several targets.
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Nash equilibria and memory (2/2)

Let Ti = {ti} for all i ∈ {1, 3, 4}, T2 = {t1} and all weights be 0.

v0 v1 v2 t1

v3t3 t4

In an NE such that t1 is visited: memory is needed for punishment.

Theorem
There exist memoryless uniform punishing strategies in shortest-path
games.
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Simplifying NE outcomes

We build finite-memory NEs from NE outcomes.
Not all outcomes can be induced by finite-memory strategy profiles.
We simplify NE outcomes via a characterisation of such plays.

. . . . . . . . . . . .

sg1 sg2 sgk−1 sgk
Simplification for
each segment

. . .. . . . . . . . .

sg′1
simple history

sg′2
simple history

sg′k−1
simple history

sg′k
simple lasso or
simple play

No shortcuts
via sg1 vertices
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Obtaining arena-independent memory bounds

An outcome with k simple segments can be achieved by a Mealy
machine with k states.
We build on these Mealy machines and include information to track
deviations.
We punish players with memoryless strategies when they deviate
from the intended outcome to obtain NEs.

When to punish?

The key is to not punish all deviations: we tolerate deviations that do
not exit the current segment.
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An example with a single segment

Let T1 = T2 = {t12, t123} and T3 = {t123}.
Considered NE outcome v0v1v3tω123: focus on v0v1v3t123.

v0 v1

v2

v3 t123

v4t12

3

Punishing strategy against P1

(P1, 1) (P2, 1)

(P3, 1)

t123

v0, v1

v0
v1

v3 v3

t123

P3 P2P1

v2
t12
v4

v2
t12
v4v2

t12
v4
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General result

Theorem (shortest-path games)

For all NE outcomes π from v0 in a shortest-path game, there exists a
finite-memory NE σ from v0 with strategies of memory at most n2 + 2n
such that SPathTiw (Out(σ, v0)) ≤ SPathTiw (π) for all i ≤ n.

In reachability games, we can refine the memory bounds.

Theorem (Reachability games)

For all NE outcomes π from v0 in a reachability game, there exists a
finite-memory NE σ with strategies of memory at most n2 such that the
same targets are visited in π and in Out(σ, v0).
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Beyond reachability games

What happens if we want to visit targets infinitely often  Büchi games?

Negative result: Büchi games

We cannot obtain arena-independent NE memory bounds in multiplayer
Büchi games.

However, the construction is still useful in infinite arenas.

Theorem
In any Büchi game, from any NE we can build a finite-memory NE such
that the same objectives are satisfied.

Thank you for your attention.
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Arena-dependence in Büchi games

If T1 = {t} and T2 = {w1, w2, w3}, 3 memory states are needed for
an NE in which P1 wins.
For all k ∈ N, the arena can be adapted to a game in which k memory
states are needed for an NE in which P1 wins.

v1 w1 v2 w2 v3 w3 t
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Punishing strategies in reachability and shortest-path games

In a zero-sum reachability game with target T , vertices are either:
in W1(Reach(T )), from which P1 can force a visit to T ;
in W2(Safe(T )), from which P2 can avoid T infinitely.

Theorem ([Maz01]1)

In a zero-sum reachability game, both players have uniform optimal (i.e.,
winning) memoryless strategies.

In a shortest-path game, P2 may not have an optimal strategy.

Theorem
In a zero-sum shortest-path game, for all α ∈ N, there exists a
memoryless strategy σα2 of P2 such that, for all v ∈ V :

1 if v ∈W2(Safe(T )), T cannot be visited from v under σα2 ;
2 σα2 ensures a cost of at least min{val(v), α}.
1Mazala, “Infinite Games”.
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No optimal strategy in zero-sum shortest-path games

In a zero-sum shortest-path game, P1 has a memoryless uniform
optimal strategy.
However, P2 does not have an optimal strategy in general.

v0 v∞

v1 v2 v3 . . .t

In this game, val(vj) = j for all j ∈ N0 ∪ {∞}.
However, no matter the strategy of P2 from v∞, P2 cannot prevent
a visit to t.
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Obtaining finite-memory NEs

Finite-memory strategy profiles have ultimately periodic outcomes
in finite arenas.
We therefore have to simplify NE outcomes for them to result from
a finite-memory strategy profile.

How do we proceed?

1 We rely on a characterisation of plays that can result from NEs.
2 We use the characterisation to derive from any outcome another that

results from a finite-memory NE.
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When does a play result from an NE?

In finite arenas, we have the following characterisation of NE
outcomes in shortest-path games [BBGT21]2:

Theorem ([BBGT21])

Let π = v0v1 . . . be a play and let (Ti)ni=1 be the targets. Then π is an
outcome of an NE from v0 in G if and only for all 1 ≤ i ≤ n, ` ≤ ri, it
holds that SPathTiw (π≥`) ≤ vali(v`) where ri = inf{r ∈ N | vr ∈ Ti}.

However, it does not hold as is in infinite arenas.
Counterexample: the play vω0 , assuming T1 = {t}, T2 = V .

v0 v∞

v1 v2 v3 . . .t

2Brihaye et al., “On relevant equilibria in reachability games”.
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Characterising NE outcomes

In infinite games, we must consider the winning regions in the
reachability game.

Theorem
Let π = v0v1 . . . be a play and let (Ti)ni=1 be the targets. Then π is the
outcome of an NE from v0 in G iff for all 1 ≤ i ≤ n and ` ∈ N, we have

1 if Ti does not occur in π, then v` /∈Wi(Reach(Ti)) and
2 if Ti occurs in π, then ` ≤ ri, implies that SPathTiw (π≥`) ≤ vali(v`)

where ri = min{r ∈ N | vr ∈ Ti}.

Proof idea. (⇐= ) We construct an NE (σi)
n
i=1 from v0 by letting for all

1 ≤ i ≤ n:
if h is a prefix v0 . . . vk of π, σi(h) = vk+1 and
otherwise, if h is not a prefix of π and Pj is responsible for deviating,
let σi(h) = σ−j(last(h)) for some Pj-punishing memoryless strategy.
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Simplifying NE outcomes

Lemma
Let ρ = v0v1v2 . . . be an NE outcome in an n-player shortest-path game.
There exists an NE outcome π from v0 that can be decomposed as
h1 · . . . · hk · π′ such that

1 hj is a simple history ending in the jth visited target;
2 π′ is a simple play or of the form hcω with hc a simple history;
3 for all j ≤ k, w(hj) is minimum among histories sharing their first

and last vertices with hj that traverse a subset of the vertices of hj ;
4 for all i ≤ n, SPathTiw (π) ≤ SPathTiw (ρ).

Proof idea. We apply the following steps.
Decompose ρ similarly to condition 1, replace each obtained history by
a simple one of minimal weight.
Change the suffix to loop in the first cycle along it if applicable.
The resulting π is an NE outcome by the characterisation.
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Negative weights

In a setting with negative weights, in the presence of a negative
cycle, there can be NE cost profiles that require an arbitrarily large
memory size.
If T1 = {t} and T2 = V , for all n ∈ N0, the play (v0v1)

ntω is an NE
outcome that requires a memory of size n and gives a cost of −n for
P1.

v0 v1 t

−1

0
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