Arena-Independent Memory Bounds for Nash Equilibria in Reachability Games

James C. A. Main

F.R.S.-FNRS and UMONS - Université de Mons, Belgium

LAMAS&SR 2024

Talk overview

- We consider turn-based multiplayer games on graphs with reachability and shortest-path objectives.
- We focus on constrained Nash equilibria in these games.

Main question

What do players have to remember in NEs of reachability games?

- Traditional constructions make the players remember the whole outcome to enforce an NE.
- We provide an alternative approach that implies arena-independent memory bounds for NEs.
- The constructions presented here apply to infinite arenas.

1 Reachability and shortest-path games

2 Nash equilibria and the need for memory

3 Arena-independent memory bounds

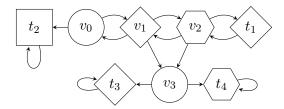
1 Reachability and shortest-path games

2 Nash equilibria and the need for memory

3 Arena-independent memory bounds

Multiplayer games on graphs

An arena is a (possibly infinite) graph with vertices partitioned between n players.

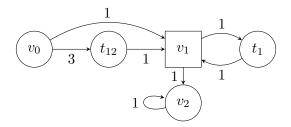


- Plays are infinite sequences of vertices consistent with the edges.
- A history is a finite prefix of a play.
- In a game, each player has a cost function $cost_i$: $Plays(\mathcal{A}) \to \overline{\mathbb{R}}$.

Shortest-path games

A **shortest-path** cost function is described by:

- a weight function $w \colon E \to \mathbb{N}$ and
- a target $T \subseteq V$.



For any play $\pi = v_0 v_1 v_2 \dots$,

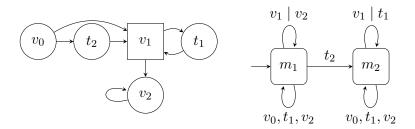
$$\mathsf{SPath}_w^T(\pi) = \begin{cases} +\infty & \text{if } T \text{ is not visited in } \pi \\ \sum_{\ell=0}^{r-1} w((v_\ell, v_{\ell+1})) & \text{else, where } r = \min\{r' \mid v_{r'} \in T\} \end{cases}$$

Strategies

- A strategy $\sigma_i \colon V^*V_i \to V$ of \mathcal{P}_i maps a history to a vertex.
- A strategy profile $\sigma = (\sigma_i)_{i \leq n}$ is a tuple with one strategy per player.

Finite-memory strategies

A strategy is finite-memory if it can be encoded by a Mealy machine $(M, m_{\text{init}}, \text{up}, \text{nxt}_i)$ where M is a finite set, $m_{\text{init}} \in M$, $\text{up} \colon M \times V \to M$ is an update function and $\text{nxt} \colon M \times V_i \to V$ is a next-move function.



1 Reachability and shortest-path games

2 Nash equilibria and the need for memory

3 Arena-independent memory bounds

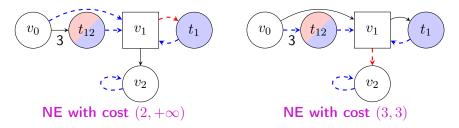
Nash equilibria

Nash equilibrium

A strategy profile σ is a Nash equilibrium (NE) from $v_0 \in V$ if no player has an incentive to unilaterally deviate from σ , i.e., for all $i \leq n$ and all strategies σ'_i of \mathcal{P}_i :

 $\operatorname{cost}_i(\operatorname{Out}(\sigma, v_0)) \leq \operatorname{cost}_i(\operatorname{Out}((\sigma'_i, \sigma_{-i}), v_0)).$

• Let $T_1 = \{t_{12}, t_1\}$, $T_2 = \{t_{12}\}$ and all unspecified weights be 1.



\rightarrow Incomparable NE cost profiles may co-exist.

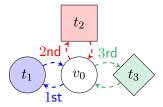
Arena-Independent NE Memory Bounds

Nash equilibria and memory (1/2)

Need for memory

Some NE cost profiles may require memory to be achieved.

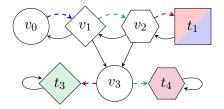
• Let $T_i = \{t_i\}$ for all $i \in \{1, 2, 3\}$ and all weights be 0.



Memory may be necessary to visit several targets.

Nash equilibria and memory (2/2)

• Let $T_i = \{t_i\}$ for all $i \in \{1, 3, 4\}$, $T_2 = \{t_1\}$ and all weights be 0.



• In an NE such that t_1 is visited: memory is needed for punishment.

Theorem

There exist **memoryless uniform** punishing strategies in **shortest-path** games.

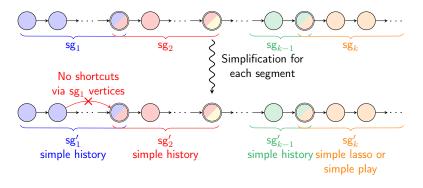
1 Reachability and shortest-path games

2 Nash equilibria and the need for memory

3 Arena-independent memory bounds

Simplifying NE outcomes

- We build finite-memory NEs from NE outcomes.
- Not all outcomes can be induced by finite-memory strategy profiles.
- We simplify NE outcomes via a characterisation of such plays.



Obtaining arena-independent memory bounds

- An outcome with k simple segments can be achieved by a Mealy machine with k states.
- We build on these Mealy machines and include information to track deviations.
- We punish players with memoryless strategies when they deviate from the intended outcome to obtain NEs.

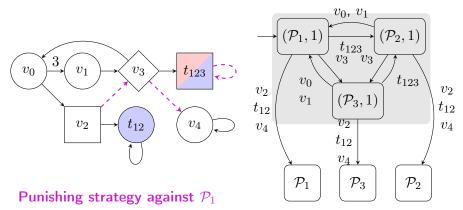
When to punish?

The key is to **not punish all deviations**: we **tolerate** deviations that do not exit the **current segment**.

An example with a single segment

• Let $T_1 = T_2 = \{t_{12}, t_{123}\}$ and $T_3 = \{t_{123}\}$.

• Considered NE outcome $v_0v_1v_3t_{123}^{\omega}$: focus on $v_0v_1v_3t_{123}$.



General result

Theorem (shortest-path games)

For all NE outcomes π from v_0 in a shortest-path game, there exists a finite-memory NE σ from v_0 with strategies of memory at most $n^2 + 2n$ such that $\operatorname{SPath}_w^{T_i}(\operatorname{Out}(\sigma, v_0)) \leq \operatorname{SPath}_w^{T_i}(\pi)$ for all $i \leq n$.

In reachability games, we can refine the memory bounds.

Theorem (Reachability games)

For all NE outcomes π from v_0 in a **reachability game**, there exists a finite-memory NE σ with strategies of **memory at most** n^2 such that the same targets are visited in π and in $Out(\sigma, v_0)$.

Beyond reachability games

What happens if we want to visit targets infinitely often ~> Büchi games?

Negative result: Büchi games

We **cannot** obtain arena-independent NE memory bounds in **multiplayer** Büchi games.

However, the construction is still useful in infinite arenas.

Theorem

In any Büchi game, from any NE we can build a finite-memory NE such that the same objectives are satisfied.

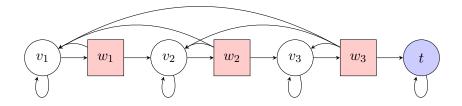
Thank you for your attention.

References I

- Brihaye, Thomas et al. "On relevant equilibria in reachability games". In: J. Comput. Syst. Sci. 119 (2021), pp. 211–230. DOI: 10.1016/j.jcss.2021.02.009. URL: https://doi.org/10.1016/j.jcss.2021.02.009.
- Mazala, René. "Infinite Games". In: Automata, Logics, and Infinite Games: A Guide to Current Research [outcome of a Dagstuhl seminar, February 2001]. Ed. by Erich Grädel, Wolfgang Thomas, and Thomas Wilke. Vol. 2500. Lecture Notes in Computer Science. Springer, 2001, pp. 23–42. DOI: 10.1007/3-540-36387-4_2. URL: https://doi.org/10.1007/3-540-36387-4_2.

Arena-dependence in Büchi games

- If $T_1 = \{t\}$ and $T_2 = \{w_1, w_2, w_3\}$, 3 memory states are needed for an NE in which \mathcal{P}_1 wins.
- For all $k \in \mathbb{N}$, the arena can be adapted to a game in which k memory states are needed for an NE in which \mathcal{P}_1 wins.



Punishing strategies in reachability and shortest-path games

In a zero-sum reachability game with target T, vertices are either:

- in $W_1(\operatorname{Reach}(T))$, from which \mathcal{P}_1 can force a visit to T;
- in $W_2(\mathsf{Safe}(T))$, from which \mathcal{P}_2 can avoid T infinitely.

Theorem ([Maz01]¹)

In a zero-sum reachability game, both players have uniform optimal (i.e., winning) memoryless strategies.

 \blacksquare In a shortest-path game, \mathcal{P}_2 may not have an optimal strategy.

Theorem

In a zero-sum shortest-path game, for all $\alpha \in \mathbb{N}$, there exists a memoryless strategy σ_2^{α} of \mathcal{P}_2 such that, for all $v \in V$:

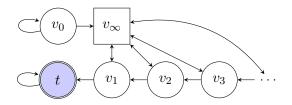
- 1 if $v \in W_2(\mathsf{Safe}(T))$, T cannot be visited from v under σ_2^{α} ;
- **2** σ_2^{α} ensures a cost of at least min{val $(v), \alpha$ }.

¹Mazala, "Infinite Games".

J. C. A. Main

No optimal strategy in zero-sum shortest-path games

- In a zero-sum shortest-path game, \mathcal{P}_1 has a memoryless uniform optimal strategy.
- However, \mathcal{P}_2 does not have an optimal strategy in general.



- In this game, $\operatorname{val}(v_j) = j$ for all $j \in \mathbb{N}_0 \cup \{\infty\}$.
- However, no matter the strategy of \mathcal{P}_2 from v_{∞} , \mathcal{P}_2 cannot prevent a visit to t.

Obtaining finite-memory NEs

- Finite-memory strategy profiles have ultimately periodic outcomes in finite arenas.
- We therefore have to simplify NE outcomes for them to result from a finite-memory strategy profile.

How do we proceed?

- 1 We rely on a characterisation of plays that can result from NEs.
- 2 We use the characterisation to derive from any outcome another that results from a **finite-memory NE**.

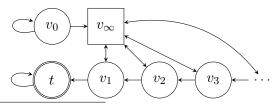
When does a play result from an NE?

 In finite arenas, we have the following characterisation of NE outcomes in shortest-path games [BBGT21]²:

Theorem ([BBGT21])

Let $\pi = v_0 v_1 \dots$ be a play and let $(T_i)_{i=1}^n$ be the targets. Then π is an outcome of an NE from v_0 in \mathcal{G} if and only for all $1 \leq i \leq n$, $\ell \leq r_i$, it holds that $\operatorname{SPath}_w^{T_i}(\pi_{\geq \ell}) \leq \operatorname{val}_i(v_\ell)$ where $r_i = \inf\{r \in \mathbb{N} \mid v_r \in T_i\}$.

- However, it does not hold as is in infinite arenas.
- Counterexample: the play v_0^{ω} , assuming $T_1 = \{t\}$, $T_2 = V$.



²Brihaye et al., "On relevant equilibria in reachability games".

Characterising NE outcomes

In infinite games, we must consider the winning regions in the reachability game.

Theorem

Let $\pi = v_0 v_1 \dots$ be a play and let $(T_i)_{i=1}^n$ be the targets. Then π is the outcome of an NE from v_0 in \mathcal{G} iff for all $1 \leq i \leq n$ and $\ell \in \mathbb{N}$, we have

- **1** if T_i does not occur in π , then $v_\ell \notin W_i(\operatorname{Reach}(T_i))$ and
- 2 if T_i occurs in π , then $\ell \leq r_i$, implies that $\text{SPath}_w^{T_i}(\pi_{\geq \ell}) \leq \text{val}_i(v_\ell)$ where $r_i = \min\{r \in \mathbb{N} \mid v_r \in T_i\}$.

Proof idea. (\Leftarrow) We construct an NE $(\sigma_i)_{i=1}^n$ from v_0 by letting for all $1 \le i \le n$:

- if h is a prefix $v_0 \dots v_k$ of π , $\sigma_i(h) = v_{k+1}$ and
- otherwise, if h is not a prefix of π and \mathcal{P}_j is responsible for deviating, let $\sigma_i(h) = \sigma_{-j}(\text{last}(h))$ for some \mathcal{P}_j -punishing memoryless strategy.

Simplifying NE outcomes

Lemma

Let $\rho = v_0 v_1 v_2 \dots$ be an NE outcome in an *n*-player shortest-path game. There exists an **NE outcome** π from v_0 that can be decomposed as $h_1 \dots h_k \cdot \pi'$ such that

- **1** h_j is a simple history ending in the *j*th visited target;
- 2 π' is a simple play or of the form hc^{ω} with hc a simple history;
- 3 for all j ≤ k, w(h_j) is minimum among histories sharing their first and last vertices with h_j that traverse a subset of the vertices of h_j;
- 4 for all $i \leq n$, $\operatorname{SPath}_{w}^{T_{i}}(\pi) \leq \operatorname{SPath}_{w}^{T_{i}}(\rho)$.

Proof idea. We apply the following steps.

- \blacksquare Decompose ρ similarly to condition 1, replace each obtained history by a simple one of minimal weight.
- Change the suffix to loop in the first cycle along it if applicable.
- The resulting π is an NE outcome by the characterisation.

J. C. A. Main

Negative weights

- In a setting with negative weights, in the presence of a negative cycle, there can be NE cost profiles that require an arbitrarily large memory size.
- If $T_1 = \{t\}$ and $T_2 = V$, for all $n \in \mathbb{N}_0$, the play $(v_0v_1)^n t^{\omega}$ is an NE outcome that requires a memory of size n and gives a cost of -n for \mathcal{P}_1 .

