On the Structure of Expected Payoff Sets in Multi-Objective Markov Decision Processes

James C. A. Main Mickaël Randour

F.R.S.-FNRS and UMONS - Université de Mons, Belgium

MoVe Seminar – October 4, 2024

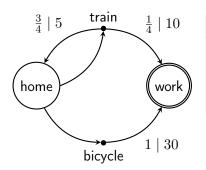
Random strategies and multiple objectives

- We study Markov decision processes with multiple payoffs.
- In general, the satisfaction of multi-objective queries requires randomised strategies.

Main questions

- What is the relationship between expected payoffs of pure strategies and expected payoffs of general strategies?
- What type of randomisation do we need for multi-objective queries?
- → Goal: results for the broadest possible class of payoffs.

Markov decision processes



Markov decision process ${\mathcal M}$

- Finite state space S
 - \blacksquare Finite action space A
- Randomised transitions

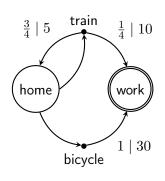
Plays are sequences in $(SA)^{\omega}$ coherent with transitions.

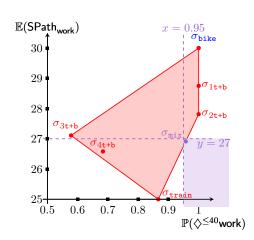
- A strategy is a function $\sigma \colon (SA)^*S \to \mathcal{D}(A)$
- lacksquare A strategy σ is **pure** if it is not randomised.
- A strategy σ and initial state s induce a distribution \mathbb{P}^{σ}_{s} over plays.
- A payoff is a measurable function $f : \mathsf{Plays}(\mathcal{M}) \to \bar{\mathbb{R}}$.
- We let $\mathbb{E}_s^{\sigma}(f) = \int_{\pi \in \mathsf{Plays}(\mathcal{M})} f(\pi) d\mathbb{P}_s^{\sigma}(\pi)$.

Multi-objective Markov decision processes

We consider two goals:

- reaching work under 40 minutes with high probability;
- minimising the expectancy of the time to reach work.





What are good payoffs?

To provide formal results, we need to constrain considered payoffs. $\leadsto \mathbb{E}_s^{\sigma}(f)$ should be well-defined for all strategies.

Good payoff functions

Three types of good payoffs:

- **non-negative** payoffs: $f \ge 0$;
- **non-positive** payoffs: $f \leq 0$;
- universally integrable payoffs: $\mathbb{E}_s^{\sigma}(|f|) \in \mathbb{R}$ for all strategies σ and all $s \in S$.

For a multi-dimensional payoff $\bar{f} = (f_1, \dots, f_d)$ and $s \in S$, we let:

- $\mathsf{Pay}_s(\bar{f}) = \{ \mathbb{E}_s^{\sigma}(\bar{f}) \mid \sigma \text{ strategy} \};$
- $\qquad \mathsf{Pay}_s^{\mathsf{pure}}(\bar{f}) = \{ \mathbb{E}_s^{\sigma}(\bar{f}) \mid \sigma \text{ pure strategy} \}.$

In the introductory example, we had $\mathsf{Pay}_{\mathsf{home}}(\bar{f}) = \mathsf{conv}(\mathsf{Pay}_{\mathsf{home}}^{\mathsf{pure}}(\bar{f})).$

When does this generalise?

Theorem

Let $\bar{f} = (f_1, \dots, f_d)$ be universally integrable. Then, for all states s,

$$\mathsf{Pay}_s(\bar{f}) = \mathrm{conv}(\mathsf{Pay}_s^{\mathsf{pure}}(\bar{f})).$$

In particular, to match the expected payoff of any strategy, it suffices to:

- mix d + 1 pure strategies;
- lacktriangleright consider strategies use **randomisation at most** d along any play.

Sequel: proof of a weaker result

If \bar{f} is universally integrable, then $\operatorname{cl}(\mathsf{Pay}_{s}(\bar{f})) = \operatorname{cl}(\operatorname{conv}(\mathsf{Pay}_{s}^{\mathsf{pure}}(\bar{f}))).$

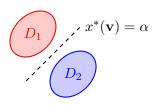
A simpler proof

Non-direct inclusion: $\mathsf{Pay}_s(\bar{f}) \subseteq \mathrm{cl}(\mathrm{conv}(\mathsf{Pay}_s^\mathsf{pure}(\bar{f}))).$ Let σ be a strategy and $\mathbf{q} = \mathbb{E}_s^\sigma(\bar{f}).$ Assume $\mathbf{q} \notin \mathrm{cl}(\mathrm{conv}(\mathsf{Pay}_s^\mathsf{pure}(\bar{f}))).$

Main idea: reduction to a one-dimensional payoff.

Theorem (Hyperplane separation theorem)

Let D_1 , $D_2 \subseteq \mathbb{R}^d$ be disjoint convex sets. If D_1 is closed and D_2 is compact, then there exists a linear form $x^* \colon \mathbb{R}^d \to \mathbb{R}$ and $\varepsilon > 0$ such that for all $\mathbf{p}_1 \in D_1$ and $\mathbf{p}_2 \in D_2$, $x^*(\mathbf{p}_1) + \varepsilon < x^*(\mathbf{p}_2)$.



A simpler proof

Non-direct inclusion: $\operatorname{Pay}_s(\bar{f}) \subseteq \operatorname{cl}(\operatorname{conv}(\operatorname{Pay}_s^{\operatorname{pure}}(\bar{f}))).$ Let σ be a strategy and $\mathbf{q} = \mathbb{E}_s^{\sigma}(\bar{f}).$ Assume $\mathbf{q} \notin \operatorname{cl}(\operatorname{conv}(\operatorname{Pay}_s^{\operatorname{pure}}(\bar{f}))).$ Main idea: reduction to a one-dimensional payoff.

■ There exists a linear form x^* such that, for all pure strategies τ ,

$$x^*(\mathbb{E}_s^{\tau}(\bar{f})) < x^*(\mathbf{q})$$

■ By linearity, we obtain that for all pure strategies τ ,

$$\mathbb{E}^{\tau}_{s}(x^{*}(\bar{f})) < \mathbb{E}^{\sigma}_{s}(x^{*}(\bar{f}))$$

Lemma

Let f be universally integrable. For all strategies σ , there exists a pure strategy τ such that $\mathbb{E}_s^{\sigma}(f) \leq \mathbb{E}_s^{\tau}(f)$.

General argument

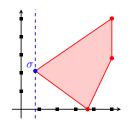
What about the general case?

I If $\mathsf{Pay}_s(\bar{f})$ is compact, we have $\mathsf{Pay}_s(\bar{f}) = \mathsf{conv}(\mathsf{extr}(\mathsf{Pay}_s(\bar{f})))$. \leadsto The argument can be adapted to compact polyhedral sets.

BUT

Good hyperplanes do not generally exist for all extreme points.

2 $\mathsf{Pay}_s(\bar{f})$ need not be closed.



- Consider a **vertex** \mathbf{q} obtained by σ .
- There is a hyperplane intersecting $\mathsf{Pay}_s(\bar{f})$ only at \mathbf{q} .
- There exists a linear form x^* such that σ is optimal from s for $x^* \circ \bar{f}$.

General argument

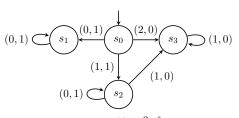
What about the general case?

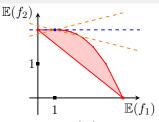
I If $\mathsf{Pay}_s(\bar{f})$ is compact, we have $\mathsf{Pay}_s(\bar{f}) = \mathsf{conv}(\mathsf{extr}(\mathsf{Pay}_s(\bar{f})))$. \leadsto The argument can be adapted to compact polyhedral sets.

BUT

Good hyperplanes do not generally exist for all extreme points.

2 $\mathsf{Pay}_s(f)$ need not be closed.





$$f_1(s_0 a_0 s_1 \dots) = \sum_{\ell=0}^{\infty} (\frac{3}{4})^{\ell} w_1(a_{\ell}); f_2(s_0 a_0 s_1 \dots) = \sum_{\ell=0}^{\infty} (\frac{1}{2})^{\ell} w_2(a_{\ell}).$$

General argument: sketch

Proof goal

For all strategies σ , $\mathbf{q} = \mathbb{E}^{\sigma}_{s}(\bar{f}) \in \operatorname{conv}(\mathsf{Pay}^{\mathsf{pure}}_{s}(\mathbf{q}))$.

- Construct linear map $L_{\mathbf{q}}$ such that:
 - a σ is lexicographically optimal for $L_{\mathbf{q}} \circ \bar{f}$;

b
$$\mathbf{q} \in \operatorname{ri}(\operatorname{Pay}_s(\bar{f}) \cap V)$$
 where $V = \{\mathbf{p} \in \mathbb{R}^d \mid L_{\mathbf{q}}(\mathbf{p}) = L_{\mathbf{q}}(\mathbf{q})\}.$

■ Show that $\mathrm{ri}(\mathsf{Pay}_s(\bar{f}) \cap V) = \mathrm{ri}(\mathrm{conv}(\mathsf{Pay}_s^\mathsf{pure}(\bar{f})) \cap V)$, i.e.,

$$\operatorname{cl}(\mathsf{Pay}_s(\bar{f}) \cap V) = \operatorname{cl}(\operatorname{conv}(\mathsf{Pay}_s^{\mathsf{pure}}(\bar{f})) \cap V)$$

Key lemma

If \bar{f} is universally integrable, then for all strategies σ and all $s \in S$, there exists a pure strategy τ such that

$$\mathbb{E}_s^{\sigma}(\bar{f}) \leq_{\mathsf{lex}} \mathbb{E}_s^{\tau}(\bar{f}).$$

Beyond universally integrable payoffs

Example

$a \xrightarrow{b} b \xrightarrow{b} 0$

Payoffs

- 1 reaching $t \rightsquigarrow f_1 = \mathbb{1}_{\diamondsuit t}$;
 - 2 sum of weights $\leadsto f_2 = \sum_{\ell=0}^{\infty} w(c_{\ell})$.
- $\blacksquare \mathbb{E}_{s}^{\sigma_a}(f_2) = +\infty \implies f_2 \text{ is not universally integrable.}$
- $\begin{array}{l} \blacksquare \ \operatorname{Pay}^{\operatorname{pure}}_s(\bar{f}) = \{(0,+\infty)\} \cup \{(1,\ell) \mid \ell \in \mathbb{N}\}. \\ \Longrightarrow \ \operatorname{conv}(\operatorname{Pay}^{\operatorname{pure}}_s(\bar{f})) = (\{1\} \times \mathbb{R}_{\geq 0}) \cup ([0,1[\times \{+\infty\}). \end{array}$
- We have $(1, +\infty) \in \mathsf{Pay}_s(\bar{f})$ via σ such that for all $\ell \in \mathbb{N}$:

$$\sigma(s(as)^{\ell})(a) = \begin{cases} \frac{1}{2} & \text{if } \ell \in 2^{\mathbb{N}} \\ 1 & \text{if } \ell \notin 2^{\mathbb{N}} \end{cases}$$

 \rightarrow The theorem and the key lemma do not generalise.

Beyond universally integrable payoffs

Theorem

Let $\bar{f}=(f_1,\ldots,f_d)$ be a good payoff and $s\in S$. For all strategies σ , all $\varepsilon>0$ and all $M\in\mathbb{R}$, there exist finitely many pure strategies τ_1,\ldots,τ_n and coefficients $\alpha_1,\ldots,\alpha_n\in[0,1]$ such that

 $\sum_{m=0}^{n} \alpha_{m} = 1$ and for all $1 \leq j \leq d$:

$$lacksquare$$
 if $\mathbb{E}^{\sigma}_s(f_j)=+\infty$, then $\sum_{m=1}^n lpha_m \mathbb{E}^{ au_m}_s(f_j)\geq M$,

$$lacksquare$$
 if $\mathbb{E}^{\sigma}_s(f_j)=-\infty$, then $\sum_{m=1}^n lpha_m \mathbb{E}^{ au_m}_s(f_j) \leq -M$, and,

■ otherwise, if
$$\mathbb{E}_s^{\sigma}(f_j) \in \mathbb{R}$$
, $\mathbb{E}_s^{\sigma}(f_j) - \varepsilon \leq \sum_{m=1}^n \alpha_m \mathbb{E}_s^{\tau_m}(f_j) \leq \mathbb{E}_s^{\sigma}(f_j) + \varepsilon$.

Informally, we have

$$\operatorname{cl}(\mathsf{Pay}_s(\bar{f})) = \operatorname{cl}(\operatorname{conv}(\mathsf{Pay}_s^{\mathsf{pure}}(\bar{f}))).$$

Thank you for your attention!

A set of expected payoffs that is not closed

For $j \in \{1,2\}$, we consider the payoff f_j such that, for all plays $s_0a_0s_1\ldots$,

$$f_j(s_0 a_0 s_1 \dots) = \mathbb{1}_{\mathsf{Reach}(\{t\})}(s_0 a_0 s_1 \dots) \cdot \sum_{\ell=0} \left(\frac{3}{4}\right)^{\ell} w_j(a_{\ell}).$$

$$(1,0) \xrightarrow{s} \underbrace{a}_{(0,1)} \underbrace{t}_{(0,1)}$$

