Arena-Independent Memory Bounds for Nash Equilibria in Reachability Games

James C. A. Main

F.R.S.-FNRS, Belgium and UMONS – Université de Mons

MOVEP 2024

Talk overview

- We consider turn-based multiplayer games on graphs with reachability and shortest-path objectives.
- We focus on constrained Nash equilibria in these games.
- Traditional constructions for finite-memory constrained Nash equilibria usually yield strategies with a size dependent on the arena.

In this talk

We provide constructions for finite-memory Nash equilibria in shortest-path and reachability games that depend only on the **number of** players.

■ The constructions presented here apply to **infinite arenas**.

1 [Reachability and shortest-path games](#page-3-0)

2 [Nash equilibria and the need for memory](#page-7-0)

3 [Arena-independent memory bounds](#page-11-0)

1 [Reachability and shortest-path games](#page-3-0)

2 [Nash equilibria and the need for memory](#page-7-0)

3 [Arena-independent memory bounds](#page-11-0)

Multiplayer games on graphs

An arena is a (possibly *infinite*) graph with vertices partitioned between n players.

Plays are infinite sequences of vertices consistent with the edges.

- A history is a finite prefix of a play.
- In a game , each player has a cost function $\mathsf{cost}_i \colon \mathsf{Plays}(\mathcal{A}) \to \overline{\mathbb{R}}.$

Shortest-path games

A shortest-path cost function is described by:

- **a** weight function $w: E \to \mathbb{N}$ and
- a target $T \subseteq V$.

For any play $\pi = v_0v_1v_2 \ldots$,

$$
\text{SPath}_w^T(\pi) = \begin{cases} +\infty & \text{if } T \text{ is not visited in } \pi \\ \sum_{\ell=0}^{r-1} w((v_\ell, v_{\ell+1})) & \text{else, where } r = \min\{r' \mid v_{r'} \in T\} \end{cases}
$$

Strategies

- A strategy $\sigma_i \colon V^* V_i \to V$ of \mathcal{P}_i maps a history to a vertex.
- A strategy profile $\sigma = (\sigma_i)_{i \leq n}$ is a tuple with one strategy per player.

Finite-memory strategies

A strategy is **finite-memory** if it can be encoded by a Mealy machine $(M, m_{\text{init}}, \text{up}, \text{nxt}_i)$ where M is a finite set, $m_{\text{init}} \in M$, up: $M \times V \to M$ is an update function and nxt: $M \times V_i \rightarrow V$ is a next-move function.

1 [Reachability and shortest-path games](#page-3-0)

2 [Nash equilibria and the need for memory](#page-7-0)

3 [Arena-independent memory bounds](#page-11-0)

Nash equilibria

Nash equilibrium

A strategy profile σ is a Nash equilibrium (NE) from $v_0 \in V$ if no player has an incentive to unilaterally deviate from σ , i.e., for all $i \leq n$ and all strategies σ'_i of \mathcal{P}_i :

 $\mathsf{cost}_i(\mathsf{Out}(\sigma, v_0)) \leq \mathsf{cost}_i(\mathsf{Out}((\sigma'_i, \sigma_{-i}), v_0)).$

Let $T_1 = \{t_{12}, t_1\}, T_2 = \{t_{12}\}$ and all unspecified weights be 1.

\rightarrow Incomparable NE cost profiles may co-exist.

J. C. A. Main **[Arena-Independent NE Memory Bounds](#page-0-0)** MOVEP 2024 9 / 17

Nash equilibria and memory (1/2)

Need for memory

Some NE cost profiles may require memory to be achieved.

■ Let $T_i = \{t_i\}$ for all $i \in \{1, 2, 3\}$ and all weights be 0.

In an NE such that all targets are visited: memory is needed to visit all the targets.

Nash equilibria and memory (2/2)

■ Let $T_i = \{t_i\}$ for all $i \in \{1, 3, 4\}$, $T_2 = \{t_1\}$ and all weights be 0.

In an NE such that t_1 is visited: memory is needed for punishment.

Theorem

There exist **memoryless uniform** punishing strategies in shortest-path games.

1 [Reachability and shortest-path games](#page-3-0)

2 [Nash equilibria and the need for memory](#page-7-0)

3 [Arena-independent memory bounds](#page-11-0)

Simplifying NE outcomes

- We build finite-memory NEs from NE outcomes.
- Not all outcomes can be induced by finite-memory strategy profiles.
- We simplify NE outcomes via a characterisation of such plays.

Lemma (NE outcomes with a simple decomposition)

Let $\rho = v_0v_1v_2 \ldots$ be an NE outcome in an n-player shortest-path game. There exists an NE outcome π from v_0 that can be decomposed as $h_1 \cdot \ldots \cdot h_k \cdot \pi'$ such that

- 1 h_i is a simple history ending in the jth visited target;
- $\mathsf{a} \mid \pi'$ is a simple play or of the form hc^ω with hc a simple history;
- 3 for all $j \leq k$, $w(h_j)$ is minimum among histories sharing their first and last vertices with h_i that traverse a subset of the vertices of h_i ;
- 4 for all $i\leq n$, $\mathsf{SPath}^{T_i}_w(\pi)\leq \mathsf{SPath}^{T_i}_w(\rho).$

Obtaining arena-independent memory bounds

- \blacksquare An outcome with k segments can be achieved by a **Mealy machine** with k states.
- We build on these Mealy machines and include information to track deviations.
- We punish players with memoryless strategies when they deviate from the intended outcome to obtain NEs.

When to punish?

The key is to **not punish all deviations**: we **tolerate deviations that do** not exit the current segment.

An example with a single segment

Let $T_1 = T_2 = \{t_{12}, t_{123}\}\$ and $T_3 = \{t_{123}\}\$.

Considered NE outcome $v_0v_1v_3t_{123}^\omega$: focus on $v_0v_1v_3t_{123}$.

General result

Theorem (shortest-path games)

For all NE outcomes π from v_0 in a shortest-path game, there exists a finite-memory NE σ from v_0 with strategies of **memory at most** n^2+2n such that $\mathsf{SPath}^{T_i}_w(\mathsf{Out}(\sigma,v_0))\leq \mathsf{SPath}^{T_i}_w(\pi)$ for all $i\leq n$.

In reachability games, we can refine the memory bounds.

Theorem (Reachability games)

For all NE outcomes π from v_0 in a reachability game, there exists a finite-memory NE σ with strategies of memory at most n^2 such that the same targets are visited in π and in Out (σ, v_0) .

Open position and thanks

Advertisement

There is an opening for a postdoc position in Mickaël Randour's team in UMONS on Formal Methods/AI for Controller Synthesis.

Ask me for details or contact mickael.randour@umons.ac.be if you are interested.

Thank you for your attention.

- Brihaye, Thomas et al. "On relevant equilibria in reachability games". In: J. Comput. Syst. Sci. 119 (2021), pp. 211–230. DOI: [10.1016/j.jcss.2021.02.009](https://doi.org/10.1016/j.jcss.2021.02.009). URL: <https://doi.org/10.1016/j.jcss.2021.02.009>.
- Mazala, René. "Infinite Games". In: Automata, Logics, and Infinite Games: A Guide to Current Research [outcome of a Dagstuhl seminar, February 2001]. Ed. by Erich Grädel, Wolfgang Thomas, and Thomas Wilke. Vol. 2500. Lecture Notes in Computer Science. Springer, 2001, pp. 23–42. DOI: [10.1007/3-540-36387-4_2](https://doi.org/10.1007/3-540-36387-4_2). URL: https://doi.org/10.1007/3-540-36387-4_2.

Punishing strategies in reachability and shortest-path games

In a zero-sum reachability game with target T, vertices are either:

- in $W_1(\text{Reach}(T))$, from which \mathcal{P}_1 can force a visit to T;
- in W_2 (Safe(T)), from which P_2 can avoid T infinitely.

Theorem $([Maz01]^1)$

In a zero-sum reachability game, both players have uniform optimal (i.e., winning) memoryless strategies.

In a shortest-path game, P_2 may not have an optimal strategy.

Theorem

In a zero-sum shortest-path game, for all $\alpha \in \mathbb{N}$, there exists a memoryless strategy σ_2^{α} of \mathcal{P}_2 such that, for all $v \in V$.

- $1\,$ if $v\in W_2(\mathsf{Safe}(T))$, T cannot be visited from v under σ_2^α ;
- $\mathsf{z} \mid \sigma_2^{\alpha}$ ensures a cost of at least $\min\{\mathsf{val}(v),\alpha\}.$

¹ Mazala, ["Infinite Games".](#page-17-0)

No optimal strategy in zero-sum shortest-path games

- In a zero-sum shortest-path game, P_1 has a memoryless uniform optimal strategy.
- However, P_2 does not have an optimal strategy in general.

- **■** In this game, val $(v_i) = j$ for all $j \in \mathbb{N}_0 \cup \{\infty\}.$
- However, no matter the strategy of \mathcal{P}_2 from v_{∞} , \mathcal{P}_2 cannot prevent a visit to t .

Obtaining finite-memory NEs

- **Finite-memory strategy profiles have ultimately periodic outcomes** in finite arenas.
- We therefore have to simplify NE outcomes for them to result from a finite-memory strategy profile.

How do we proceed?

- 1 We rely on a characterisation of plays that can result from NEs.
- 2 We use the characterisation to derive from any outcome another that results from a finite-memory NE.

When does a play result from an NE?

In finite arenas, we have the following characterisation of NE outcomes in shortest-path games [BBGT21] $^2\colon$

Theorem ([BBGT21])

Let $\pi = v_0 v_1 \dots$ be a play and let $(T_i)_{i=1}^n$ be the targets. Then π is an outcome of an NE from v_0 in $\mathcal G$ if and only for all $1 \leq i \leq n$, $\ell \leq r_i$, it holds that $\mathsf{SPath}_{w}^{T_i}(\pi_{\geq \ell}) \leq \mathsf{val}_i(v_\ell)$ where $r_i = \inf\{r \in \mathbb{N} \mid v_r \in T_i\}.$

However, it does not hold as is in *infinite arenas*.

Counterexample: the play v_0^{ω} , assuming $T_1 = \{t\}$, $T_2 = V$.

²Brihaye et al., ["On relevant equilibria in reachability games".](#page-17-1)

Characterising NE outcomes

In infinite games, we must consider the winning regions in the reachability game.

Theorem

Let $\pi = v_0 v_1 \dots$ be a play and let $(T_i)_{i=1}^n$ be the targets. Then π is the outcome of an NE from v_0 in G iff for all $1 \le i \le n$ and $\ell \in \mathbb{N}$, we have

- 1 if T_i does not occur in π , then $v_\ell \notin W_i(\text{Reach}(T_i))$ and
- 2 if T_i occurs in π , then $\ell \leq r_i$, implies that $\mathsf{SPath}^{T_i}_w(\pi_{\geq \ell}) \leq \mathsf{val}_i(v_\ell)$ where $r_i = \min\{r \in \mathbb{N} \mid v_r \in T_i\}.$

Proof idea. (\Leftarrow) We construct an NE $(\sigma_i)_{i=1}^n$ from v_0 by letting for all $1 \leq i \leq n$:

- if h is a prefix $v_0 \dots v_k$ of π , $\sigma_i(h) = v_{k+1}$ and
- \blacksquare otherwise, if h is not a prefix of π and \mathcal{P}_i is responsible for deviating, let $\sigma_i(h) = \sigma_{-i}(\text{last}(h))$ for some \mathcal{P}_i -punishing memoryless strategy.

Simplifying NE outcomes

Lemma

Let $\rho = v_0v_1v_2 \ldots$ be an NE outcome in an n-player shortest-path game. There exists an NE outcome π from v_0 that can be decomposed as $h_1 \cdot \ldots \cdot h_k \cdot \pi'$ such that

- 1 h_i is a simple history ending in the jth visited target;
- $2\mid \pi'$ is a simple play or of the form hc^ω with hc a simple history;
- 3 for all $j \leq k$, $w(h_j)$ is minimum among histories sharing their first and last vertices with h_i that traverse a subset of the vertices of h_i ;
- 4 for all $i\leq n$, $\mathsf{SPath}^{T_i}_w(\pi)\leq \mathsf{SPath}^{T_i}_w(\rho).$

Proof idea. We apply the following steps.

- **Decompose** ρ similarly to condition 1, replace each obtained history by a simple one of minimal weight.
- Change the suffix to loop in the first cycle along it if applicable.
- \blacksquare The resulting π is an NE outcome by the characterisation.

Negative weights

- In a setting with negative weights, in the presence of a negative cycle, there can be NE cost profiles that require an **arbitrarily large** memory size.
- If $T_1 = \{t\}$ and $T_2 = V$, for all $n \in \mathbb{N}_0$, the play $(v_0v_1)^n t^{\omega}$ is an NE outcome that requires a memory of size n and gives a cost of $-n$ for \mathcal{P}_1 .

Beyond reachability games

- A Büchi objective for $T \subseteq V$ requires that T is visited infinitely often.
- \blacksquare It is not possible to obtain arena-independent memory bounds for Büchi objectives, e.g., below with $T_1 = \{t\}$ and $T_2 = \{w_1, w_2, w_3\}$.
- Below, 3 memory states are needed and it generalises for all $k \geq 1$.

Theorem

In any Büchi game, from any NE we can build a finite-memory NE such that the same objectives are satisfied, even in infinite arenas.