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Talk overview

Strategies are at the center of game-theoretic approaches to reactive
synthesis.

Goal of this talk
Motivate and explain a multifaceted vision of strategy complexity.

In the second part of this talk, we will focus on:
randomised strategies;
alternative representations of strategies.
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Reactive synthesis through game theory

Controllable
system S

Uncontrollable
environment E

Specification

Game G Solver

S wins +
winning
strategy

S does
not win

A strategy is a formal blueprint for a controller of the system.
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Turn-based stochastic games

Turn-based stochastic game G

Finite or countable state space S = S1 ⊎ S1.
Finite action space A.
Randomised transition function δ : S ×A → D(S).
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Plays are sequences in (SA)ω coherent with transitions.
⇝ Example: s0as1bs1. . .
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Strategies

A history is a prefix h of a play ending in a state.

Strategy

A behavioural strategy of Pi is a function σi : Histi(G) → D(A(i)).

Two strategies σ1, σ2 and an initial state s ⇝ distribution Pσ1,σ2
s

over plays.
A strategy σi is pure if σi : Histi(G) → A.
A strategy is memoryless if σi : Si → D(A).
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Strategies and memory
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Representation of strategies via Mealy machines with randomisation

Set of memory states M ;
initial memory distribution µinit;
next-move function nxtM : M × Si → D(A);
memory update function upM : M × S ×A → D(M).
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Strategy complexity via memory

The complexity of strategies is traditionally measured by the size of
their memory.
Memory requirements for optimal strategies in games have been
thoroughly studied.

A glimpse into known results on memory

Characterisations and one-to-two player lifts (e.g., [GZ05; Bou+22]).
Refining memory bounds/computing optimal bounds (e.g., [Bou+23;
Mai24]).
Trading memory for randomisation (e.g., [CAH04; CRR14]).
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Strategy complexity in general

Memory size does not fully describe the complexity of strategies.
Other aspects also play a role in the complexity of strategies.
Major question: what makes a strategy complex?

Our vision
Strategy complexity is multifaceted: various factors contribute to the
complexity of a strategy.

Next step: a brief look into randomisation.
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Mixed and behavioural strategies

There exist different definitions of randomised strategies.

Behavioural strategies Mixed strategies

In general, these two classes of strategies are not comparable.
Kuhn’s theorem [Aum64]: in games of perfect recall any mixed
strategy has an equivalent behavioural strategy and vice-versa.

What happens with finite-memory strategies?

Are all models of finite-memory randomised strategies equivalent?
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Randomisation and finite memory [MR24]

A class of Mealy machines is denoted by XYZ where X, Y, Z ∈ {D, R}
where D stands for deterministic and R for random, and

X characterises initialisation,
Y characterises the next-move function,
Z characterises updates.

DRR = RRR = RDR

DDR RRD

DRD

RDD

DDD
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Random strategies and multiple objectives

We study one-player games, i.e., Markov decision processes, with
multiple payoffs.
In general, the satisfaction of multi-objective queries requires
randomised strategies.

Main questions

What is the relationship between expected payoffs of pure strategies
and expected payoffs of general strategies?
What type of randomisation do we need for multi-objective queries?

→ Goal: results for the broadest possible class of payoffs.
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Multi-objective Markov decision processes

We consider two goals:
reaching work under 40 minutes with high probability;
minimising the expected time to reach work.

home work
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Payoffs

A payoff is a measurable function f : Plays(M) → R̄.
We let Eσ

s (f) =
∫
π∈Plays(M) f(π)dP

σ
s (π).

Which payoffs f are relevant?

f is good if Eσ
s (f) is well-defined for all strategies σ and all s ∈ S.

f is universally integrable payoffs: Eσ
s (|f |) ∈ R if for all strategies σ

and all s ∈ S.

For a multi-dimensional payoff f̄ = (f1, . . . , fd) and s ∈ S, we let:
Pays(f̄) = {Eσ

s (f̄) | σ strategy};
Paypures (f̄) = {Eσ

s (f̄) | σ pure strategy}.
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Universally integrable payoffs

In the introductory example, we had Payhome(f̄) = conv(Paypurehome(f̄)).

When does this generalise?

Theorem ((M., Randour))

Let f̄ = (f1, . . . , fd) be universally integrable. Then, for all states s,

Pays(f̄) = conv(Paypures (f̄)).

In particular, to match the expected payoff of any strategy, it suffices to:
mix d+ 1 pure strategies;
consider strategies use randomisation at most d along any play.

Sequel: proof of a weaker result

If f̄ is universally integrable, then cl(Pays(f̄)) = cl(conv(Paypures (f̄))).
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Universally integrable payoffs
A simpler proof

Non-direct inclusion: Pays(f̄) ⊆ cl(conv(Paypures (f̄))).
Let σ be a strategy and q = Eσ

s (f̄). Assume q /∈ cl(conv(Paypures (f̄))).
Main idea: reduction to a one-dimensional payoff.

Theorem (Hyperplane separation theorem)

Let D1, D2 ⊆ Rd be disjoint convex sets. If D1 is closed and D2 is
compact, then there exists a linear form x∗ : Rd → R and ε > 0 such
that for all p1 ∈ D1 and p2 ∈ D2, x∗(p1) + ε < x∗(p2).

D1

D2

x∗(v) = α
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Universally integrable payoffs
A simpler proof

Non-direct inclusion: Pays(f̄) ⊆ cl(conv(Paypures (f̄))).
Let σ be a strategy and q = Eσ

s (f̄). Assume q /∈ cl(conv(Paypures (f̄))).
Main idea: reduction to a one-dimensional payoff.

There exists a linear form x∗ such that, for all pure strategies τ,

x∗(Eτ
s(f̄)) < x∗(q)

By linearity, we obtain that for all pure strategies τ,

Eτ
s(x

∗(f̄)) < Eσ
s (x

∗(f̄))

Lemma
Let f be universally integrable. For all strategies σ, there exists a pure
strategy τ such that Eσ

s (f) ≤ Eτ
s(f).
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Beyond universally integrable payoffs
Example

s t
b

0

a
1

b
0

Payoffs

1 reaching t ⇝ f1 = 1♢t;
2 sum of weights ⇝ f2 =

∑∞
ℓ=0w(cℓ).

Eσa
s (f2) = +∞ =⇒ f2 is not universally integrable.

Paypures (f̄) = {(0,+∞)} ∪ {(1, ℓ) | ℓ ∈ N}.
=⇒ conv(Paypures (f̄)) = ({1} × R≥0) ∪ ([0, 1[× {+∞}).

We have (1,+∞) ∈ Pays(f̄) via σ such that for all ℓ ∈ N:

σ(s(as)ℓ)(a) =

{
1
2 if ℓ ∈ 2N

1 if ℓ /∈ 2N

→ The theorem and the key lemma do not generalise.
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Beyond universally integrable payoffs

Theorem (M., Randour)

Let f̄ be a good payoff and s ∈ S. Let q ∈ Pays(f̄).
All neighbourhoods of q (in R̄) intersect conv(Paypures (f̄)). In other words,
q can be approximated by finite-support mixed strategies .
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Memory does not tell the whole story (1/2)
Counter-based strategies

Memory and randomisation do not fully reflect the complexity of a
strategy.

We consider a game with an energy-Büchi objective [CD12], where
W ∈ N.

0 1

a : −W

a : −W

b : 1

Need memory exponential in the binary encoding of W to satisfy the
energy-Büchi objective.
Polynomial representation with a counter-based approach.
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Memory does not tell the whole story (2/2)
Action choices influence simplicity

Memory and randomisation do not fully reflect the complexity of a
strategy.

0 1 2 3

a

b

a

c

a

d

→ Strategy σ1 is simpler to represent than σ2

The action choices can impact how concise the strategy can be
made.

Related challenge

How to represent and analyse memoryless strategies when the state
space is infinite?
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Memoryless strategies in one-counter MDPs

We study one-counter Markov decision processes.
We consider counter-based strategies with a compact representation
that we call interval strategies.

Our contribution (Ajdarów, M., Novotný, Randour)

PSPACE verification algorithms for interval strategies.
PSPACE realisability algorithms for structurally-constrained
interval strategies.

Our algorithms are based on a finite abstraction of an infinite
system.
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One-counter Markov decision processes

One-counter MDP (OC-MDP) Q

Finite MDP (Q,A, δ).
Weight function
w : Q×A → {−1, 0, 1}.

q p t
a | 1

1
2

1
2 b | −1

a | −1 a | 0

MDP M≤∞(Q) induced by Q

Countable MDP over
S = Q× N.
State transitions via δ.
Counter updates via w.
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Interval strategies

We study a restricted class of memoryless strategies of M≤∞(Q).

Open-ended interval strategies (OEIS)

σ is an OEIS if ∃ k0 ∈ N s.t. ∀ q ∈ Q and ∀ k ≥ k0, σ(q, k) = σ(q, k0).

N0 1 2 . . . k0 − 1 k0 k0 + 1 . . .

Q σ1 σ2 . . . σk0−1 σk0 σk0 . . .

constant

Inter. I1 I2 . . . Id = Jk0,∞K

Q τ1 τ2 . . . τd = σk0

Group counter values
in intervals

⇝ Finite partition of
N0 into intervals
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Objectives

An objective is a measurable set of plays.
Let T ⊆ Q be a target.
We study variants of reachability objectives.
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T

Selective termination Term(T )
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Interval strategy verification problem

Interval strategy verification problem

Decide whether Pσ
M≤∞(Q),sinit

(Ω) ≥ θ given an OEIS σ, an objective
Ω ∈ {Reach(T ),Term(T )}, a threshold θ ∈ Q ∩ [0, 1] and an initial
configuration sinit ∈ Q× N.

We construct a finite compressed Markov chain Cσ
I .

We have formulae (in the signature {0, 1,+,−, ·,≤}):
ΦI

δ (x, z
σ) for transition probabilities of Cσ

I ;
ΦI

Ω(x,y) for termination probabilities from configurations of Cσ
I .

We can solve the verification problem by checking if

R |= ∀x∀y (ΦI
δ (x, z

σ) ∧ ΦI
Ω(x,y)) =⇒ ysinit ≥ θ.
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Conclusion

Strategy complexity can be analysed through different approaches:
memory requirements;
randomisation requirements;
the existence of small strategy representations.

In a nutshell
We are interested in developing deeper insight on strategy complexity
and studying alternative strategy models.
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