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Abstract

A reactive system is a system that continuously interacts with its (uncontrollable)
environment. Controllers for reactive systems are notoriously difficult to design,
due to the possibly infinite behaviours that the environment may exhibit. This
motivates the need for approaches to automatically design controllers. Reactive
synthesis allows one to obtain a correct-by-construction controller automatically
from a formal specification. The synthesis problem can be solved by means
of a game-theoretic approach: we model the interaction of the system and the
environment as a game and compute well-performing strategies of the system
in this game. A strategy of the system player in such a game is the formal
counterpart of a controller of the system.

A central question is to understand how complex strategies must be to
enforce specifications. A classical representation of a strategy is via a Mealy
machine, i.e., a finite automaton with outputs along its transitions. This model
is used to define a classical measure of strategy complexity: the size of the
smallest Mealy machine inducing it. This is known as the memory of the
strategy. We explore different visions of strategy complexity: starting from
this classical model, moving on to randomisation and finally to alternative
representations.

First, we consider strategy complexity in the memory framework in multi-
player turn-based games played on deterministic graphs. We consider multi-
player games with (variants of) reachability objectives, and focus on Nash
equilibria, a classical solution concept in multi-player games. We study the
sufficient amount of memory to design Nash equilibria in which a given set of
players win. We obtain that the memory needed in games with reachability
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objectives for such Nash equilibria depends only on the number of players, and
that finite memory suffices if all players aim to visit their targets infinitely often
rather than only once.

Second, we consider randomisation in strategies. Randomisation is useful to
balance different goals or to hide one’s intentions from others. Randomisation in
strategies can be integrated into decision making in different ways. With mixed
strategies, one tosses a coin at the start of a play to select a deterministic strategy
(possibly among infinitely many), and follows this strategy for the entire play.
With behavioural strategies, one tosses a coin at each step to select an action.
Kuhn’s theorem, a seminal result in game theory, asserts the equivalence of
these two models of randomisation in a broad class of games, called games with
perfect recall. We investigate an analogue of Kuhn’s theorem for finite-memory
strategies: we classify the different variants of randomised strategies based on
stochastic Mealy machines with respect to their expressiveness and obtain a
hierarchy of randomised finite-memory strategies.

As all models of randomisation do not share the same expressiveness, it
yields another measure of strategy complexity. This measure is not directly
related to memory requirements: there can be a trade-off between memory
and randomisation requirements in general. We thus investigate randomisation
requirements in a setting in which randomisation is required: Markov decision
processes (MDPs) with multiple objectives. An MDP is a one-player game where
the environment is fully stochastic. Each strategy in an MDP with multiple
objectives yields a vector of expected payoffs: we investigate the structure of
the set of such expectation vectors under all strategies. We obtain that in
this setting, under wide-ranging assumptions, a limited form of randomisation
suffices.

Finally, we study an alternative representation of strategies in a class of
infinite-state MDPs. We study one-counter MDPs: finite MDPs augmented
with a counter that can be decremented, incremented, or left unchanged on
each transition. In this setting, strategies with no memory need not admit a
finite representation. We consider a natural class of counter-based strategies
that admit finite representations based on partitions of counter values into
intervals. For two reachability-based objectives, we provide PSPACE algorithms
to solve the problem of checking whether a strategy enforces the objective
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with high enough probability and to solve the problem of determining whether
there exists a well-performing strategy whose representation satisfies constraints
either its structure.

Our results highlight the multi-dimensional nature of strategy complexity.
We explore several of these dimensions with the goal of providing building
blocks for an extensive framework of strategy complexity.





Résumé

Un système réactif est un système qui maintient une interaction continue avec
son environnement incontrôlable. Les contrôleurs pour des systèmes réactifs
sont particulièrement difficiles à concevoir, au vu du nombre potentiellement
infini de comportements que l’environnement peut adopter. Cette difficulté
motive le besoin d’approches pour automatiquement concevoir des contrôleurs
pour des systèmes réactifs. La synthèse réactive est une approche automatique
qui permet d’obtenir un bon contrôleur à partir d’une spécification formelle.
Le problème de synthèse peut être résolu au moyen d’une approche basée sur
la théorie des jeux : l’interaction du système et de son environnement est
modélisée par le biais d’un jeu et on y calcule des stratégies performantes du
joueur système. Une stratégie de ce joueur correspond à un modèle formel d’un
contrôleur du système.

Une question centrale est de comprendre à quel point les stratégies doivent
être complexes pour satisfaire des spécifications. Une façon classique de représen-
ter une stratégie peut se faire par le biais d’une machine de Mealy, c’est-à-dire
un automate fini avec des sorties sur ses transitions. Ce modèle permet égale-
ment de définir une mesure classique de complexité pour les stratégies : la
mémoire de la stratégie, quantifiée par la taille de la plus petite machine de
Mealy induisant la stratégie. Dans ce manuscrit, on considère différentes visions
de complexité des stratégies : le modèle classique de mémoire, l’aléatoire dans
la prise de décision et, finalement, les représentations alternatives de stratégies.

Tout d’abord, on étudie la complexité des stratégies par le biais de la
mémoire dans des jeux multi-joueurs joués sur des graphes déterministes. On
considère les équilibres de Nash dans des jeux avec des variantes d’objectifs
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d’accessibilité. On étudie la quantité de mémoire suffisante pour construire
un équilibre de Nash dans lequel un sous-ensemble donné de joueurs gagne.
On montre que la mémoire suffisante dans les jeux d’accessibilité pour de tels
équilibres de Nash ne dépend que du nombre de joueurs, et qu’il suffit d’avoir
de la mémoire finie si l’objectif de tous les joueurs est d’atteindre leur cible
infiniment souvent plutôt qu’une seule fois.

Ensuite, on s’intéresse à l’aléatoire dans les stratégies. Intégrer de l’aléatoire
dans ses décisions permet, par exemple, de cacher ses intentions à ses adversaires,
et cette intégration peut se faire de diverses manières. D’une part, avec une
stratégie mixte, on tire au sort une stratégie déterministe au début d’une partie
(parmi un ensemble potentiellement infini) que l’on suit pour l’intégralité de la
partie. D’autre part, avec une stratégie comportementale, on tire au sort une
action à chaque étape de la partie. Un théorème célèbre de Kuhn affirme que
ces deux classes de stratégies aléatoires sont équivalentes dans une grande classe
de jeux. On propose un analogue au théorème de Kuhn pour les stratégies à
mémoire finie : on fournit une hiérarchie des différentes variantes des stratégies
aléatoires basées sur des machines de Mealy selon leur expressivité.

Étant donné que tous les modèles d’aléatoire ne sont pas équivalents, le type
d’aléatoire constitue une autre mesure de complexité des stratégies. Cette mesure
n’est pas directement correlée à la mémoire : il peut y avoir un compromis
entre la mémoire et l’aléatoire en général. On étudie les besoins d’aléatoire dans
un contexte où il est nécessaire : les processus de décision de Markov (PDM)
avec plusieurs objectifs. Un PDM est un jeu à un joueur où l’environnement est
entièrement stochastique. Chaque stratégie dans un PDM à plusieurs objectifs
fournit un vecteur de gains espérés : on étudie la structure de l’ensemble de ces
espérances pour toutes les stratégies. On conclut que dans ce contexte, sous
des hypothèses peu restrictives, une forme restreinte d’aléatoire suffit.

Finalement, on décrit une représentation alternative de stratégies dans une
classe de PDM à espace d’états infini. On étudie les PDM à un compteur : des
PDM finis avec un compteur qui peut être incrémenté, décrémenté ou laissé tel
quel sur chaque transition. Dans ce contexte, même les stratégies sans mémoire
n’admettent pas toujours de représentations finies. On considère des stratégies
qui peuvent être représentées par une partition constituée d’intervalles finiment
représentable de l’ensemble des valeurs de compteurs. Pour deux objectifs
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dérivés de l’accessibilité, on propose des algorithmes en espace polynomial
pour résoudre un problème de vérification (une stratégie donnée satisfait-elle
l’objectif avec une probabilité suffisante ?) et deux problèmes de réalisabilité
étant donné des contraintes sur la structure de la stratégie (existe-t-il une
stratégie suffisamment bonne respectant les contraintes imposées ?).

Les résultats de cette thèse soulignent la nature multi-dimensionnelle de la
complexité des stratégies. On explore différentes facettes de la complexité des
stratégies dans le but de contribuer à la conception d’un cadre formel extensif
pour la complexité des stratégies.
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Chapter 1

Introduction

1.1 Context

An era of ever-present computation. In the modern day, computer
systems are deeply integrated in many aspects of society and life, e.g., in enter-
tainment, transportation, healthcare and communication, and we constantly
interact with them. As with most things in life, it is most desirable that these
computer systems operate correctly. This is all the more true for contexts in
which safety is critical, e.g., a software issue in a car susceptible to cause a
crash should be corrected before the car goes on the market. This motivates
the need for reliable mechanisms to ascertain the correctness of systems.

Detecting errors. A classical technique to detect faults in computer
systems is through testing. While the usefulness of testing cannot be contested,
it is not a foolproof method: tests can only demonstrate the presence of
bugs, not guarantee their absence. In particular, when dealing with reactive
systems [HP85], i.e., systems that constantly interact with an uncontrollable
environment through inputs and outputs, exhaustive testing is unrealistic or
impossible. This is due to the different behaviours that can be adopted by the
environment, of which there can be infinitely many.

Formal methods offer another avenue to check the correctness of systems.
Model checking is a technique that automatically checks whether a formal model
of a system satisfies a specification formulated in some formalism such as linear
temporal logic [Pnu77]. In other words, model checking provides mathematical

1
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guarantees on the behaviour of a (model of a) system. The guarantees obtained
through model checking are with respect to the input model: an accurate
model (with respect to the specification) is necessary to apply this technique
in practice. Model checking emerged in the eighties in independent works by
Clarke and Emerson [CE81] and Queille and Sifakis [QS82]. Similarly to logic
(e.g., [Büc62]), automata play a major role in model checking [VW86]. We refer
the reader to the books [BK08, CHVB18] for extensive presentations of model
checking.

Automatic design. Model checking requires a model of the system to
be verified. In some cases, it is desirable to start from the specification and
automatically design a system satisfying the specification. This corresponds to
the synthesis problem. This problem was introduced by Church [Chu57]: he
asked whether there exists an algorithm to synthesise a logical circuit from
a specification in monadic second order logic. This problem was solved by
Rabin [Rab69], and Büchi and Landweber [BL69] in the late sixties.

A variant of the synthesis problem, of particular relevance for reactive
systems, is the controller synthesis problem. Instead of building a system directly
from a formula, the goal is to automatically design a controller for an incomplete
(reactive) system that enforces the required specification. This variant of the
synthesis problem was first studied by Ramadge and Wonham [RW89] for
discrete event systems. The (controller) synthesis problem can be tackled
by framing the interaction of the system and its environment as a game and
exploiting models from game theory.

Game theory. Game theory is a mathematical field studying models of
strategic interactions between agents called players. The roots of modern game
theory come from Morgenstern and von Neumann’s book “Theory of Games
and Economic Behavior” [vM44]. We also refer the reader to the seminal book
on game theory of Obsorne and Rubinstein [OR94], which incorporates many
advances made since the inception of the field. In a game, players are rational :
they aim to maximise their utility, are aware of the alternatives available to
them, make decisions based only on the facts at their disposal, are capable to
determine the best decisions and will (selfishly) select these alternatives.
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The goal of controller synthesis is to design a controller that enforces a
specification regardless of the behaviour of the environment. Therefore, the
controller synthesis problem amounts to studying two-player games in which
the system player and environment player are adversaries. Such games are
called zero-sum games: their goals are the opposite of one another. The goal
in the analysis of a zero-sum game is to find a decision-making plan, called a
strategy, for each player that yields a good outcome regardless of the decisions
of the other player.

Models in which players are not competing also exist: these are called
non-zero-sum games, in which there can be more than two players. Multi-player
non-zero-sum games are also of interest for controller design. For instance, if
the goal is to control a system consisting of several components, each with its
own specification, it may prove too restrictive to assume that all components
are adversarial to one another. In multi-player non-zero-sum games, Nash
equilibria [Nas50] are a classical formalisation of rational behaviour. Intuitively,
a Nash equilibrium is a contract between the players, described by one strategy
per player, such that none can benefit by unilaterally breaking it.

1.2 A myriad of game models for synthesis

Game-theoretic approaches for synthesis utilise games played on graphs [GTW02,
BCJ18, FBB+23]. There exist many variants of this model. We first describe
one of the simplest models: (non-terminating) two-player games played in a
turn-based fashion on a finite graph. We then comment on the extensions that
are considered in this manuscript below.

Basic model. We consider a finite directed graph whose vertices, called
states are partitioned between the two players and whose edges are labelled by
actions. We start by placing a pebble on an initial state. In each round, the
player in control of the current state chooses an action labelling an outgoing
edge of the state, and moves the pebble along the edge. This interaction goes
on forever and yields an infinite play.

The players are allowed to make use of all of the information of the ongoing
play in their decision making. This yields the following formalisation of a
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strategy : a function that assigns, to each finite play prefix, an action to be
chosen after this prefix. For controller synthesis, strategies of the system player
constitute formal blueprints for the sought controller for the system.

Extending the model. The structure on which a game is played, like
the partitioned graph in the above description, is called an arena. The above
arena model is turn-based, deterministic, finite and the player are perfectly
informed. It can be used to model games that respect all of these conditions,
such as chess. We can generalise this arena model in several directions, and we
can combine these various generalisations.

First, we can incorporate randomness in the transitions of the arena: in each
round, after an action is selected, the next state is selected by a distribution
that depends only on the current state and chosen action. This yields stochastic
game arenas (e.g., [Con92]). A stochastic game arena can be used to model
games in which dice are used, e.g., backgammon.

A special case of particular interest is that of one-player stochastic arenas.
Such arenas are known as Markov decision processes (MDPs). MDPs are a
classical framework for decision making in uncertain environments, which are
notably used not only in the fields of formal methods (e.g., [BK08, FBB+23]),
but also in reinforcement learning (e.g., [SB18]).

Second, we can extend the model to have the players make their decisions
concurrently, i.e., the players make their decisions simultaneously and without
communicating, in each round (e.g., [dAH00, dAHK07]). A simple example
of a concurrent game is rock paper scissors. We call arenas concurrent if
the players choose their actions simultaneously and turn-based otherwise. We
remark that one-shot concurrent games are one of the foundational models of
game theory [Bor21, von28].

Third, the model described above assumes that the players are perfectly
informed when making decisions. This assumption is not realistic for some
applications, e.g., when dealing with systems with imprecise or unreliable
sensors. Games with imperfect information (e.g., [OR94, CD12b, BGG17]) can
be used to model such situations. In such games, players perceive observations
that may correspond to several states at once, and must make their decisions
based on these observations. For instance, card games such as poker, in which
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one only perceives their own hand and not that of the other players, is a game
of imperfect information.

Fourth, we can also consider arenas with infinitely many states or infinitely
many actions. This can model games in which there can be infinitely many
configurations, such as Monopoly (the bank has unlimited funds). Another ex-
ample is the class of one-counter MDPs [BBE+10], which are finitely-presented
MDPs with a countable state space. As we study one-counter MDPs in the
latter part of this manuscript, we postpone an explanation of this model to the
sequel.

1.3 Strategy complexity

Regardless of the arena model, strategies are defined in a similar way and
constitute the formal counterpart of controllers in game-based approaches to
synthesis. Therefore, in practice, the simpler the strategy, the better. On the
one hand, small controllers are preferable, e.g., for deployment on resource-
constrained embedded systems. On the other hand, it is preferable to have a
controller that is understandable to one that is opaque. This motivates a key
question: what makes a strategy complex?

Memory. A classical measure of the complexity of a strategy is the size
of its memory, which quantifies the information that the player has to retain to
execute the strategy. More precisely, a finite-memory strategy is a strategy that
can be represented by a Mealy machine [Mea55], i.e., a finite automaton with
outputs along its edges. The amount of memory of a strategy is the size of the
smallest Mealy machine that encodes it. According to this measure, strategies
with less memory are preferable and the simplest strategies are memoryless
strategies, i.e., strategies that disregard the past and make decisions based only
on the latest observation.

For many classical specifications in simpler arenas, memoryless strategies
suffice. For the sake of illustration, let us consider reachability objectives: a
reachability objective requires that we visit a target set of states in the arena.
Reachability objectives are central in synthesis (see [BGMR23] and references
therein). In two-player turn-based zero-sum games on infinite deterministic
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arenas, memoryless strategies suffice to force a visit to the target whenever
possible [GTW02]. Similarly, in two-player turn-based zero-sum games on finite
stochastic arenas (in MDPs in particular), memoryless strategies suffice to
maximise the worst-case probability of visiting the target [Con92]. In countable
MDPs, while there need not exist an optimal strategy, memoryless strategies are
as powerful as general strategies to maximise reachability probabilities [Orn69,
KMS+20].

Of course, some specifications require strategies with memory to be enforced.
In contrast to the above, infinite memory may be required to play (almost)
optimally for a reachability objective in countable stochastic arenas [KMST24].
Another example consists of conjunctions of reachability objectives (e.g. [FH13])
for which the goal is to visit several targets. In this case, memory is necessary
already in finite one-player deterministic arenas.

Randomised decision making. Regardless of memory, the definition
of a strategy we have used up to now is not well-suited to concurrent and
imperfect information settings. This can be observed already with rock paper
scissors: regardless of the chosen action, the worst-case outcome is a loss. This
highlights a need for richer strategies. In this case, we can do better with
randomised strategies.

Strategies with randomisation may prove necessary when balancing mul-
tiple objectives (e.g., [EKVY08, RRS17, DKQR20]), in concurrent games
(e.g., [dAHK07]) and in contexts of partial information (e.g., [CD12b, BGG17]).
Whether a strategy is randomised or not can be seen as another aspect of its
complexity.

Strategies that deterministically assign actions to each play history are
called pure. There exist two classical definitions of randomised strategies. On
the one hand, mixed strategies are distributions over pure strategies. When
playing according to a mixed strategy, a pure strategy is drawn at the beginning
and is followed throughout the play. On the other hand, behavioural strategies
assign distributions over available actions to each history. When following a
behavioural strategy, actions are drawn randomly at each step according to the
distributions it provides.

In the most general settings, the classes of mixed and behavioural strategies
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are not equivalent in terms of the outcomes they can generate [OR94, Chap. 11].
Kuhn’s theorem [Kuh53, Aum64] asserts their equivalence in the perfect recall
setting, i.e., if players never forget their prior knowledge and can observe their
own actions. We will see that in our setting, even with imperfect recall, all
behavioural strategies are equivalent to some mixed strategy (cf. Theorem 2.47).

Mealy machines can be augmented with randomisation to obtain finite-
memory randomised strategies. The way that randomisation is integrated
in Mealy machines can have an impact in many respects. In several works,
stochastic Mealy machines are either defined with stochastic outputs and
deterministic updates (i.e., automaton transitions) or stochastic outputs and
updates. Both definitions encompass memoryless randomised (behavioural)
strategies.

The chosen definition of stochastic Mealy machines can impact several
aspects. First, more general models can allow one to obtain smaller winning
strategies in games. For instance, for almost-surely winning strategies in turn-
based stochastic Muller games, while pure finite-memory strategies suffice to win
almost surely, smaller Mealy machines can be obtained by allowing stochastic
outputs [Cha07] and even smaller Mealy machines can be obtained by allowing
both stochastic outputs and updates [Hor09]. Second, some behaviours that
can be achieved with the stochastic update model cannot be obtained with
deterministic updates [dAHK07, CDH10]: there is a gap in expressiveness
between the two models. Finally, in spite of the previous two points, it is not
necessarily desirable to default to the most expressive model, as model checking
them is undecidable in general [GO10].

We highlight two consequences of the above. On the one hand, in spite
of Kuhn’s theorem, not all classes of randomised strategies, including those
that are Mealy machine-based, are equally expressive, powerful or concise.
We thus can distinguish different classes of randomised strategies, and study
randomisation requirements similarly to memory requirements. On the other
hand, there can be a trade-off between memory requirements and randomisation
requirements. In a nutshell, there are several contributing factors to strategy
complexity, i.e., it should be seen as a multi-dimensional measure.
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Representing strategies. Pure memoryless strategies are the simplest
strategies with respect to the complexity measures described above. We can
argue, however, that all such strategies are not equally simple. For instance, a
constant strategy is much more simple than a strategy that assigns a different
action to each state. This indicates that memory and randomisation do not
fully characterise the complexity of strategies.

In practice, when designing controllers for systems with limited resources
(e.g., embedded systems), these controllers must be have a compact repre-
sentation. Already for memoryless strategies, an explicit representation as
a table assigning (distributions over) actions to each state can contain a lot
of redundancy, seeing as state spaces are often large. This motivates a need
for efficient representations of strategies. Similarly, for infinite arenas, pure
memoryless strategies need not admit a finite representation, and thus cannot
be implemented in practice. For such settings, we need tailored models to deal
with infinite state spaces.

The size of representations of strategies thus provides another measure of
(part of) the complexity of a strategy. For instance, [Gel14] presents a model
based on Turing machines, and defines three ad hoc complexity measures: the
size of the machine and the time and space complexity of the computations
made throughout a play. The need for small representations is also a core
motivation of a series of works on decision tree representations of memoryless
strategies [BCC+15, BCKT18, JKW23], which exploit the structure of the state
space to obtain small controllers.

1.4 Contributions

One of our main goals is to refine our understanding of strategy complexity. To
tackle this wide-ranging question, we consider various factors that contribute to
the complexity of strategies. In this thesis, we focus on three different aspects
of strategy complexity. First, we consider memory requirements measured via
Mealy machines, due to its well-established relevance. We then move on to
randomisation, which allows for a richer classes of strategies, and is necessary
in some instances. We study both the expressiveness of randomised strategies
and randomisation requirements for a given class of MDPs. Finally, we study
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alternative representations of strategies (with respect to Mealy machines):
alternative representations can provide insight into the structure underlying
the decision-making rules of a strategy and yield more compact representations
than Mealy machines. Each of these three directions give information regarding
a facet of strategy complexity and highlight the multi-dimensional nature of
strategy complexity.

In the remainder of this section, we provide a brief description of our main
contributions. We refer the reader to Chapter 3 for an extended description of
each contribution and its context.

Memory for Nash equilibria. We first focus on a classical measure
of strategy complexity: memory. We consider a class of non-zero-sum games
played on turn-based deterministic arenas, in which all players have a goal of
the same type. We focus on variants of reachability specifications. We consider
games where all players have a reachability objective, games where all players
have a Büchi objective and games where all players have a shortest-path cost
function. While reachability objectives are satisfied after visiting a target set
once, Büchi objectives require visiting a target infinitely often. Shortest-path
cost functions model a quantitative version of reachability: each transition in
the arena is assigned a non-negative integer weight, and the shortest-path cost
assigns the sum of weights to the first occurrence of a target to each play, or
positive infinity if no target is visited. The goal of the players is to minimise
their cost. In our setting, we assume that the weights are the same for all
players.

Our main goal is to understand how much memory is sufficient to implement
a Nash equilibrium (NE). In the games we study, there can exist several NEs
from a given initial state. Furthermore, NEs in which all players lose can coexist
with NEs in which all players win. NEs of the latter kind are preferable to those
of the former type. For instance, when modelling different system components
as players, it is preferable that as many component specifications as possible are
satisfied. For this reason, we study how much memory is sufficient to obtain a
preferable NE (i.e., with which all players lose no utility) from a given NE. In
other words, we study upper bounds on the sufficient amount of memory to
implement a constrained Nash equilibrium. This contribution is based on the
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single-author paper [Mai24].
We focus on move-independent Mealy machines, i.e., a model of strategy

representation for which memory updates depend only on the states seen along
the play (this definition is used, e.g., in [CRR14, CHVB18, BBGT21]). For
multi-player reachability and shortest-path games, we obtain memory upper
bounds that are quadratic in the number of players and are independent of the
arena. For multi-player Büchi games, we obtain that finite memory suffices,
and that arena-independent bounds cannot be obtained.

Randomisation and expressiveness. We move on to another aspect of
strategy complexity: randomisation. First, we focus on the expressiveness of
models of randomised strategies based on Mealy machine. This contribution is
based on joint work with Mickaël Randour [MR24].

Kuhn’s theorem provide a sufficient condition yielding the equivalence of
mixed and behavioural strategies. A natural question, inspired by this result,
is to understand the expressiveness of different variants of stochastic Mealy
machines as representations of strategies with respect to each other. We study
this question in finite multi-player concurrent arenas with perfect recall, and in
the more general settings that do not assume that the arena is finite, that there
is perfect recall or that either assumption holds (although we restrict ourselves
to countable arenas in all cases).

We provide a full taxonomy of classes of randomised finite-memory strategies
in terms of expressiveness, i.e., in terms of the distributions over plays that
can arise when using strategies from a given class. More precisely, we use the
same criterion that is used to compare mixed and behavioural strategies in
Kuhn’s theorem: outcome equivalence. Two strategies of a player in an arena
are outcome-equivalent if they induce the same distributions over plays no
matter the strategy of the other players. In particular, this criterion is agnostic
to whatever specification we consider: two outcome-equivalent strategies will
perform equally well for all goals.

Randomisation complexity. We study randomisation requirements in a
setting in which randomisation is necessary. We consider multi-objective MDPs,
i.e., MDPs with multi-dimensional payoff functions. A payoff function assigns
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a numerical value to each play. In multi-objective MDPs, the goal is typically
to achieve a vector (from an initial state), i.e., find a strategy whose expected
payoff vector is greater than the given vector (for the component-wise order).
Achieving vectors requires randomisation in general. We study the structure
of sets of expected payoff vectors in multi-objective MDPs and its impact on
randomisation requirements. These results are based on joint work with Mickaël
Randour [MR25].

First, we study the relationship between the set of expected payoff vectors
obtained through pure strategies and the set of all expected payoffs in countable
MDPs. We focus on universally unambiguously integrable payoffs, i.e., payoffs
whose expectation is well-defined for all strategies. We show that any expected
payoff vector can be approximated with a convex combination of pure expected
payoffs. We obtain finer results for universally integrable payoffs, i.e., payoff
whose expectation is finite for all strategies: all expected payoff vectors are
convex combinations of pure expected payoffs. For both cases, it follows that
mixed strategies with a finite support (i.e., that randomise over a finite set)
often suffice to achieve vectors.

While unrelated to randomisation requirements, we also provide sufficient
conditions on continuous payoff functions in finite MDPs that guarantee that
the set of expected payoffs is closed.

Finite representations of strategies. Finally, we investigate finite
representations of memoryless strategies in one-counter MDPs. One-counter
MDPs [BBE+10] are finite MDPs augmented with a counter that can be
incremented (by one), decremented (by one) or left unchanged on each transition.
An OC-MDP induces a possibly infinite MDP over a set of configurations given
by states of the underlying MDP and counter values. In this induced MDP,
any play that reaches counter value zero is interrupted; this event is called
termination. We consider two variants of the model: unbounded OC-MDPs,
where counter values can grow arbitrarily large, and bounded OC-MDPs, in
which plays are interrupted when a fixed counter upper bound is reached.

The counter in OC-MDPs can, e.g., model resource consumption along
plays [BBE+10], or serve as an abstraction of unbounded data types and
structures [BKK11]. It can also model the passage of time: OC-MDPs generalise
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finite-horizon MDPs, in which a bound is imposed on the number of steps
(see, e.g., [BKN+19]). OC-MDPs can be also seen as an extension of one-
counter Markov chains with non-determinism. One-counter Markov chains are
equivalent to (discrete-time) quasi-birth-death processes [EWY10], a model
studied in queuing theory.

We consider two objectives in OC-MDPs: state-reachability, i.e., reaching a
target set of states, and selective termination, i.e., reaching a target set of states
with counter value zero, thus generalising termination. The synthesis problem
for the latter is not known to be decidable and is connected to major open
problems in number theory [PB24, OW14]. Furthermore, even memoryless
strategies in OC-MDPs might be impossible to build in practice due to the
possibly infinite configuration space. To overcome these obstacles, we introduce
two classes of concisely represented strategies based on a (possibly infinite)
partition of counter values in intervals. We collectively refer to these strategies
as interval strategies.

For both classes of strategies, and both objectives, we study the verification
problem and two synthesis problems. On the one hand, the verification problem
asks whether a given strategy ensures a high enough probability for the objective.
On the other hand, our synthesis problems asks for structurally-constrained
strategies. For the first problem, we fix the interval partition of the strategy
as an input. For the other problem, we give parameters constraining the
representation of the interval partition. We develop a generic approach based
on a compression of the induced countable MDP that yields decidability in all
cases, with all complexities within PSPACE. These contributions originate from
joint work with Michal Ajdarów, Petr Novotný and Mickaël Randour [AMNR25].

1.5 Outline

This manuscript is divided into six parts. At the end of this manuscript, the
reader can find an index of technical terms and a table of notations. We
illustrate the overall structure of the manuscript in Figure 1.1.

Part I introduces the background and the contributions of this thesis. In
Chapter 2, we introduce basic mathematical notation, background and all game
models related to our contributions. Appendix A complements this chapter:
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Preliminaries
Chapter 2

Overview of contributions
Chapter 3

Conclusion
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Nash equilibria
Part II

Strategy expressiveness
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Representations of strategies

Mealy machines

Randomised
strategies

Figure 1.1: Overview of the structure of this thesis.

it includes the proofs of the results of Chapter 2 and additional background.
Chapter 3 provides an extended high-level presentation of each contribution
outlined above. Reading up to Chapter 3 should give the reader a global
overview of the results of this thesis.

Parts II–V are dedicated to the contributions highlighted in the previous
section. Chapters 4, 8, 12 and 16 are the first of their respective part and serve
as local introductions. They complement Chapter 3 by providing a summary-
like outline of their part. We provide a brief description of the content of each
part, and refer to these chapters for an extended presentation.

Part II presents our results regarding memory requirements for constrained
Nash equilibria. In Chapter 5, we discuss constrained Nash equilibria and
the model of Mealy machines we use. Chapter 6 provides an overview of
existing results, and adaptations, when necessary, on zero-sum and non-zero-
sum games on graphs that we use to construct NEs. Finally, we present our
results regarding memory in Chapter 7.

We study the expressiveness of randomised strategies in Part III. Chapter 9
provides a discussion of the definition of outcome-equivalence and a proof of
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Kuhn’s theorem. Chapters 10 and 11 respectively showcase inclusions and
non-inclusions between classes of finite-memory strategies.

We focus on multi-objective MDPs in Part IV. We introduce multi-objective-
specific notation in Chapter 13, along with some essential integration-related
results for the next chapter. Chapter 14 presents our results relating sets of
pure expected payoffs with sets of all expected payoffs. We study continuous
payoffs in multi-objective MDPs in Chapter 15.

Part V is dedicated to interval strategies in OC-MDPs. We define interval
strategies, discuss some basic properties and formalise our decision problems
in Chapter 17. We present our compression idea in Chapter 18. Chapter 19
and 20 provide algorithms for verification and synthesis respectively based on
the compression approach. Finally, we complement the upper bounds obtained
through these algorithms with lower bounds in Chapter 21.

We conclude in Part VI, which consists of a single chapter, Chapter 22.

1.6 Publication history

Contributions in this thesis originate from four published articles [MR22, MR24,
Mai24, AMNR25], where the journal paper [MR24] extends the conference
paper [MR22], and one technical report [MR25]. We briefly comment on the
other publications of the author as they have contributed to shaping the current
vision of the author.

We first discuss work on timed automata and games. A timed automa-
ton [AD94] is a finite automaton augmented with real-valued variables called
clocks that increase at the same rate. Clocks model the passage of time.
A timed game is played on a timed automaton by two players. We follow
the game model of [dAFH+03]: in each round, the two players concurrently
select a delay and an action, and a transition is taken following the move
with least delay. In joint work with Mickaël Randour and Jeremy Spros-
ton [MRS21, MRS22], we study window parity objectives in timed automata
and games. These objectives are a variant of the classical parity objective with
timing constraints; see also [BHR16, BDOR20] for the study of window parity
objectives in discrete-time models. We provide verification algorithms for timed
automata and synthesis algorithms in timed games for window parity objectives
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with matching lower and upper complexity bounds.
Second, we mention an invited contribution co-authored with Thomas

Brihaye, Aline Goeminne and Mickaël Randour [BGMR23]. This work is a
(non-exhaustive) survey on (variants of) reachability games on graphs. We
explore two notions of complexity: the computational probability of solving
games and the strategy complexity required to play optimally.

1.7 Related work

We only discuss related works connected to several parts of the manuscript.
Additional references can be found in the additional context described in
Chapter 3, and some related work is discussed at the end of the introductory
chapters of each part.

We refer the reader to [BK08] for a general introduction to model check-
ing and Markov decision processes, to [BCJ18] for a presentation of reactive
synthesis and games and to [FBB+23] as a general reference on games on
graphs.

We first discuss memory requirements. Many works that provide synthesis
algorithms also study how much memory is necessary and how much memory is
sufficient to enforce the specification (which can be winning in a zero-sum game
or achieving a vector in a multi-objective MDP); examples of such endeavours
can found, e.g., in [FH13, CD12a, CRR14, RRS17, BGHM17]. Understanding
memory bounds can also yield complexity-theoretic results. For instance,
the existence of memoryless winning strategies for both players in zero-sum
parity [EJ88] and mean-payoff [EM79] games on deterministic turn-based finite
arenas can be used to show that the complexity of determining the winner in
such games is in NP ∩ co-NP.

Memory requirements are sensitive to the way that strategies are defined.
As explained previously, whether we allow randomisation or not can impact
memory requirements. The power and conciseness of strategies also depends
on the information they are allowed to register to update their memory. For
instance, if objectives and payoffs are defined via sequences of colours labelling
transitions (as in, e.g., [GZ05, BLO+22, BRV23]) and only colours may be used
in memory updates, the amount of memory to win in a game can be greater
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than with general strategies [Koz24].

By colouring transitions, we can define objectives (i.e., sets of winning plays),
payoffs and, more generally, preference relations over plays independently of
the arena. This formalism can be used to characterise the power of finite-
memory strategies for all games with the same winning condition. There are
several works endeavouring to understand when finite memory is sufficient; all
of the (non-exhaustive) works we mention below are in the turn-based perfect
information setting. Gimbert and Zielonka, and Colcombet and Niwiński provide
characterisations of winning conditions for which optimal memoryless strategies
exist for both players in zero-sum games on finite [GZ05] and infinite [CN06]
arenas respectively. Bouyer et al. provide characterisations for games in which
arena-independent finite-memory strategies (i.e., the same colour-based update
scheme can be used to win in all arenas) suffice for both players in finite
deterministic arenas [BLO+22], finite stochastic arenas [BORV23] and infinite
deterministic arenas [BRV23]. There also exist sufficient conditions on winning
conditions that ensure the existence of memoryless strategies: see [GK23]
for zero-sum games on finite stochastic arenas and [Gim07] for finite MDPs.
In the same vein, Le Roux and Pauly provide conditions on games on finite
deterministic arenas such that finite-memory NEs exist in non-zero-sum games
whenever certain conditions on the corresponding zero-sum games hold [LP18].

The last direction we discuss is related to the representation of strategies.
We mention a few strategy representations. First, we highlight the previously
mentioned model of Gelderie based on Turing machines [Gel14]. Turing machine
models have also been used to quantify the reasoning ability of players by means
of computational complexity classes [DJ23]. We have also mentioned decision
tree representations of memoryless strategies [BCC+15, BCKT18, JKW23];
recently this approach was extended to strategies with memory by combining
Mealy machines with decision trees [ACKK24]. In reinforcement learning,
neural networks are used to compute and represent strategies [SB18]. For
strategies with memory, recurrent neural networks can be used (e.g., [KFG19,
CJW+19, CJT20]). Finally, we mention [SFM24], which studies programmatic
policies, i.e., strategies represented by programs.



1.7 – Related work 17

Funding

The author of this thesis is a Research Fellow of the Fonds de la Recherche
Scientifique – FNRS (F.R.S.-FNRS) and member of the TRAIL institute. He
is supervised by Mickaël Randour (F.R.S.-FNRS & Université de Mons), an
F.R.S.-FNRS Research Associate and member of the TRAIL institute. The
author and Mickaël Randour were supported by the F.R.S.-FNRS under Grants
n° F.4520.18 (MIS ManySynth) and n° T.0188.23 (PDR ControlleRS). Petr
Novotný, co-author of the contributions presented in Part V, has been supported
by the Czech Science Foundation grant no. GA23-06963S.





Part I:

Games, Markov decision processes and
strategies

19





Chapter 2

Preliminaries

This chapter introduces the background of this thesis and the notation used
in the subsequent chapters. Section 2.1 presents the general mathematical
notation and recalls some geometric results. Sections 2.2 to 2.8 introduce the
models of games considered in this manuscript and related relevant notions,
such as strategies, payoff functions and objectives. We defer some additional
material, most notably basic topology definitions and the proofs of some results
stated in this chapter to Appendix A (Page 399).
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2.1 Mathematical background

2.1.1 Sets, functions and words

We write N, Q and R for the sets of non-negative integers, rational numbers
and real numbers respectively. We denote the extended real line by R̄ =

R ∪ {−∞,+∞}. We let N>0 = N \ {0} denote the set of positive integers, and
let N̄ = N ∪ {+∞} and N̄>0 = N>0 ∪ {+∞}. Given n, n′ ∈ N̄, we let Jn, n′K
denote the set {k ∈ N | n ≤ k ≤ n′} of natural numbers ranging between n

and n′, and if n = 0, we shorten the notation to Jn′K. In particular, with this
notation, we have J∞K = N.

Let A′ ⊆ A and B′ ⊆ B be sets and f : A → B be a function. We let
1A′ : A→ {0, 1} denote the indicator function of A′. We let Im(f) = f(A) =

{f(a) | a ∈ A} denote the image of f . We let f−1(B′) = {a ∈ A | f(a) ∈ B′}
denote the inverse image of B′ by f . For any b ∈ B, we write f−1(b) instead of
f−1({b}) to lighten notation.
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The cardinality of A is denoted by |A|. We let A∗, A+ and Aω respectively
denote the set of finite, non-empty finite and infinite words over A. We write ε

for the empty word. A subset L ⊆ A∗ is prefix-free if no word of L is a strict
prefix of another word of L.

2.1.2 Probability theory

Let A be a countable set. We write D(A) for the set of probability distributions
over A, i.e., the set of functions µ : A→ [0, 1] such that

∑
a∈A µ(a) = 1. The

support of a distribution µ ∈ D(A) is supp(µ) = {a ∈ A | µ(a) > 0}. A Dirac
distribution is a distribution µ ∈ D(A) such that |supp(µ)| = 1, i.e., there exists
a ∈ A such that µ(a) = 1.

Given a set B and a σ-algebra F over B, we denote by D(B,F) the set of
probability distributions over the measurable space (B,F). Let µ ∈ D(B,F)
and f : B → R̄ be a measurable function. We say that f is µ-integrable if it
is integrable with respect to µ, i.e., if

∫
B |f |dµ ∈ R. We extend the Lebesgue

integral to non-positive functions in the following way: if f is non-positive, we
let
∫
B fdµ = −

∫
B −fdµ. If f is non-negative, non-positive or µ-integrable, we

say that
∫
B fdµ is the µ-integral of f .

2.1.3 Topology notation

We only provide some notation in this section. We recall some classical defi-
nitions and results in Appendix A.1, including the definitions of the product
topology, continuity, compactness and the usual topology of R̄.

Let (X, T ) be a Hausdorff topological space. For all D ⊆ X, we let cl(D)

and int(D) denote the closure and interior of D. The boundary of D ⊆ X is
the set bd(D) = cl(D) \ int(D).

2.1.4 Vectors and geometry

Vector spaces

Vectors are written in boldface to distinguish them from scalars. Let d ∈ N>0.
We let 0d and 1d ∈ Rd respectively be the vectors of Rd where all components
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are zero and one respectively. We omit the dimension subscript whenever there
is no ambiguity on the dimension of the space.

Given v = (vj)1≤j≤d,w = (wj)1≤j≤d ∈ Rd, we let ⟨v,w⟩ =
∑d

j=1 vjwj

denote the scalar product of v and w. We let ∥·∥2 denote the Euclidean norm
on Rd, defined by ∥v∥2 =

√
⟨v,v⟩ for all v ∈ Rd.

Given a linear map L : Rd → Rd′ (where d′ ∈ N>0), we let ker(L) denote
the kernel of L, i.e., the set {v ∈ Rd | L(v) = 0d′}. A linear form is a linear
map whose co-domain is R. We denote linear forms by x∗, y∗, . . .

The affine span of a set D ⊆ Rd, which we denote by aff(D), is the smallest
affine set (i.e., translation of a vector subspace of Rd) in which D is included.
Subsets of Rd whose affine span is not Rd have empty interior: strict affine
subspaces of Rd cannot contain any ball with positive radius (the affine span
of any such ball is Rd). Instead of considering the interior of such sets, we
consider their relative interior. The relative interior of a set D ⊆ Rd, denoted
by ri(D), is the interior of D as a subset of aff(D) (with the induced topology).

Let D ⊆ Rd. The interior of D is a subset of ri(D) by definition. Fur-
thermore, int(D) and ri(D) coincide if and only if aff(D) = Rd or ri(D) = ∅.
Otherwise, these sets differ. For instance, the segment [02,12] ⊆ R2 has empty
interior. However, we have ri([02,12]) = ]02,12[ (because aff([02,12]) is the
line of equation x = y).

Ordering vectors

We consider two order relations on R̄d: the component-wise order and the
lexicographic order. Let q = (qj)1≤j≤d and p = (pj)1≤j≤d ∈ R̄d. For the
component-wise order, we write q ≤ p if and only if qj ≤ pj for all 1 ≤ j ≤ d.
For the lexicographic ordering over Rd, we write q ≤lex p if and only if q = p

or qj ≤ pj where j = min{j′ ≤ d | qj′ ̸= pj′}. We write q <lex p if q ≤lex p

and q ̸= p. We recall that the component-wise order is partial, whereas the
lexicographic order is a total order.

Let D ⊆ R̄d. We say that q ∈ D is a Pareto-optimal element of D if it is
maximal for the component-wise order, i.e., if there does not exist p ∈ D such
that q ≤ p and q ̸= p. We say that D is downward-closed if for all q ∈ D

and p ∈ R̄d, p ≤ q implies p ∈ D. We let down(D) denote the downward
closure of D, which is defined as the smallest (with respect to set inclusion)
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downward-closed set in which D is included. A set and its downward closure
have the same set of Pareto-optimal elements.

Convexity

A convex combination of vectors v1, . . . , vn ∈ Rd is a linear combination∑n
m=1 αm · vm such that α1, . . . , αn ∈ [0, 1] and

∑n
m=1 αm = 1. We refer to a

sequence of coefficients α1, . . . , αn ∈ [0, 1] such that
∑n

m=1 αm = 1 as convex
combination coefficients. Given v, w ∈ Rd, we let [v,w] = {α · v + (1− α)w |
α ∈ [0, 1]} denote the (closed) segment from v to w; it is the set of convex
combinations of v and w. Open and half-open segments are defined analogously.

Let D ⊆ Rd. The convex hull of D, denoted by conv(D), is the set of all
convex combinations of elements of D. The set D is convex if for all v, w ∈ D,
[v,w] ⊆ D, or, equivalently, if D = conv(D). If D is convex, we say that
q ∈ D is an extreme point of D if q /∈ conv(D \ {q}), i.e., if q is not a convex
combination of elements of D other than q and we let extr(D) denote the set
of extreme points of D. Extreme points generalise the notion of vertices of
polytopes.

The definition of a convex combination does not bound the number of
involved vectors. However, in Rd, it is sufficient to only consider convex
combinations involving no more than d+ 1 vectors. This is formalised by the
following theorem.

Theorem 2.1 (Carathéodory’s theorem for convex hulls [Roc70, Thm. 17.1]).
Let D ⊆ Rd and q ∈ conv(D). There exists D′ ⊆ D such that |D′| ≤ d+ 1 and
q ∈ conv(D′).

Carathéodory’s theorem can be used to show that the convex hull of a
compact subset D of Rd is itself compact. It follows from the theorem that a
sequence of elements in conv(D) can be described by d+1 sequences of vectors
in the compact set D and d+ 1 sequences of convex combination coefficients
in the compact interval [0, 1]. We can use the compactness of all of these sets
to extract a convergent sequence from any sequence in conv(D). We provide a
formal argument in Appendix A.3.
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Lemma 2.2. Let d ∈ N>0. Let D ⊆ Rd. If D is compact, then conv(D) is also
compact.

Convexity does not generalise to R̄d. Most notably, convex combinations of
vectors of R̄d (defined in the same way as above) may be ill-defined. Although
we consider convex combinations of elements of R̄d in Part IV, these are
always guaranteed to be well-defined: we will not consider convex combinations
where +∞ and −∞ both occur on a dimension in two vectors of the convex
combination.

Hyperplane separation

A hyperplane H of Rd is a set of the form {v ∈ Rd | x∗(v) = α} for some
non-zero linear form x∗ and α ∈ R. Let D1 and D2 ⊆ Rd. The sets D1 and
D2 are strongly separated by a hyperplane if there exists a non-zero linear
form x∗ such that infq∈D1 x

∗(q) > supp∈D2
x∗(p). A convex set D ⊆ Rd is

supported by a hyperplane at q ∈ D if there exists a non-zero linear form x∗

such that, for all p ∈ D, x∗(p) ≤ x∗(q); a supporting hyperplane in this case is
H = {v ∈ Rd | x∗(v) = x∗(q)}. We provide an illustration of the notions of
separating and supporting hyperplanes in Figure 2.1.

We recall a variant of the hyperplane separation theorem and the supporting
hyperplane theorem. We first outline a sufficient condition such that two disjoint
convex sets can be strongly separated.

Theorem 2.3 (Hyperplane separation theorem [Roc70, Cor. 11.4.2]). Let D1

and D2 be two convex subsets of Rd. If cl(D1) ∩ cl(D2) = ∅ and D1 or D2 is
bounded, then there exists a hyperplane strongly separating D1 and D2.

Figure 2.1a illustrates a setup in which we can apply the theorem. Theo-
rem 2.3 can be applied whenever D1 is a singleton set {q} (it is bounded) and
q /∈ cl(D2) to separate q from cl(D2). The next theorem provides a sufficient
condition for the existence of a supporting hyperplane at a given point of a
convex set.
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Figure 2.1: Illustration of separating and supporting hyperplanes.

Theorem 2.4 (Supporting hyperplane theorem [Roc70, Thm. 11.6]). Let D ⊆
Rd be convex and q ∈ D. If q /∈ ri(D), then there exists a hyperplane H

supporting D at q such that D ⊈ H.

2.2 Arenas and Markov decision processes

All game models that we study in the sequel can be formalised as a special case
of multi-player concurrent stochastic games played on graphs.

When considering an n-player game (where n ∈ N>0), we denote player i

by Pi for all i ∈ J1, nK. At the start of a play, a pebble is placed on some initial
state (i.e., a vertex of the graph). In each round, all players simultaneously
select an action available in the current state and the next state is chosen
randomly following a distribution depending only on the current state and the
actions chosen by the players. The game proceeds for an infinite number of
rounds, yielding an infinite play.

The formal structures on which such games are played are called arenas.
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play winlose

(r, s)

(s, p)

(p, r)

(s, r)

(p, s)

(r, p)

(r, r)

(p, p)

(s, s) (∗, ∗)(∗, ∗)

Figure 2.2: A concurrent arena modelling rock-paper-scissors. The self-loops of
states win and lose can be taken with all pairs of actions.

Definition 2.5 (Multi-player concurrent stochastic arena). Let n ∈ N>0. An n-
player (perfect-information) concurrent stochastic arena, or simply an arena, is a
tuple A = (S, (A(i))i∈J1,nK, δ) where S is a non-empty countable set of states, A(i)

is a countable set of actions for each i ∈ J1, nK and δ : S ×
∏

i∈J1,nK A
(i) → D(S)

is a (partial) probabilistic transition function. The arena A is finite if S is finite
and A(i) is finite for all i ∈ J1, nK.

For two-player arenas, we slightly change the notation and denote them by
tuples (S,A(1), A(2), δ). A one-player arena is called a Markov decision process
(MDP), and we denote MDPs byM = (S,A, δ).

We fix an n-player arena A = (S, (A(i))i∈J1,nK, δ). We let Ā =
∏

i∈J1,nK A
(i).

Elements of Ā are called action profiles. We denote action profiles with a
bar to emphasise that they are tuples of actions. Given ā ∈ Ā, we adopt the
convention that ā is given by the tuple (a(1), . . . , a(n)).

For any state s ∈ S, we let Ā(s) = {ā ∈ Ā | δ(s, ā) is defined} and
require that there exist subsets A(i)(s) of A(i) for all i ∈ J1, nK such that
Ā(s) =

∏
i∈J1,nK A

(i)(s). In other words, the actions available to a player in a
state are not constrained by the choices of the others. We assume without loss
of generality that for all s ∈ S, Ā(s) is non-empty, i.e., there are no deadlocks
in the arena.

We now present a simple two-player arena and an MDP to illustrate the
definition of an arena.

Example 2.1 (Rock paper scissors). Rock paper scissors is a two-player game
where two players simultaneously choose an action among rock, paper and
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bike | 30
1

train | 5

1
4 train | 5

1

home

ride

work

3
4

meet | 01

Figure 2.3: An MDP. The numerical weights next to actions represent the time
taken by each action.

scissors. In this game, rock beats scissors, scissors beats paper and paper beats
rock; the player whose action beats the action of the other wins. This game
can be modelled by the two-player arena depicted in Figure 2.2, in which it is
assumed that players replay whenever a tie occurs. Formally, this arena is given
by the tuple (S,A(1), A(2), δ) where S = {play,win, lose}, A(1) = A(2) = {r, p, s}
where the actions r, p, s respectively represent rock, paper and scissors, and
the (deterministic) transition function δ is as depicted in the figure, e.g., we
have δ(play, r, p)(lose) = δ(play, s, p)(win) = 1 . ◁

Example 2.2. Figure 2.3 depicts an MDPM representing a situation where
a person can choose between taking their bicycle or the train to reach work.
Whether a delay occurs is modelled by the stochastic transition between states
home and ride. In this example, a numerical weight is assigned to each state-
action pair: weights represent the time taken by each action, and model the
fact that taking the train to work takes less time than taking the bicycle.

Formally, we have M = (S,A, δ) where S = {home, ride,work}, A =

{train, bike,meet} and the transition function δ is as depicted on the illus-
tration, e.g., δ(home, train)(ride) = 1− δ(home, train)(home) = 1

4 . ◁

A play of A is an infinite sequence s0ā0s1 . . . ∈ (SĀ)ω such that for all
ℓ ∈ N, δ(sℓ, āℓ)(sℓ+1) > 0. A history is a finite prefix of a play ending in a state.
Given a play π = s0ā0s1ā1 . . . and ℓ ∈ N, we write π≤ℓ for the prefix history
s0ā0 . . . āℓ−1sℓ and π≥ℓ for the suffix play sℓāℓsℓ+1 . . ., and use the same notation
for prefixes and suffixes of histories. For any history h = s0ā0 . . . āk−1sk, we
let first(h) = s0 and last(h) = sk. Similarly, for a play π, we denote its first
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state by first(π). We write Plays(A) to denote the set of plays of A, Hist(G) to
denote the set of histories of A. Given some initial state sinit ∈ S, we write
Hist(A, sinit) for the set of histories starting in state sinit.

Let h = s0ā0s1 . . . āℓ−1sℓ and h′ = sℓāℓ+1sℓ+1 . . . ār−1sr be two histories
such that last(h) = first(h′). We let h · h′ = s0ā0s1 . . . āℓ−1sℓāℓ+1sℓ+1 . . . ār−1sr

denote the concatenation of h and h′ without repeating state sℓ. We abusively
call h · h′ the concatenation of h and h′. The concatenation h · π of a history h

and a play π such that last(h) = first(π) is defined similarly.

Concurrent stochastic multi-player arenas subsume several models that have
been studied in their own right. First, there are the previously mentioned
special cases of finite arenas, MDPs and two-player arenas. Second, there is
the class of turn-based arenas. An arena is turn-based if at each round, only
one player can influence the next transition.

Definition 2.6. The arena A = (S, (A(i))i∈J1,nK, δ) is turn-based if for all states
s ∈ S, there exists i⋆ ∈ J1, nK such that, for all i ∈ J1, nK \ {i⋆}, |A(i)(s)| = 1;
we say that Pi⋆ controls s.

Turn-based arenas are traditionally described by a partition of the state
space into states controlled by the different players. We use this presentation
when dealing with turn-based arenas. Formally, if A = (S, (A(i))i∈J1,nK, δ) is
turn-based, we present it as a tuple ((Si)i∈J1,nK, A, δ

′) where (Si)i∈J1,nK is a
partition of S, A =

⋃
i∈J1,nK A

(i) is the set of all actions and, for all i ∈ J1, nK,
s ∈ Si and ā ∈ Ā(s), δ′(s, a(i)) = δ(s, ā).

Assume that A is turn-based. In this case, we view the plays of A as
elements of (SA)ω instead of elements of (SĀ)ω. Similarly, histories are seen
as elements of (SA)∗S. Intuitively, we omit the information related to players
who have no choice. Definitions presented in the sequel for concurrent arenas
can be adapted to the turn-based setting in this way. We let, for all i ∈ J1, nK,
Histi(A) = Hist(A) ∩ (SA)∗Si denote the set of histories ending in a state
controlled by Pi.

A class of arenas of particular interest consists of the arenas with transitions
that are not subject to randomness.
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Definition 2.7. An arena A = (S, (A(i))i∈J1,nK, δ) is deterministic if for all
s ∈ S and ā ∈ Ā(s), δ(s, ā) is a Dirac distribution.

When dealing with a deterministic arena, we view the transition function
δ as a function δ : S × Ā → S. For instance, the arena of Example 2.1 is
deterministic, unlike the MDP of Example 2.2. A deterministic MDP is a graph
whose edges are labelled by actions.

Markov chains are a class of stochastic processes. We view Markov chains
as a special case of arenas: a Markov chain can be seen as an arena where all
players only have one action. Due to the absence of action choices, we omit
actions from Markov chains, and use the following definition.

Definition 2.8. A (discrete-time) Markov chain is a tuple C = (S, δ) where S is
a countable set of states and δ : S → D(S) is a probabilistic transition function.

Let δ : S → D(S) be a Markov chain. Plays and histories of C are defined
similarly to those of an arena, except we omit actions. More precisely, a play
of C is a sequence s0s1s2 . . . ∈ Sω such that, for all ℓ ∈ N, δ(sℓ)(sℓ+1) > 0. A
history of C is a finite prefix of a play of C. We use the notation Plays(C) and
Hist(C) for the set of histories and plays of C, like for arenas.

2.3 Topology on the set of plays

We present the usual topology on the set of plays of an arena. Probability
distributions over the set of plays of an arena (when the non-determinism is
resolved) or of a Markov chain are defined over the Borel σ-algebra for this
topology, i.e., the σ-algebra generated by open sets of plays.

Let A = (S, (A(i))i∈J1,nK, δ) be an n-player arena. We endow Plays(A) with
a metrisable topology as follows. First, we equip (SĀ)ω with the product
topology, where S and Ā are both equipped with the discrete topology. It
follows that (SĀ)ω is a metrisable topological space (as a countable product
of metrisable spaces). The topology of Plays(A) is the topology induced on
Plays(A) by the topology of (SĀ)ω.

A base of the topology of Plays(A) is the set of cylinder sets (in the sense
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of general topology, see Appendix A.1). We define, for any h ∈ Hist(A),
the cylinder of h as the set CylA (h) = {π ∈ Plays(A) | h is a prefix of π},
consisting of plays that extend h. For any set of histories H ⊆ Hist(A), we
write CylA (H) =

⋃
h∈H CylA (h). Two history cylinders intersect if and only

if one of the histories is a prefix of another. In particular, for a prefix-free
H ⊆ Hist(A), the union defining CylA (H) is disjoint. We drop the subscript A
from the notation of cylinders when the arena is clear for the context.

It can be shown that the set of cylinders of histories are also a base of the
topology of Plays(A). We provide a proof in Appendix A.4.

Lemma 2.9. The set {Cyl (h) | h ∈ Hist(A)} of history cylinders is a base of
the topology of Plays(A).

Since Hist(A) is countably infinite, Lemma 2.9 implies that all open subsets
of Plays(A) are countable unions of history cylinders. Therefore, the topology
of Plays(A) is a subset of the σ-algebra generated by history cylinders. In
particular, the σ-algebra generated by history cylinders is the Borel σ-algebra
(for the standard topology) of Plays(A).

As mentioned above, the topology of Plays(A) is metrisable. It is induced,
e.g., by the metric distplay over Plays(A) defined by, for all π, π′ ∈ Plays(M),
distplay(π, π

′) = 2−r, where r = 0 if first(π) ̸= first(π′), and, otherwise, r =

sup{ℓ ∈ N>0 | π≤ℓ−1 = π′
≤ℓ−1}. This distance can be derived from the discrete

metric and a standard argument to prove that countable products of metric
spaces are metrisable. Open balls with a positive radius for distplay are history
cylinders; it follows from Lemma 2.9 that distplay induces the usual topology of
Plays(A).

Finite topological spaces are compact. Therefore, if A is finite, (SĀ)ω is
a compact space: any product of compact topological spaces is compact (see
Theorem A.3 for countable products). We show in Appendix A.4 that Plays(A)
is a closed subset of (SĀ)ω, and is therefore also a compact space whenever A
is finite.

Lemma 2.10. The set Plays(A) is a closed subset of (SĀ)ω. In particular,
Plays(A) is a compact space whenever A is finite.
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2.4 Strategies

2.4.1 Definition

A strategy is a function that describes how a player should play. In the perfect
information setting, players observe the entirety of the play history when making
decisions. Arenas with imperfect information, in which players must make their
choices based on observations that could represent several states rather than
the states themselves, are introduced in Section 2.7.

In general, a strategy can use the whole past of the current play in its
decision making, i.e., a strategy can use an unbounded amount of memory.
Furthermore, players need not act in a deterministic fashion: they can use
randomisation to select an action. Formally, strategies are defined as follows.

Definition 2.11. A (behavioural) strategy of Pi is a function σi : Hist(A) →
D(A(i)) such that for all histories h ∈ Hist(A), supp(σi(h)) ⊆ A(i)(last(h)).

In other words, a strategy assigns, to any history, a distribution over the
actions available to Pi in the last state of the history. In the turn-based setting,
we view strategies of Pi as functions over the set of histories ending in a state
controlled by Pi (i.e., Histi(A)).

A strategy that only uses information on the current state of the play
is called memoryless: a strategy σi of Pi is memoryless if for all histories
h, h′ ∈ Hist(A), last(h) = last(h′) implies σi(h) = σi(h

′). Memoryless strategies
can be viewed as functions S → D(A(i)). A strategy is called pure if it does
not use randomisation. A pure strategy of Pi can be viewed as a function
Hist(A)→ A(i). Strategies that are both memoryless and pure can be viewed
as functions S → A(i).

We write Σi(A) for the set of all (behavioural) strategies of Pi in A and
Σi
pure(A) for the set of pure strategies of Pi in A.

A strategy profile is a tuple made of one strategy per player.

Definition 2.12. A strategy profile is a tuple σ = (σi)i∈J1,nK of strategies where
σi is a strategy of Pi for all i ∈ J1, nK.
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For all i ∈ J1, nK, to highlight the strategy of Pi in a strategy profile
σ = (σi)i∈J1,nK, we write σ = (σi, σ−i); we (abusively) say that σ−i is a strategy
profile of the players other than Pi.

We say that a strategy profile is pure (resp. memoryless) if all strategies in
the profile are pure (resp. memoryless).

We change our terminology and notation slightly whenever A is an MDP,
i.e., when there is only a single player. Instead of referring to strategies of the
unique player, we instead refer to strategies of the MDP. We denote strategies
without any reference to a player, e.g., we write σ instead of σ1. For sets of
strategies, we drop the exponent from the notations Σ1(A) and Σ1

pure(A), and
write Σ(A) and Σpure(A) respectively.

2.4.2 Outcomes and probabilities over plays

Let i ∈ J1, nK, σi be a strategy of Pi and σ be a strategy profile. A play or
play prefix s0ā0s1 . . . is consistent with σi if for all action indices ℓ, it holds
that σi(s0ā0 . . . sℓ)(a

(i)
ℓ ) > 0.1 A play or play prefix is consistent with σ if it is

consistent with all strategies in σ. A play that is consistent with σi (respectively
σ) is called an outcome of σi (respectively σ).

Let σ = (σi)i∈J1,nK be a strategy profile and sinit be an initial state. The
strategy profile σ induces a Markov chain over the set of histories of A starting
in s, which yields a distribution over plays of A. We do not formalise this
Markov chain, and instead directly define the distribution over Borel subsets of
Plays(A). This presentation allows us to avoid having to formalise distributions
over plays of Markov chains first.

We write FA for the Borel σ-algebra of Plays(A). We define the probability
measure Pσ

A,sinit
∈ D(Plays(A),FA) induced by following σ from sinit in A as

follows. For any history h = s0ā0 . . . sr ∈ Hist(A, sinit), we define

Pσ
A,sinit

(CylA (h)) =
r−1∏
ℓ=0

(
δ(sℓ, āℓ)(sℓ+1) ·

n∏
i=1

σi(s0ā0 . . . sℓ)(a
(i)
ℓ )

)
.

For any history h ∈ Hist(A) \ Hist(A, sinit), we set Pσ
sinit

(CylA (h)) = 0. By the
Ionescu-Tulcea extension theorem [Kal21, Thm. 8.24], the measure described

1We use the terminology of consistency not only for plays and histories, but also for
prefixes of plays that end with an action profile.
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above can be extended in a unique fashion to (Plays(A),FA). Whenever A is
clear from the context, we drop it from the notation, i.e., we write Pσ

sinit
instead

of Pσ
A,sinit

.

Remark 2.13 (Probability of inconsistent plays). Let i ∈ J1, nK and σi be a
strategy of Pi. For any history h ∈ Hist(A), if h is not consistent with σi, then
Pσi,σ−i

first(h)(Cyl (h)) = 0 for all strategy profiles σ−i of the players other than Pi.
Since the set of plays that is inconsistent with σi can be written as the union
of the cylinders of histories that are inconsistent with σi, it follows that the
probability of this set when Pi follows σi is zero no matter the initial state and
strategy profile of the other players. ◁

For a Markov chain C with state space S, the cylinder of a history is defined
similarly for arenas, and so is the distribution over plays of C. As there are no
action choices in C, we omit the strategy from the notation above: we write
PC,sinit to highlight C, and, if C is clear from the context, we write Psinit .

If A is deterministic and σi is pure for all i ∈ J1, nK, then for all states s,
there is a single play consistent with σ starting in s; we denote this unique play
by OutA(σ, s).

When dealing with memoryless strategy profiles, we can seen the Markov
chains induced by the strategy profile as a Markov chain over S. We use this
vision of induced Markov chains in Part V to study the probability of some
events in large and countable Markov decision processes. For this reason (and
to lighten the notation), we only provide a formal decision for Markov decision
processes.

Definition 2.14. LetM = (S,A, δ) be an MDP and σ be a memoryless strategy
of M. We define the Markov chain induced by σ on M as the Markov chain
(S, δ′) such that, for all s, s′ ∈ S, δ′(s)(s′) =

∑
a∈A(s) σ(s)(a) · δ(s, a)(s′).

While this definition does abstract actions away from plays and histories, it
preserves the probability of reaching one state from another in the MDP when
following the strategy.
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2.4.3 Mixed strategies

Randomised strategies in the sense of Definition 2.11 are called behavioural
strategies. Intuitively, a behavioural strategy casts a die at each step of the
play to select an action. Another way of integrating randomisation in decision
making is through mixing : a mixed strategy is a distribution over pure strategies.
When playing with a mixed strategy, a pure strategy is chosen at the beginning
of the play and is followed for the whole play. With respect to the previous
intuition, in this case, we cast a die once at the start of a play then no longer
use randomisation.

To formally define mixed strategies, we must introduce a σ-algebra over the
set of pure strategies of A. The set of pure strategies Σi

pure(A) of Pi in A can
be written as

∏
h∈Hist(A)A

(i)(last(h)). We let FΣi
pure(A) denote the σ-algebra

generated by sets of the form

{
σi ∈ Σi

pure(A) | σi(h) = τi(h) for all h ∈ H
}

where τi ∈ Σi
pure(A) and H is a finite set of histories. Such sets are cylinders of∏

h∈Hist(A)A
(i)(last(h)) in the sense of the product topology, when we endow

the subsets of A(i) in the previous product with the discrete topology. We
formalise mixed strategies as follows.

Definition 2.15. A mixed strategy of Pi in A is a probability distribution
µi ∈ D(Σi

pure(A),FΣi
pure(A)). A mixed strategy profile is a tuple of the form

(µi)i∈J1,nK where µi is a mixed strategy of Pi for all i ∈ J1, nK.

We assume that pure strategies are a special case of mixed strategies by
identifying pure strategies with the corresponding Dirac mixed strategy.

Let µ = (µi)i∈J1,nK be a mixed strategy profile and sinit ∈ S be an initial
state. The distribution Pµ

A,sinit
over Plays(A) induced by µ from sinit is defined,

for all histories h = s0ā0s1 . . . ār−1sr ∈ Hist(A), by Pµ
A,sinit

(Cyl (h)) = 0 if
s0 ̸= sinit, and, otherwise, is defined by

Pµ
A,sinit

(Cyl (h)) =

 ∏
i∈J1,nK

µi(Σ
i
h)

 ·(r−1∏
ℓ=0

δ(sℓ, āℓ)(sℓ+1)

)
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where Σi
h = {σi ∈ Σi

pure(A) | h is consistent with σi} for all i ∈ J1, nK. The
Ionescu-Tulcea extension theorem ensures that the partially-defined measure
above can be extended in a unique fashion to (Plays(A),FA).

Alternatively, the distribution induced by a profile of mixed strategies
can be written as an integral over all pure strategies profiles for the product
distribution. We require the following technical property to formally present
this definition. We defer its proof, based on induction on the Borel hierarchy,
to Appendix A.5.

Lemma 2.16. Let Ω ⊆ Plays(A) be measurable and let s ∈ S. The function
PΩ :

∏n
i=1Σ

i
pure(A)→ [0, 1] : σ → Pσ

s (Ω) is measurable.

The following lemma provides an equivalent definition of the distribution
induced by a mixed strategy. A proof is also provided in Appendix A.5.

Lemma 2.17. Let µ = (µi)i∈J1,nK be a mixed strategy profile and sinit ∈ S be
an initial state. Let µ1 × · · · × µn denote the (unique) product measure over∏n

i=1Σ
i
pure(A) obtained from µ1, · · · , µn. For all measurable Ω ⊆ Plays(A), we

have

Pµ
A,sinit

(Ω) =

∫
σ∈

∏n
i=1 Σ

i
pure(A)

Pσ
A,sinit

(Ω)d(µ1 × · · · × µn)(σ).

In the perfect recall setting, i.e., when players can remember all of their
past information and the actions they have chosen, behavioural and mixed
strategies share the same expressive power. This result is known as Kuhn’s
theorem [Aum64]. Perfect information and perfect recall are not equivalent:
perfect information is a special case of perfect recall, where players are fully
informed. In Section 2.7, we define arenas with imperfect information and
formalise perfect recall. We also formally state Kuhn’s theorem in that section.

2.4.4 Finite-memory strategies

A strategy is said to be finite-memory if it can be encoded by a Mealy machine,
i.e., an automaton with outputs along its edges. We can include randomisation
in the initialisation, outputs and updates (i.e., transitions) of the Mealy machine.
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This yields the following definition.

Definition 2.18. Let i ∈ J1, nK. A (stochastic) Mealy machine of Pi is a
tuple M = (M,µinit, nxtM, upM), where M is a finite set of memory states,
µinit ∈ D(M) is an initial distribution, nxtM : M ×S → D(A(i)) is a (stochastic)
next-move function and upM : M × S ×A(i) → D(M) is a (stochastic) update
function.

Let M = (M,µinit, nxtM, upM) be a Mealy machine of Pi. If its initial
distribution µinit is a Dirac distribution for some minit ∈ M , we write M as
(M,minit, nxtM, upM). We say that M has a deterministic update (resp. next-
move) function if the image of upM (resp. nxtM) only contains Dirac distributions.
We assume that deterministic update (resp. next-move) functions are of the
type M ×S× Ā→M (resp. M ×S → A(i)). A Mealy machine is deterministic
if its initial distribution is a Dirac distribution and its update and next-move
functions are deterministic.

We describe how M works. Let s0 ∈ S. At the start of a play, an initial
memory state m0 is selected randomly following µinit. Then, at each step ℓ

of the play, an action profile ā ∈ Ā(sℓ) is sampled where a
(i)
ℓ of Pi is chosen

following the distribution nxtM(mℓ, sℓ) and the actions of the other players are
independently chosen according to their respective strategies. The memory
state mℓ+1 is then randomly updated following the distribution upM(mℓ, sℓ, āℓ)

and the arena state sℓ+1 is chosen following the distribution δ(sℓ, āℓ), with
these two choices being made independently.

We now explain how to derive a strategy from a Mealy machine. When
in a memory state m ∈ M and arena state s ∈ S, the probability of an
action a(i) ∈ A(i)(s) being chosen is given by nxtM(m, s)(a(i)). Therefore,
the probability of choosing the action a(i) ∈ A(i) after some history h = ws

(where w ∈ (SĀ)∗ and s = last(h)) is given by the sum, for each memory state
m ∈ M , of the probability that m was reached after w has taken place (i.e.,
after M processes w), multiplied by nxtM(m, s)(a(i)). Therefore, to provide
a formal definition of the strategy induced by M, we require a description of
the distribution over memory states of M after elements of (SĀ)∗ take place
(under the strategy induced by M).
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We provide an inductive definition of the distribution over memory states
of M after some element of (SĀ)∗ has taken place. This inductive formula
can be derived by analysing the Markov chain obtained when fixing a Mealy
machine of Pi and strategies of the other players. We defer the derivation of the
inductive formula, which relies on conditional probabilities, to Appendix A.6.

The distribution µε over memory states after the empty word ε (i.e., nothing)
has taken place is by definition µinit. Assume inductively that we know the
distribution µw for w = s0ā0 . . . sℓ−1āℓ−1. We explain how to derive µwsℓāℓ from
µw for any state sℓ ∈ supp(δ(sℓ−1, āℓ−1)) and for any pair of actions āℓ ∈ Ā(sℓ).

In general, the choice of an action by Pi conditions what the predecessor
memory states could be. First, we note that if nxtM(m′, sℓ)(a

(i)
ℓ ) = 0 holds

for all memory states m′ ∈ supp(µw), then the action a
(i)
ℓ is actually never

chosen. We leave this case undefined (the related conditional probabilities are
ill-defined) and assume that a

(i)
ℓ ∈ supp(nxtM(m′, sℓ)) for some m′ ∈ supp(µw).

The equation for µwsℓāℓ uses the likelihood of being in a memory state knowing
that the action a

(i)
ℓ was chosen, and not µw directly. We have, for any memory

state m ∈M ,

µwsℓāℓ(m) =

∑
m′∈M µw(m

′) · upM(m′, sℓ, āℓ)(m) · nxtM(m′, sℓ)(a
(i)
ℓ )∑

m′∈M µw(m′) · nxtM(m′, sℓ)(a
(i)
ℓ )

. (2.1)

This quotient is not well-defined whenever nxtM(m′, sℓ)(a
(i)
ℓ ) = 0 holds for all

m′ ∈ supp(µw), further justifying the distinction above.
Using these distributions, we formally define the (partial) strategy σM

i

induced by the Mealy machine M = (M,µinit, nxtM, upM) as the strategy
σM
i : Hist(A) → D(A(i)) such that for all histories h = ws, for all actions

a(i) ∈ A(i)(s),

σM
i (h)(a(i)) =

∑
m∈M

µw(m) · nxtM(m, s)(a(i)).

This strategy is only partially defined because distributions µw are not defined
for all w ∈ (SĀ)∗. Due to the inductive definition of µw, all histories for
which σM

i is undefined are of the form hāh′ such that σM
i is defined for h and

σM
i (h)(a(i)) = 0. In other words, σM

i is only undefined over histories with
a prefix that is inconsistent with σM

i . Therefore, no matter how the partial
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definition of σM
i given above is extended, it does not influence the induced

probability distribution over plays involving this strategy. We define finite-
memory strategies as strategies whose behaviour can be induced by using a
Mealy machine.

Definition 2.19. A strategy σi of Pi is a finite-memory strategy if there exists
a Mealy machine M of Pi such that σi agrees with σM

i over the domain of latter.

We say that a strategy profile is a finite-memory strategy profile if all
strategies within are finite-memory.

Let M be a Mealy machine of Pi with a deterministic initialisation and
deterministic updates. In this case, the distribution over memory states of M
after a history prefix takes place is a Dirac distribution. This state can be
determined by iterating memory updates from the initial memory state.

Definition 2.20. Let M = (M,minit, nxtM, upM) be a Mealy machine of Pi with
a deterministic initialisation and a deterministic update function upM : M ×S×
Ā→M . We define the iterated memory update function ûpM : (SĀ)∗ →M by
induction, by letting, ûpM(ε) = minit and, for any wsā ∈ (SĀ)+, ûpM(wsā) =

upM(ûpM(w), s, ā).

2.5 Specifications

2.5.1 Objectives and payoffs

An arena describes the interaction of the players without specifying their goals.
These goals can be modelled in several ways depending on the considered
specification. We consider two ways of formalising the goals of players. First,
the goal of a player can be specified through a set of good plays, which we call
an objective.

Definition 2.21. An objective is a measurable set of plays.

We say that a play π ∈ Plays(A) satisfies an objective Ω ⊆ Plays(A) if
π ∈ Ω. Intuitively, the goal of a player is to have their objective be satisfied
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with high probability.

Second, we consider specifications modelled by assigning a numerical value
to plays.

Definition 2.22. A payoff function (or payoff for short) is a measurable function
f : Plays(M)→ R̄.

In general, players strive to obtain a high expected payoff. When a payoff
function models a cost to be minimised, we highlight this by referring to the
function as a cost function.

Remark 2.23. A payoff function can be used to model the specification given
by an objective: in a probability space, the expectation of the indicator of an
event is the probability of the event. Therefore, to an objective Ω, we associate
the payoff 1Ω. Similarly, to an objective Ω, we associate the cost function
1Plays(A)\Ω. It follows that all definitions for payoffs and cost functions directly
extend to objectives. ◁

We define a game as an arena along with payoffs (or costs) for each player.

Definition 2.24. A game (over A) is a pair G = (A, (fi)i∈J1,nK) where fi is the
payoff (or cost) function of Pi for all i ∈ J1, nK.

Given a game G = (A, (1Ωi)i∈J1,nK) where the payoffs are indicators of
objectives Ω1, . . . , Ωn, we abuse notation and write G = (A, (Ωi)i∈J1,nK) instead.

2.5.2 Expected payoffs

Let f : Plays(A) → R̄ be a payoff function. Let σ be a strategy profile and
s ∈ S be a state of A. The Pσ

s -integral of f is only formally defined whenever
f is non-negative, non-positive or Pσ

s -integrable. If f is such a payoff, we let
Eσ
s (f) =

∫
π∈Plays(M) f(π)dP

σ
s (π); Eσ

s (f) is the expected payoff of the strategy
profile σ from s (for f). We also generalise the notion of expected payoff to a
broader class of payoff functions as follows.
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Definition 2.25. Let f+ = max(f, 0) and f− = max(−f, 0) denote the non-
negative and non-positive parts of f . We say that f has an unambiguous
Pσ
s -integral if Eσ

s (f
+) ∈ R or Eσ

s (f
−) ∈ R. If f has an unambiguous Pσ

s -integral,
we abuse notation and let Eσ

s (f) = Eσ
s (f

+)− Eσ
s (f

−).

We reserve the notation E for the expectation of payoffs, and use integrals
for other probability spaces.

In Part IV, we study MDPs with multiple payoff functions (for the unique
player) and provide general results for this setting. In this context, we limit
ourselves to payoffs for which the expected payoff is unambiguously defined
under all strategies from all initial states.

Definition 2.26. The payoff f is universally unambiguously integrable if f has
an unambiguous Pσ

s -integral for all strategy profiles σ and all s ∈ S.

In particular, all non-negative and non-positive payoffs are universally
unambiguously integrable. We will see that payoffs that are integrable no
matter the strategy and initial state are of particular interest.

Definition 2.27. The payoff f is universally integrable if it is Pσ
s -integrable,

i.e., if Eσ
s (|f |) ∈ R, for all strategy profiles σ and all s ∈ S.

All bounded functions are universally integrable. In particular, the indicator
of any objective falls into this category.

2.5.3 Continuous payoffs

Let f : Plays(A)→ R̄ be a payoff. We say that f is continuous at a play π to
mean that it is continuous at π with respect to the usual topologies of Plays(A)
and R̄. Since all open subsets of Plays(A) are unions of history cylinders,
continuity at a play can be characterised as follows.

Definition 2.28. Let f : Plays(M)→ R̄ be a payoff and let π ∈ Plays(M).

• If f(π) ∈ R, then f is continuous at π if and only if for all ε > 0, there
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exists ℓ ∈ N such that for all π′ ∈ Cyl (π≤ℓ), |f(π)− f(π′)| < ε.

• If f(π) = +∞ (resp. −∞), then f is continuous at π if and only if for
all M ∈ R, there exists ℓ ∈ N such that for all plays π′ ∈ Cyl (π≤ℓ),
f(π′) ≥M (resp. f(π′) ≤ −M).

The payoff f is continuous if it is continuous at all plays.
When A is finite, Plays(A) is compact. Therefore, continuous real-valued

payoffs over finite arenas are uniformly continuous, which is a stronger form of
continuity. In general, uniformly continuous payoffs can be defined as follows.

Definition 2.29. Let f : Plays(A)→ R be a real-valued payoff. The payoff f is
uniformly continuous if and only if for all ε > 0, there exists ℓ ∈ N such that
for all plays π, π′ ∈ Plays(M), π≤ℓ = π′

≤ℓ implies that |f(π)− f(π′)| < ε.

We provide some examples of continuous payoffs in Appendix A.9.

2.5.4 Some classical objectives

We now present some classical objectives. A core objective in verification and
synthesis is the reachability objective. A reachability objective requires that a
set of target states be visited.

Definition 2.30. Let T ⊆ S be a target (i.e., a set of target states). The
reachability objective Reach(T ) is the set {s0ā0s1ā1 . . . ∈ Plays(A) | ∃ ℓ ∈
N, sℓ ∈ T}. If T = {t}, we write Reach(t) instead of Reach({t}).

For instance, in the model of rock paper scissors of Example 2.1, the goal
of winning for P1 can be modelled by the reachability objective Reach(win).

The complement of a reachability objective is called a safety objective: it
requires that a set of unsafe states never be visited.

Definition 2.31. Let U ⊆ S be a set of unsafe states. The safety objective
Safe(U) is the set Plays(A) \ Reach(U). If U = {t}, we write Safe(t) instead of
Safe({t}).
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The reachability objective requires visiting a target once. Büchi objectives
model the requirement of visiting a target infinitely often.

Definition 2.32. Let T ⊆ S be a target. The Büchi objective Büchi(T ) is the
set {s0ā0s1ā1 . . . ∈ Plays(A) | ∀ ℓ ∈ N, ∃ r ≥ ℓ, sr ∈ T}. If T = {t}, we write
Büchi(t) instead of Büchi({t}).

A Büchi objective can be used, e.g., to model the requirement of having to
win infinitely often in a variant of the rock paper scissors arena of Example 2.1
in which players replay after each round even when there is not a draw.

Finally, the complement of a Büchi objective is the co-Büchi objective. It
requires avoiding a set of unsafe states from some point on.

Definition 2.33. Let U ⊆ S be a set of unsafe states. The co-Büchi objective
coBüchi(U) is the set Plays(A) \ Büchi(U). If U = {t}, we write coBüchi(t)

instead of coBüchi({t}).

2.5.5 Some classical payoff functions

We consider payoff functions that are defined from numerical weights that
are assigned to transitions of A. Formally, a weight function is a function
w : S × Ā→ R. We fix a weight function w.

A discounted-sum payoff is defined as an accumulated sum of weights
multiplied by powers of a discount factor in [0, 1[.

Definition 2.34 (Discounted-sum payoff). Let λ ∈ [0, 1[ be a discount factor.
We let DSumλ

w : Plays(A)→ R be the payoff function defined by DSumλ
w(π) =∑∞

ℓ=0 λ
ℓw(sℓ, āℓ) for all plays π = s0ā0s1ā1 . . . ∈ Plays(A).

When w is bounded in absolute value (this holds by default in finite arenas),
any discounted-sum payoff built from w is well-defined and bounded. This
implies that discounted-sum payoffs are universally integrable whenever w is
bounded. We can also show that discounted-sum are uniformly continuous
when w is bounded (see Lemma A.12).

A total-reward payoff corresponds to the accumulated weights along a play
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with no discounting.

Definition 2.35 (Total reward payoff). We let TReww : Plays(A) → R̄ be
the payoff function defined by lim infr→∞

∑r
ℓ=0w(sℓ, āℓ) for all plays π =

s0ā0s1ā1 . . . ∈ Plays(A).

We use a limit-inferior to ensure that this payoff is well-defined for all plays,
as the series of weights along a play need not converge.

A shortest-path cost function can be seen as a quantitative variant of
reachability and is defined as the accumulated sum of weights up to the first
visit of the target set. We refer to this function as a cost function, as it is often
used to model the goal of minimising the time or cost to reach a target.

Definition 2.36 (Shortest-path cost). Let T ⊆ S be a target. We let
SPathTw : Plays(A) → R̄ be the payoff function defined by, for all plays π =

s0ā0s1ā1 . . ., SPathTw(π) = +∞ if π /∈ Reach(T ) and, otherwise, SPathTw(π) =∑r−1
ℓ=0 w(sℓ, āℓ) where r = min{ℓ ∈ N | sℓ ∈ T}.

We attribute an infinite cost to plays that do not visit the target to give
them the largest possible penalty. A shortest-path cost function is continuous
whenever there exists a positive lower bound on weights (see Lemma A.13).

Remark 2.37. If A is turn-based, we consider weight functions to be of the form
w : S × A → R (where A denotes the set of all actions of all players). The
payoffs defined above can be directly adapted to accommodate this change. ◁

2.6 Solution concepts

We consider two types of games: two-player zero-sum games and multi-player
games. In a two-player zero-sum game (Section 2.6.1), the two players compete
for opposite goals. In multi-player games (Section 2.6.2), each player has their
own goal they aim to optimise, and their respective goals need not be opposite
to one another.
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2.6.1 Zero-sum games

Assume that n = 2. Intuitively, a game on A is zero-sum if the goal of P1 is
to maximise a payoff and the goal of P2 is to minimise the same payoff. We
formalise this as follows.

Definition 2.38. A two-player game G = (A, (f1, f2)) is a zero-sum game if
f2 = −f1.

We drop the payoff of P2 from the notation of zero-sum games, i.e., we
write G = (A, f) instead of (A, (f,−f)). We fix a (universally unambiguously
integrable) payoff f and the zero-sum game G = (A, f) for the following
definitions.

We present definitions with a maximisation point of view, i.e., we assume
that the goal of P1 is to maximise the expectation of f . If the goal of P1 is to
minimise the expectation of f , i.e., if f is a cost function, it suffices to exchange
the roles of the two players in the following.

Definition 2.39 (Value). Let sinit ∈ S be an initial state. If

sup
σ1∈Σ1(A)

inf
σ2∈Σ2(A)

Eσ1,σ2
sinit

(f) = inf
σ2∈Σ2(A)

sup
σ1∈Σ1(A)

Eσ1,σ2
sinit

(f), (2.2)

we refer to the above as the value of sinit in G and denote it by ValG(sinit). A
game is determined if the value is well-defined in all states.

A strategy σ1 of P1 ensures θ ∈ R̄ from sinit if for all strategies σ2 of P2,
Eσ1,σ2
sinit (f) ≥ θ. Symmetrically, a strategy σ2 of P2 ensures θ ∈ R̄ from sinit if

for all strategies σ1 of P1, Eσ1,σ2
sinit (f) ≤ θ. A strategy σi of Pi is optimal from

sinit if it ensures ValG(sinit) from sinit, and σi is uniformly optimal if it ensures
ValG(s) from s for all s ∈ S.

Example 2.3 (Optimal strategies in rock paper scissors). In rock paper scissors,
if one player plays uniformly at random, they can ensure a probability of
1
2 of winning. We show this by reasoning on the arena A modelling rock
paper scissors presented in Example 2.1, and the zero-sum reachability game
G = (A,Reach(win)). In G, the goal of P1 is to maximise their probability of
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play

winlose
r, p, s

1
3

1
3

1
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r, p, sr, p, s

Figure 2.4: The MDP obtained from the rock paper scissors arena of Example 2.1
by fixing a uniform randomised strategy for one of the players.

winning, whereas the goal of P2 is to prevent P1 from winning. Let σ1 and σ2

be the memoryless strategies of A that select an action uniformly at random in
state play.

We show that these strategies ensure 1
2 for both players. Fix i ∈ {1, 2}.

Figure 2.4 illustrates the MDP induced on A when fixing the strategy of Pi to
be σi. It can be constructed by noting that, regardless of the choice of P3−i

(i.e., the other player) in play, P3−i has a uniform probability of winning, losing
or having a draw against σi. This MDP can be seen as a Markov chain: the
choices of its player do not influence the probability of reachability objectives.
Therefore, no matter the chosen strategy in this MDP, states win and lose will
be reached with probability 1

2 . Since these two states are unreachable from
one another, it follows that σ1 and σ2 ensure 1

2 from play in G. Furthermore,
because both players have strategies ensuring the same threshold, we obtain
that ValG(play) =

1
2 and that σ1 and σ2 are optimal from play. ◁

If f = 1Ω for some objective Ω, we use specialised terminology. First, a
strategy σ1 of P1 is (surely) winning from sinit if all outcomes π of σ1, π satisfies
Ω. Symmetrically, a strategy σ2 of P2 is winning from sinit if all of its outcomes
π do not satisfy Ω. Analogously to uniformly optimal strategies, for i ∈ {1, 2},
we define uniformly winning strategies of Pi as strategies that are winning from
each state from which Pi has a winning strategy.

A strategy σ1 of P1 is almost-surely winning from sinit if, for all strategies
σ2 of P2, Pσ1,σ2

sinit (Ω) = 1, i.e., if σ1 ensures 1 for the payoff 1Ω. A strategy σ1 of
P1 is positively winning from sinit if, for all strategies σ2 of P2, Pσ1,σ2

sinit (Ω) > 0,
i.e., if Ω is satisfied with positive probability no matter the strategy of P2.

The value of a state in G, intuitively, represents the greatest expected payoff
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hide

home

wet

(r, k)

(h, t)

(r, t)

(h, k)

(a) The arena of the snowball game
of [dAHK07]. State home is the target
of P1. We omit self-loops on states home

and wet to lighten the figure.

hide

wet

home

k

t

ε1− ε

1− ε

ε

(b) The MDP induced on the snowball
game by having P1 select action r with
probability ε ∈ [0, 1] regardless of the his-
tory.

Figure 2.5: A concurrent reachability game. The actions r, h, t and k respectively
represent the actions run, hide, throw and keep.

that P1 can ensure and the lowest expected payoff that P2 can ensure. Let
sinit ∈ S. If ValG(sinit) ∈ R, due to the supremum in the definition of the value,
P1 has strategies that can ensure ValG(s)− ε for all ε > 0, i.e., P1 can ensure
thresholds arbitrarily close to the value. If ValG(sinit) = +∞, then P1 has
strategies ensuring M for all M ∈ N. However, optimal strategies need not
necessarily exist, even if the value does.

Example 2.4 (Non-existence of optimal strategies). We present the snowball
game [dAHK07], a concurrent reachability game in which P1 has no optimal
strategy from a given state in spite of the value of this state being 1.

In the snowball game, P1 wants to return home without being hit by P2
who has a single snowball. The arena A depicted in Figure 2.5a models the
interaction of the two players. At each step of a play, P1 can either remain
in hiding or run back home, whereas P2 can either keep their single snowball
or throw it. If P1 runs when P2 throws their snowball, then P1 loses. If P1
remains hidden and P2 keeps their snowball, then the play continues for an
additional step. In any other case, P1 reaches home without being hit by a
snowball. The objective of P1 is a reachability objective: we consider the
zero-sum reachability game G = (A,Reach(home)).

First, we claim that ValG(hide) = 1. Let ε ∈ ]0, 1[. Let σε
1 be the memoryless
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strategy of P1 such that σε
1(hide)(r) = ε. We use the MDP of Figure 2.5b

obtained by fixing σ1 in A to conclude that the strategy σε
1 ensures 1− ε from

hide. In MDPs, there exist optimal strategies for safety objectives that are pure
and memoryless (e.g., [BK08]), and thus the smallest probability of visiting
home in the MDP of Figure 2.5b is 1− ε. Since P1 can ensure 1− ε from hide

for all ε ∈ ]0, 1[, it follows that ValG(hide) = 1.

However, P1 does not have an optimal strategy. It suffices to check for a
memoryless optimal strategy: if there exists an almost-surely winning strategy
from a state in a zero-sum concurrent reachability game, then there exists a
memoryless almost-surely winning strategy from this state [dAHK07]. However,
by examining the MDP of Figure 2.5b, we can see that all choices of ε allow
P2 to prevent a visit to home with positive probability. ◁

2.6.2 Multi-player games

We lift the assumption that n = 2 of the previous section and fix (universally un-
ambiguously integrable) payoffs f1, . . . , fn and the game G = (A, (f1, . . . , fn)).

In a two-player zero-sum game, the two players compete with one another
for opposite objective. Due to this, we perform a worst-case analysis; this is
reflected, e.g., in the definition of the value (Definition 2.39). In a non-zero-sum
context, the different players each have their own goals that do not necessarily
conflict with one another. We thus use a different solution concept for such
games.

We consider Nash equilibria (NEs). Intuitively, an NE from an initial state
is a strategy profile that can be seen as a contract between the players such that
none of the players have an incentive to unilaterally deviate from the agreement.
We define NEs for cost functions. We use this definition as in Part II, we mainly
study NEs in games with shortest-path cost functions and with reachability
and Büchi objectives.

Definition 2.40. Let sinit ∈ S. Assume that, for all i ∈ J1, nK, fi is a cost
function (i.e., Pi wants to minimise it). A Nash equilibrium (NE) from sinit in G
is a strategy profile σ = (σi)i∈J1,nK such that, for all i ∈ J1, nK and all strategies
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s0 t12 s1

s2

t1
a | 3 a

b

a

a

b

a

Figure 2.6: A turn-based arena. Circles and squares respectively denote P1 and
P2 states. Unspecified weights are 1 and are omitted to lighten the figure.

τi ∈ Σi(A),
Eσ
sinit

(fi) ≤ Eτi,σ−i
sinit (fi).

Let sinit ∈ S. Given a strategy profile σ = (σi)i∈J1,nK, i ∈ J1, nK and a
strategy τi ∈ Σi(A), we say that τi is a profitable deviation (with respect to
σ from sinit) if Eσ

sinit
(fi) > Eτi,σ−i

sinit (fi). Therefore, a strategy profile is an NE if
and only if no player has a profitable deviation.

The (expected) cost profile of an NE σ from sinit ∈ S is (Eσ
sinit

(fi))i∈J1,nK. In
general, there may exist several NEs in a game with incomparable cost profiles
with respect to the component-wise ordering on R̄n.

Example 2.5. We consider the turn-based deterministic arena A depicted
in Figure 2.6. We let w denote the weight function that is equal to 1 for all
state-action pairs other than (s0, a) and such that w(s0, a) = 3 (as indicated
in the figure). We let G = (A, (SPathT1

w , SPathT2
w )) where T1 = {t12, t1} and

T2 = {t12}.
The memoryless strategy profile (σ1, σ2) with σ1(s0) = a and σ2(s1) = b

is an NE from s0 with cost profile (3, 3). On the one hand, if P1 assigns
positive probability to action b in s0, then T1 would not be visited with positive
probability by definition of σ2. It follows that their expected payoff, if they
deviate from σ, would be infinite, and thus P1 does not have a profitable
deviation. On the other hand, P2 cannot improve their cost by deviating
because their target T2 is visited before s1 is reached.

Another pure NE from s0 is the memoryless strategy profile (σ′
1, σ

′
2) such
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that σ′
1(s0) = s1 and σ′

2(s1) = t1. The cost profile of this NE is (2,+∞), which
is incomparable with (3, 3). ◁

When studying pure Nash equilibria in games on deterministic arenas,
it is sufficient to only consider pure deviations when checking the existence
of a profitable deviation. Fix an initial state sinit. Intuitively, if Pi has a
(randomised) profitable deviation τi with respect to a pure strategy profile
σ = (σi, σ−i) from sinit, then the set of plays with a smaller cost for Pi than
OutA(σ, sinit) has positive probability under (τi, σ−i) from sinit. Any pure
strategy that follows along a play of this set is a profitable deviation of Pi. The
above idea is formalised in the proof presented in Appendix A.7 of the following
result.

Lemma 2.41. Assume that A is deterministic and that, for all i ∈ J1, nK, fi is
a cost function. Let sinit ∈ S and σ = (σi)i∈J1,nK be a pure strategy profile. Let
i ∈ J1, nK and write σ = (σi, σ−i). The following statements are equivalent:

(i) Pi has a profitable deviation with respect to σ from sinit;

(ii) there exists a play π from sinit consistent with σ−i such that fi(π) <

fi(OutA(σ, sinit)).

(iii) Pi has a pure profitable deviation with respect to σ from sinit;

In particular, σ is an NE from sinit if and only if no player has a pure profitable
deviation.

2.7 Imperfect information

Up to now, we have considered arenas with perfect information, i.e., in which
players are fully informed throughout the play. We now introduce arenas with
imperfect information, in which players perceive observations rather than the
states and actions of the play directly. Arenas with perfect information are a
special case of such arenas, in which observations are exactly the states and
actions.
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2.7.1 Definition

In the imperfect information setting, the players are not fully informed of the
current state of the play and the actions that are used along the play. Instead,
they perceive an observation for each state and action, and this observation may
be shared between different states and actions, making them indistinguishable.
These observations are not shared between the players; each player perceives
the ongoing play differently. We formalise this model as follows.

Definition 2.42. Let n ∈ N>0. An n-player arena with imperfect information is
defined as a tuple P = (A, (Zi,Obsi)i∈J1,nK) where A = (S, (A(i))i∈J1,nK, δ) is an
n-player arena (with perfect information), and for i ∈ J1, nK, Zi is a countable
set of observations of Pi and Obsi : S ∪

⋃
i′∈J1,nK A

(i′) → Zi is the observation
function of Pi. We require that for all i ∈ J1, nK and all s, s′ ∈ S, Obsi(s) =
Obsi(s

′) implies A(i)(s) = A(i)(s′), i.e., in two states that are indistinguishable
for Pi, the same actions are available to Pi.

A one-player arena with imperfect observation is called a partially observable
Markov decision process (POMDP). We fix P = (A, (Zi,Obsi)i∈J1,nK) where
A = (S, (A(i))i∈J1,nK, δ) for the remainder of the section. We say that P is finite
if A is finite.

Plays and histories of P are respectively defined as plays and histories of
A. We reuse the notations Plays(P) and Hist(P) for the sets of plays of P
and histories of P respectively. We extend the observation functions to action
profiles and to histories as follows. Let i ∈ J1, nK. For all ā = (a(i

′))i′∈J1,nK ∈ Ā,
we let Obsi(ā) = (Obsi(a

(i′)))i′∈J1,nK. For all histories h = s0ā0 . . . sr of P,
we let Obsi(h) = Obsi(s0)Obsi(ā0) . . .Obsi(sr). We say that two histories h,
h′ ∈ Hist(P) are indistinguishable for Pi if Obsi(h) = Obsi(h

′).

In P, players select actions based on the sequence of observations they have
perceived up to the point of decision. Formally, we define strategies of P as
strategies of A that agree on histories that share the same observation. This
definition avoids having to redefine notions such as consistency and distributions
induced by plays.
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Definition 2.43. Let i ∈ J1, nK. A pure (resp. behavioural) strategy σi of
Pi in A is a pure (resp. behavioural) observation-based strategy in P if for all
histories h, h′ ∈ Hist(P), Obsi(h) = Obsi(h

′) implies that σi(h) = σi(h
′). A

mixed observation-based strategy of Pi in P is a mixed strategy of Pi in A
that assigns a probability of zero to the set of pure strategies that are not
observation-based.

Remark 2.44 (Measurability of the set of observation-based strategies). The
definition of a mixed observation-based strategy assumes that the set of strate-
gies that are observation-based is in the σ-algebra we consider on the set of
pure strategies of a player. It suffices to show that the complement of this set
is measurable.

Let i ∈ J1, nK. A pure strategy σi of Pi is not observation-based if
there are two histories h and h′ that are indistinguishable for Pi such that
σi(h) = a(i) and σi(h

′) = b(i) for distinct a(i), b(i) ∈ A(i)(last(h)). For
any pair of indistinguishable histories (h, h′) and pair of distinct actions
(a(i), b(i)) ∈ A(i)(last(h))×A(i)(last(h)), the set of strategies that assign a(i) to
h and b(i) to h′ is one of the sets we have used to generate our σ-algebra over
Σi
pure(A)). Since the set of non-observation-based strategies can be written as

the countable union of these sets, we obtain that the set of observation-based
strategies and its complement are both measurable. ◁

Pure and behavioural observation-based strategies of Pi in P can be seen
as a functions Obsi(Hist(P))→ A(i) and Obsi(Hist(P))→ D(A(i)) respectively.
We refer to (behavioural) strategies of the arena A with perfect information as
history-based strategies to distinguish them from observation-based strategies.

2.7.2 Perfect recall and Kuhn’s theorem

We now define perfect recall. Perfect recall in games in extensive form with
imperfect information is defined by two properties: players never forget their
previous knowledge and can infer their previous action choices from the in-
formation at their disposal. We refer the reader to [OR94, Chap. 11] for a
definition of extensive form games with imperfect information and perfect recall
in that context.

In our setting, players make their decisions based on the sequence of obser-
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vations of the current history, i.e., the first property requiring that players never
forget their past knowledge is built into our model. Therefore, in P, a player
has perfect recall if they can distinguish their own actions from one another.

Definition 2.45. For all i ∈ J1, nK, Pi has perfect recall in P if A(i) ⊆ Zi

and for all a(i) ∈ A(i) and x ∈ S ∪
⋃

i′∈J1,nK A
(i′), Obsi(x) = a(i) if and only if

x = a(i).

Kuhn’s theorem asserts the equivalence of mixed and behavioural strategies
for players who have perfect recall. Whether two strategies are equal is not a
satisfactory measure of equivalence of strategies. On the one hand, equality
does not allow us to compare mixed and behavioural strategies, as they are
different objects syntactically. On the other hand, two behavioural strategies
may yield the same outcomes despite being different: the actions suggested
by a strategy in an inconsistent history can be changed without affecting the
distributions induced by the strategy. Therefore, instead of using the equality
of strategies as a measure of equivalence, we consider some weaker notion of
equivalence, referred to as outcome equivalence.

Definition 2.46 (Outcome equivalence). Two randomised strategies σi and
τi of Pi in A are outcome-equivalent if for all pure strategy profiles σ−i of the
players other than Pi and for all initial states sinit, the probability distributions
Pσ1,σ−i
sinit and Pτ1,σ−i

sinit coincide.

In the above definition, we only quantify over pure strategies of the others
players for syntactic reasons: we have only defined distributions induced by
strategy profiles where all strategies are mixed or all strategies are behavioural.
We discuss this definition in Chapter 9.1. In particular, we will see that the
outcome-equivalence of two mixed (resp. behavioural) strategies in the sense of
Definition 2.46 implies that these strategies induce the same distributions with
all mixed (resp. behavioural) strategies of the other players.

With the definition of outcome-equivalence, we can now state Kuhn’s
theorem formally. We provide a proof of Kuhn’s theorem in Chapter 9.2.
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Theorem 2.47 (Kuhn’s theorem [Kuh53, Aum64]). Let i ∈ J1, nK. For every
behavioural observation-based strategy σi of Pi in P, there exists an outcome-
equivalent mixed strategy µi. If Pi has perfect recall, then for every mixed
observation-based strategy µi of Pi in P, there exists an outcome-equivalent
behavioural strategy σi.

We remark that to derive a mixed strategy from a behavioural strategy,
perfect recall is not necessary. This is due to the fact that a part of the definition
of perfect recall holds automatically in our setting: players never forget their
prior knowledge as they make their decisions based on histories of increasing
length. In contrast to this, we can show that perfect recall is required to derive
a behavioural strategy from a mixed strategy (see Example 9.1).

2.7.3 Observation-based Mealy machines

We now discuss finite-memory strategies in a context of imperfect information.
We define a finite-memory strategy in P as a strategy induced by a (stochastic)
Mealy machine of A that the updates and next-move functions of which agree
on inputs that share the same observation. We call such Mealy machines
observation-based.

Definition 2.48. Let i ∈ J1, nK. Let M = (M,µinit, nxtM, upM) be a Mealy
machine of Pi. We say that M is observation-based if for all m ∈M , s, t ∈ S

and ā, b̄ ∈ Ā, if Obsi(s) = Obsi(t) and Obsi(ā) = Obsi(b̄), then upM(m, s, ā) =

upM(m, t, b̄) and nxtM(m, s) = nxtM(m, t).

An observation-based Mealy machine M = (M,µinit, nxtM, upM) of Pi can
be seen as a tuple M = (M,µinit, nxtM, upM) where its update and next-move
functions are of the form upM : M ×Z3

i → D(M) and nxtM : M ×Zi → D(A(i))

respectively.
An observation-based Mealy machine need not induce an observation-based

behavioural strategy (see Example 9.1). We provide two sufficient conditions
that ensure that strategies induced by observation-based Mealy machines are
behavioural observation-based strategies in Chapter 9.3. If the owner of the
Mealy machine has perfect recall, then the induced strategy is an observation-
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based behavioural strategy (Lemma 9.8). Otherwise, if the Mealy machine has
a single initial state and deterministic updates, then the strategy it induces is
an observation-based behavioural strategy. (Lemma 9.9).

2.8 One-counter Markov decision processes

In Part V, we study one-counter MDPs, which are finite MDPs that induce
countable-state MDPs. One-counter MDPs (OC-MDPs) extend MDPs with
a counter that can be incremented, decremented or left unchanged on each
transition.

Definition 2.49. A one-counter MDP is a tupleQ = (Q,A, δ, w) where (Q,A, δ)

is a finite MDP and w : S ×A→ {−1, 0, 1} is a (partial) weight function that
assigns an integer weight from {−1, 0, 1} to state-action pairs.

For all q ∈ Q and a ∈ A, we require that w(q, a) be defined whenever
a ∈ A(q), i.e., all transitions are labelled by some weight. A configuration of
Q is a pair (q, k) where q ∈ Q and k ∈ N. In the sequel, by plays, histories,
strategies etc. of Q, we refer to the corresponding notion with respect to the
MDP (Q,A, δ) underlying Q.

Remark 2.50. The weight function of an OC-MDP is not subject to randomisa-
tion in our definition, i.e., the weight of any transition is determined by the
outgoing state and chosen action. In particular, counter values can be inferred
from histories and be taken in account to make decisions in Q. ◁

Let Q = (Q,A, δ, w) be an OC-MDP. The OC-MDP Q induces an MDP
over the infinite countable space of configurations. Transitions in this induced
MDP are defined using δ for the probability of updating the state and w for
the deterministic change of counter value. We interrupt any play whenever a
configuration with counter value 0 is reached. Intuitively, such configurations
can be seen as situations in which we have run out of an energy resource. We
may also impose an upper bound on the counter value, and interrupt any plays
that reach this counter upper bound. We refer to OC-MDPs with a finite
upper bound on counter values as bounded OC-MDPs and OC-MDPs with no
upper bounds as unbounded OC-MDP. We provide a unified definition for both
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(b) The MDP induced by the OC-MDP of
Figure 2.7a.

Figure 2.7: An OC-MDP and the MDP over configurations it induces.

semantics.

Definition 2.51. Let Q = (Q,A, δ, w) be an OC-MDP and let B ∈ N̄>0 be a
counter upper bound. We define the MDPM≤B(Q) = (Q× JBK, A, δ≤B) where
δ≤B is defined, for all configurations s = (q, k) ∈ Q × JBK, actions a ∈ A(q)

and states p ∈ Q, by δ≤B(s, a)(p, k + w(q, a)) = δ(q, a)(p) if k /∈ {0, B}, and
δ≤B(s, a)(s) = 1 otherwise.

The state space ofM≤B(Q) is finite if and only if the counter upper bound
B is finite.

We briefly illustrate the semantics of a model via a simple illustration.

Example 2.6. We illustrate an OC-MDP Q in Figure 2.7a. A fragment of the
MDPM≤B(Q) over configurations induced by Q, for some B ≥ 3, is depicted
in Figure 2.7b. ◁

We also introduce one-counter Markov chains. In one-counter Markov
chains, we authorise stochastic counter updates (to simplify our presentation),
i.e., counter updates are integrated in the transition function. This contrasts
with OC-MDPs where deterministic counter updates are used to allow strategies
to observe counter updates. We only require the unbounded semantics in this
case.
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Definition 2.52. A one-counter Markov chain is a tuple R = (Q, δ) where Q is
a finite set of states and δ : Q→ D(Q× {−1, 0, 1}) is a probabilistic transition
and counter update function. The one-counter Markov chainR induces a Markov
chain C≤∞(R) = (Q×N, δ≤∞) such that for any configuration s = (q, k) ∈ Q×N,
any p ∈ Q and any u ∈ {−1, 0, 1}, we have δ≤∞(s)((p, k + u)) = δ(q)(p, u) if
k ̸= 0 and δ≤∞(s)(s) = 1 otherwise.

In Part V, we focus on two reachability-based objectives in OC-MDPs. We
recall that reachability objectives are central in synthesis (see [BGMR23]). On
the one hand, we study state-reachability, which requires reaching a target
regardless of the counter value.

Definition 2.53. Let T ⊆ Q be a set of target states. The state-reachability
objective for T inM≤B(Q) is defined as Reach(T × JBK). We abusively denote
this objective as Reach(T ).

The second objective we consider is called selective termination: it requires
reaching a counter value of zero in a target state.

Definition 2.54. Let T ⊆ Q be a set of target states. The selective termination
objective, denoted by Term(T ), for T inM≤B(Q) is defined as Reach(T × {0}).

The selective termination objective generalises the termination objective,
which requires reaching counter value zero.

2.9 Complexity theory

We assume that the reader is familiar with complexity theory and the traditional
time and space complexity classes (in particular NP, co-NP and PSPACE). We
refer the reader to the books of Sipser [Sip96] and Papadimitriou [Pap94] for
complexity-theoretic background. In Part V, we present complexity bounds
derived from the Blum-Shub-Smale model of computation and the decidability
of the theory of the reals. We summarise some relevant properties for our
purposes in the following.
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2.9.1 The Blum-Shub-Smale model of computation

Some of our complexity bounds rely on a model of computation introduced
by Blum, Shub and Smale [BSS89]. A Blum-Shub-Smale (BSS) machine,
intuitively, is a random-access-memory machine with registers storing real
numbers. Arithmetic computations on the content of registers are in constant
time in this model.

The class of decision problem that can be solved in polynomial time in the
BSS model coincides with the class of decision problems that can be solved, in
the Turing model, in polynomial time with a PosSLP oracle [ABKM09]. The
PosSLP problem asks, given a division-free straight-line program (intuitively,
an arithmetic circuit), whether its output is positive. The PosSLP problem lies
in the counting hierarchy and can be solved in polynomial space [ABKM09].

2.9.2 Theory of the reals

The theory of the reals refers to the set of sentences in the signature of ordered
fields (i.e., fully quantified first-order logical formulae) that hold in R. The
problem of deciding whether a sentence is in the theory of the reals is decidable;
if the number of quantifier blocks is fixed, this can be done in PSPACE [BPR06,
Rmk. 13.10]. Furthermore, the problem of deciding the validity of an existential
(resp. universal) formula is NP-hard (resp. co-NP-hard) [BPR06, Rmk. 13.9].
Our complexity bounds refer to the complexity classes ETR (existential theory
of the reals) and co-ETR, which contain the problems that can be reduced in
polynomial time to checking the membership of an existential sentence and
universal sentence in the theory of the reals respectively.





Chapter 3

Contribution overview

In this chapter, we provide an overview of the precise problems we tackle and
of the results presented in the later parts. The contributions of this thesis
are structured into four parts. Each part is related to the concept of strategy
complexity in games.

In Part II, we focus on the classical Mealy machine model and present
upper bounds on the memory that is sufficient to construct (constrained) Nash
equilibria in games with reachability or Büchi objectives and in games with
shortest-path costs. In Part III, we revisit Kuhn’s theorem in the finite-memory
setting: we investigate how variations of randomised Mealy machines compare
to one another in terms of expressiveness. We study the structure of expected
payoff sets in Markov decision processes with multiple payoffs in Part IV and
conclude that restricted randomisation suffices in this setting in many cases.
Finally, in Part V, we study one-counter Markov decision processes, which
induce countable MDPs. We study decision problems for interval strategies, a
class of strategies that admit finite interval-based representations.
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3.1 Memory for Nash equilibria

We motivate and summarise the results presented in Part II. These results are
based on the single author paper [Mai24].

3.1.1 Context

Strategy complexity. In the context of synthesis via game theory, strate-
gies are the formal counterpart of controllers. Therefore, simpler strategies are
preferable in general whenever they exist. The complexity of a strategy is often
measured by the amount of memory it requires (e.g., [FH13, CD12a, CRR14,
RRS17, BGHM17]), which is formalised by the number of states of the smallest
Mealy machine that induces it.

For a given class of games, this leads to two natural questions: “how much
memory is sufficient to enforce the specification? ” and “how much memory is
necessary to enforce the specification? ” in the studied games. The first question
amounts to determining an upper bound on the amount of memory sufficient
to win whenever possible (which may be parameterised by some property of
the specification or of the arena). The second question asks for a lower bound
witnessing how much memory could be needed in the worst case. Both the
upper and lower bounds are sensitive to the considered class of strategies (e.g.,
randomised or not) and how Mealy machines are formalised (e.g., where we
introduce randomisation) – see, e.g., [CdH04, Cha07, Hor09, CRR14].

We investigate the first question for pure Nash equilibria in multi-player
deterministic turn-based games with respect to move-independent Mealy ma-
chines, i.e., Mealy machines whose updates do not depend on the actions



3.1 – Memory for Nash equilibria 63

occurring along the play. This definition of a Mealy machine is natural in games
where arenas are described by graphs with unlabelled edges, as the sequence
of states contains all of the information regarding the play (it is used, e.g.,
in [CRR14, CHVB18, BBGT21]). This choice has an impact on the obtained
memory bounds (see Chapter 5.3), it can also be seen as imposing a restricted
form of imperfect information: the players can only observe states and not
actions throughout the play.

Nash equilibria. We study Nash equilibria [Nas50] in multi-player non-
zero-sum games on infinite deterministic turn-based arenas. Recall that an NE
from an initial state is a strategy profile such that no player has an incentive
to unilaterally deviate from their strategy (Definition 2.40). We focus on pure
NEs in games with reachability-related objectives, as reachability objectives
are central in synthesis [BGMR23]. More precisely, we consider games with
reachability and Büchi objectives, and with shortest-path cost functions all
built on a single non-negative integer weight function (i.e., the weights are the
same for all players).

It is known that NEs exist from all states in the games we consider here. For
games with reachability and Büchi objectives, this follows from the existence
result of [Umm06] for games where all players have ω-regular objectives. In
games with shortest-path cost functions on finite arenas, the existence of NE
follows from results for games with continuous cost functions if all weights are
positive [FL83], and from [BDS13] for the case of non-negative weights. We
build on the ideas of [BDS13] to extend their existence result to shortest-path
games with non-negative integer weights on infinite arenas (Chapter 6.3).

Although NEs are guaranteed to exist, several incomparable NEs may
co-exist within a game (Example 2.5). In practice, NEs where more players
win are preferable. For instance, when modelling different components of
a system as players with their own objectives, it is desirable that as many
component specifications as possible be satisfied. This is the core motivation
of the constrained NE existence problem (Definition 5.1): does there exist
an NE whose cost profile is bounded from above by some input vector? We
are interested in bounding how much memory is sufficient for solutions to
the constrained NE existence problem when using move-independent Mealy
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machines. In general, memory is necessary for such solutions (see Examples 5.1
and 5.2).

A related question, that we do not address, is to quantify how much memory
is sufficient for any NE. To the best of our knowledge, whether memoryless
NEs always exist in the games we consider is not known.

Nash equilibria and punishment. A useful technique to construct NEs
in the games we consider is through punishment. Given a play, all players agree
to follow the play, and if any player deviates from the play, then all of the
others band together to sabotage the deviating player. If the initial play is
an NE outcome, then the strategy profile resulting from this construction is
an NE from the first state of the play. This punishing mechanism is based on
the proof of the folk theorem for NEs in repeated games [Fri71, OR94], which
describes the set of NE payoff profiles in these games.

The punishment mechanism can be used to obtain memory upper bounds
for solutions to the constrained NE existence problem that depend on the size
of the arena (e.g., [BDS13, Umm08, BBGT21]). The main ideas of the classical
argument are as follows. First, one shows that there exist plays resulting from
NEs with a finite representation, e.g., a lasso. We then construct a (move-
independent) Mealy machine whose states are given by the finite representation
of the play and additional memory states to punish any deviating players. If
some player is inconsistent with the play, the other players switch to a (finite-
memory) punishing strategy to sabotage the deviating player; this enforces
the stability of the equilibrium. The size of the Mealy machine depends on
that of the finite description of the play, and thus depends on the size of the
arena. Furthermore, this approach does not translate to infinite arenas, e.g., if
the considered NE outcome is a simple play, it cannot be encoded in a (finite)
Mealy machine.

3.1.2 Contributions

Summary. The contributions presented in Part II are twofold. First, we
present constructions of move-independent Mealy machines for solutions to
the constrained NE existence problem for reachability games (Theorem 7.7),
shortest-path games with a single non-negative integer weight function (The-
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Arena size Finite Infinite

Reachability
n2

(Thm. 7.7)

Shortest-path
n2 + 2n

(Thm. 7.9)

Büchi
|S|+ n2 + n Finite-memory

(Lem. 7.14) (Thm. 7.13)

Table 3.1: Table of memory upper bounds for solutions to the constrained pure
NE existence problem in n-player turn-based deterministic games. The set S

denotes the state space of the arena. Bounds are given with respect to the
move-independent Mealy machine model.

orem 7.9) and Büchi games (Theorem 7.13) that apply to arbitrary arenas,
bypassing the finite-arena requirement of existing approaches. In other words,
for these three types of games, we show that from any NE, we can derive
another NE where all strategies are finite-memory and such that the same play-
ers accomplish their objective, without increasing their cost for shortest-path
games.

Second, for reachability and shortest-path games, we provide memory
bounds that are independent of the size of the arena which are quadratic in the
number of players. For Büchi games, we show that finite memory suffices in
finite and infinite arenas, and provide an explicit (arena-dependent) memory
bound for finite arenas. We also argue that arena-independent memory bounds
cannot be obtained in Büchi games (Example 7.6): we provide a family of
two-player games played on finite arenas where NEs with an outcome in which
the second player wins require a memory of size linear in the size of the arena.
Table 3.1 summarises our memory bounds in finite and infinite arenas.

We briefly comment on the main elements that are used to obtain our
results. We focus on reachability and shortest-path games, and only provide
limited intuition for Büchi games (for which we have more limited results).
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Punishing strategies. We build on a variation of the punishment mech-
anism, and therefore we require punishing strategies with limited memory. We
use memoryless punishing strategies. Punishing strategies are obtained via
zero-sum reachability, Büchi or shortest-path games: to punish a player Pi, the
other players band together and try to optimise the opposite of the cost or
objective of Pi.

In reachability and Büchi zero-sum games on deterministic turn-based arenas,
the two players have memoryless uniformly optimal strategies [Maz01, EJ88].
In zero-sum shortest-path games, the adversary (whose goal is to maximise the
shortest-path cost) does not necessarily have a uniformly optimal strategy in
infinite arenas. Nonetheless, we can show that the adversary has a memoryless
strategy that can punish the others enough to successfully implement the
punishment mechanism regardless of the point of deviation (Theorem 6.5).

Simplifying Nash equilibria outcomes. We derive move-independent
Mealy machines implementing an NE from well-shaped NE outcomes. We
obtain these well-shaped outcomes by simplifying outcomes of other NEs. This
simplification process does not increase the cost of any player for shortest-path
games and leaves the set of winners unchanged for reachability and Büchi
games.

We provide an intuition of the simplification process for NE outcomes in
shortest-path and reachability games in Figure 3.1. Intuitively, we first break
up the play into segments connecting the first occurrences of each visited target.
We then transform each finite segment into a simple history such that it is not
possible to reach the end of one of these histories faster (with respect to the
weight function) by rearranging the states.

We use a similar simplification process for NE outcomes in Büchi games:
we obtain either a play that can be decomposed into an ultimately periodic
sequence of simple histories or a play that can be decomposed into a sequence
of segments such that no state occurs in two distinct odd-indexed (resp. even-
indexed) segments.

To show that the simplified outcomes are indeed NE outcomes, we rely
on characterisations of NE outcomes: sufficient and necessary conditions that
ensure that a play is the outcome of an NE (Theorems 6.8 and 6.9).
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via sg1 vertices

Figure 3.1: Simplification process for an NE outcome in a multi-player shortest-
path game. Doubly circles states denote the first occurrence of a target state
for each player in the play.

Relaxing the punishment mechanism. Implementing the punishment
mechanism with a move-independent Mealy machine for a given outcome
requires a complete description of the intended outcome. In particular, we
cannot obtain finite-memory strategies in infinite arenas through this approach.
We propose a relaxation of the punishment mechanism: players only punish
some specific deviations that can be considered as severe.

In reachability and shortest-path games, players keep track of two pieces of
information: the current segment of the intended (simplified) outcome and the
last player to have moved. It follows that players cannot react to in-segment
deviations; however, none of these deviations can be profitable due to the
absence of shortcuts. If a state outside of the current segment is reached, then
the last player to have moved must have deviated: this deviation is deemed to
be severe and is punished.

In Büchi games, the situation is slightly different: some in-segment devi-
ations may be profitable, e.g., if a target of a player whose objective is not
satisfied occurs in the segment and they can loop back to it. Intuitively, this
phenomenon prevents us from obtaining arena-independent upper bounds on
the size of move-independent Mealy machines implementing a solution to the
constrained NE existence problem. To circumvent the issue, we use a two-phase
approach: punish all deviations until there are no more targets of losing players



68 Chapter 3 – Contribution overview

in the remaining segments, then operate like in the above games.

3.2 Revisiting Kuhn’s theorem with finite-memory
assumptions

We motivate and summarise the results presented in Part III. These results are
based on a collaboration with Mickaël Randour [MR24]. In the previous part,
we have focused on pure strategies. We now move on to randomised strategies.

3.2.1 Context

Randomness in strategies. Strategies may require randomisation in con-
current games (e.g. [CD12b, dAHK07] and Example 2.3), games with imperfect
information (e.g., [BGG17]) or in multi-objective settings (e.g., [EKVY08,
RRS17, DKQR20], see also Part IV). There are different ways of implementing
randomisation in strategies. On the one hand, a mixed strategy (Definition 2.15)
randomly selects a pure strategy at the start of the play, and commits to it
for the whole play. On the other hand, a behavioural strategy (Definition 2.11)
selects an action randomly in each step.

Kuhn’s theorem. In full generality, the classes of mixed and behavioural
strategies are incomparable (e.g., [CDH10] or [OR94, Chap. 11]). Nonetheless,
Kuhn’s theorem [Aum64] (Theorem 2.47) asserts their equivalence under a
mild hypothesis: if a player has perfect recall, then all of their mixed strategies
admit an outcome-equivalent behavioural strategy and vice-versa. Intuitively,
two strategies are outcome-equivalent (Definition 2.46) if they generate the
same distributions over plays regardless of the decisions of the other players.
We remark that, in our model of arenas (with imperfect information), mixed
strategies are no less expressive than behavioural strategies even without perfect
recall.

Finite-memory strategies. For reactive synthesis, infinite-memory strate-
gies, along with randomised ones relying on infinite supports, are undesirable
for implementation. We study finite-memory strategies described by stochastic
Mealy machines (Definition 2.18). Randomisation can be implemented in these
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Mealy machines in different ways: the initialisation, outputs or transitions
can be randomised or deterministic respectively (see, e.g., [CDH10]). The
equivalence stated in Kuhn’s theorem motivates study of the expressive power
of different variants of stochastic Mealy machines.

Kuhn’s theorem and finite memory. The techniques underlying Kuhn’s
theorem cannot be extended directly to the finite-memory setting. Kuhn’s
theorem crucially relies on two properties. First, mixed strategies can be
distributions over an infinite set of pure strategies. Second, strategies can use
infinite memory. For instance, consider a memoryless behavioural strategy
that flips a coin in each round to choose one of two actions. Such a strategy
generates infinitely many sequences of actions, therefore any equivalent mixed
strategy needs the ability to randomise between infinitely many pure strategies.
Moreover, infinitely many of these sequences require infinite memory to be
generated due to their non-regularity.

The previous example illustrates that it may not be possible to emulate a
memoryless behavioural strategy by mixing finitely many pure finite-memory
strategies, in spite of the idea of mixing pure finite-memory strategies being
the natural finite-memory counterpart of mixed strategies. This highlights a
dependency of expressive power depending on the randomisation power allowed
in stochastic Mealy machines. In the sequel, we classify different classes of
stochastic Mealy machines depending on their expressive power.

3.2.2 Contributions

Classifying Mealy machines. We classify finite-memory strategies following
the type of stochastic Mealy machines that can induce them. We introduce a
concise notation for each class: we use three-letter acronyms of the form XYZ
with X,Y,Z ∈ {D,R}, where X, Y and Z respectively refer to the initialisation,
outputs and updates of the Mealy machines, with D and R respectively denoting
deterministic and randomised components. For instance, we will write RRD
to denote the class of Mealy machines that have randomised initialisation
and outputs, but deterministic updates. We also apply this terminology to
finite-memory strategies: we will say that a finite-memory strategy is in the
class XYZ — i.e., it is an XYZ strategy — if it is induced by an XYZ Mealy



70 Chapter 3 – Contribution overview

machine.
We briefly comment on the appearance of some of these classes in the

literature. Strategies in the class DRD have been referred to as behavioural
finite-memory strategies in [CDH10]. This name comes from the randomised
outputs, reminiscent of behavioural strategies that output a distribution over
actions after a history. In some works, finite-memory randomised strategies are
defined as DRD strategies (e.g., [Cha07, BFRR17]). Adding randomisation in
outputs constitutes a natural approach to extend deterministic Mealy machines
to encode randomised strategies; this way, the information maintained by the
player is not subject to any randomness.

Similarly, RDD strategies have been referred to as mixed finite-memory
strategies [CDH10]. The general definition of a mixed strategy is a distribution
over pure strategies: under a mixed strategy, a player randomly selects a pure
strategy at the start of a play and plays according to it for the whole play.
RDD strategies are similar in the way that the random initialisation can be
viewed as randomly selecting some DDD strategy (i.e., a pure finite-memory
strategy) among a finite selection of such strategies. It follows that RDD are a
special case of finite-support mixed strategies.

The elements of RRR, the broadest class of finite-memory strategies, have
been referred to as general finite-memory strategies [CDH10] and stochastic-
update finite-memory strategies [BBC+14a, CKK17]. The latter name highlights
the random nature of updates and insists on the difference with models that
rely on deterministic updates, that are common in the literature.

Settings. We study four classes of multi-player concurrent stochastic arenas,
where each class is described following (i) whether perfect recall is assumed or
not and (ii) whether the arenas are finite or countable. These classes encompass
two-player turn-based (deterministic) arenas with perfect information and
(partially observable) Markov decision processes as particular subcases.

For each class of arenas, we compare strategy classes on the basis of outcome
equivalence (Definition 2.46). We say that a class of strategies Σ1 is no less
expressive than a class Σ2 if for all strategies in Σ2, we can find an outcome-
equivalent strategy in Σ1; we abbreviate this by saying that Σ2 is included
in Σ1. Through this comparison criterion, we establish a Kuhn-like taxonomy
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of the classes of finite-memory strategies obtained by varying which Mealy
machine components (initialisation, outputs and updates) are randomised.

We illustrate this taxonomy through lattices highlighting the inclusion
relationships. To separate classes of strategies, we provide separation examples
on an MDP with one state and two actions, or a variation thereof if the
separation result does not hold in finite arenas with perfect information. This
MDP is arguably the simplest setting in which we can distinguish strategy
classes.

In the remainder of this section, we comment on our results for finite arenas
with perfect recall and for countable arenas with no assumption regarding
perfect recall. We provide the lattices for the other classes of arenas we consider
in Chapter 8.

Finite arenas with perfect recall. We first consider finite arenas with
perfect recall. Our results are illustrated in the lattice illustrated in Figure 3.2.
In the figure, a line between two strategy classes represents the strict inclusion
of the lower class in the above class.

Unsurprisingly DDD strategies, i.e., pure finite-memory strategies, are the
least expressive. For instance, in deterministic MDPs, DDD strategies can only
induce a single outcome from each state unlike the other classes.

Several inclusions follow directly from some classes having more randomisa-
tion power than others: a deterministic component can be emulated using Dirac
distributions. This argument yields, e.g., the inclusion of DRD in RRD. We ob-
tain three inclusions that do not follow from such an argument: RDD ⊆ DRD,
RRR ⊆ DRR and RRR ⊆ RDR. We briefly discuss each of these.

First, we obtain that RDD strategies can be emulated by DRD strategies,
i.e., finite-memory mixed strategies are less expressive than finite-memory
behavioural strategies (Theorem 10.2). Intuitively, our construction yields a
DRD Mealy machine that keeps track of all of the strategies mixed by the RDD
one, and we use randomised outputs to postpone the randomised initialisation:
whenever two of the strategies that are mixed disagree, we randomly choose
actions and discard the inconsistent strategies. The inclusion of RDD in DRD
is strict. For instance, in a deterministic MDP, all RDD strategies have finitely
many outcomes, whereas the DRD strategy that chooses actions uniformly at
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DRR = RRR = RDR
(Thm. 10.4, 10.5)
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Figure 3.2: Lattice of finite-memory strategy classes in terms of expressive
power in finite multi-player arenas with perfect recall. Each line in the figure
indicates that the class above is strictly more expressive than the class below.

random in each step has infinitely many.
Second, we prove that RRR strategies can be emulated by DRR strategies,

i.e., we can remove randomised initialisation from general Mealy machines
without losing out on expressiveness (Theorem 10.4). The main idea is to add
a fresh initial state to the Mealy machine. On the one hand, with randomised
outputs, we can emulate the choices of the original RRR strategy in the first
step of the game. On the other hand, with well-chosen randomised updates,
we can arrange for the distribution over memory states after the first memory
update to coincide in the DRR Mealy machine and the original RRR one.

The two inclusions sketched above exchange a randomised initialisation for
another form of randomisation by using completely different constructions. We
note that there is no uniform argument through which we can transform an
RXY strategy into a DRY strategy in general; this is witnessed by the strict
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inclusion of DRD in RRD.

Finally, we show that RRR strategies can be emulated by RDR strategies,
i.e., randomised outputs do not provide any additional expressive power in
general Mealy machines (Theorem 10.5). In this case, the main idea is to use
randomised initialisation and randomised outputs to preemptively draw actions
for each state in each step.

We remark that we cannot remove both the randomised initialisation and
randomised outputs from RRR strategies: this yields the DDR class. DDR
strategies are less expressive that RRR strategies because they cannot make
a random decision in the first step of a game. However, DDR is not a subset
of RRD because, as suggested by the results above, stochastic updates enable
essentially all behaviours that can be expressed by RRR strategies (from the
second step of a play on). This explains why the class DDR is in its own branch
in the lattice.

Countable arenas with no assumption on recall. We now consider our
most general setting: countable arenas, possibly with imperfect recall. We
illustrate the relevant lattice in Figure 3.3.
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DDR DRD RDD
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Figure 3.3: Lattice of finite-memory strategy classes in terms of expressive
power in general multi-player arenas.
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The only inclusions that hold in this general setting are due to some classes
having more randomisation power than others. All separation results that hold
in finite arenas with perfect recall extend to this setting. We briefly highlight
two additional non-inclusions that result from broadening our setting.

First, we observe that RDD is not included in DRR (in the previous setting,
this inclusion followed from RDD ⊆ DRD ⊆ DRR). This can be shown by a
POMDP with one state and two indistinguishable actions, thus with imperfect
recall. An RDD strategy that mixes the two constant strategies of this POMDP
does not admit a DRR equivalent, as a DRR strategy has no means to determine
the first action occurring in the game.

Second, we obtain that DRD is no longer included in RDR (which followed
previously from RRR = RDR). This can be shown via an MDP with one action
and infinitely many actions: a memoryless DRD strategy can play all actions
with positive probability, but an RDR strategy can only use as many actions
as there are memory states.

Each of the above examples exploits either imperfect recall or an infinite
arena, but not both. In particular, they yield separations in the two settings
on which we do not comment in this section.

In a nutshell. We provide a full picture of the expressiveness of randomised
finite-memory strategies in variants of the classical Mealy machine model.
Through our use of outcome-equivalence to compare strategy classes, we obtain
a taxonomy that is agnostic to the choice of payoffs and objectives, and the
way these are defined, e.g., over sequences of states or via colours labelling
transitions.

In Chapter 11, we complement our separation results on finite arenas with
game instances from the literature for which strategies of some class suffice
and others do not to enforce a specification. For instance, we note that RDD
strategies suffice in multi-objective MDPs with reachability objectives but not
DDD strategies [EKVY08], and that DRD strategies suffice to win almost-
surely in a zero-sum concurrent reachability game, but RDD strategies do
not [dAHK07]. Therefore, in a sense, our taxonomy of strategy classes also
extends to the framework in which strategies are compared on the basis of their
performance with respect to specifications.



3.3 – The structure of payoff sets in multi-objective MDPs 75

3.3 The structure of payoff sets in multi-objective
Markov decision processes

We motivate and summarise the results presented in Part IV. The results
presented in this section are based on joint work with Mickaël Randour [MR25].

3.3.1 Context

A multi-dimensional vision of strategy complexity. The randomi-
sation power of a strategy is another factor that contributes to its complexity,
in addition to the memory of the strategy. Randomisation is distinct from
memory from the standpoint of strategy complexity: for some specifications,
randomisation can be traded-off for memory, already in the one-dimensional
case [CdH04, Hor09, CRR14, MPR20]. Furthermore, as highlighted by the
classification of randomised finite-memory strategies presented in Section 3.2,
not all randomised strategies are created equal even in the perfect information
setting.

For memory requirements, we are often interested in the sufficient and
necessary amounts of memory to enforce a specification. For randomisation, we
can ask the similar question “what is the simplest form of randomisation that is
sufficient to enforce a given specification?” whenever randomisation is necessary.
In the following, we study randomisation requirements in multi-objective Markov
decision processes, a setting in which randomisation is necessary.

We note that randomisation requirements can be studied without taking
memory in account, i.e., we can identify other natural subclasses of randomised
strategies besides those of the previous section. We will be interested in finite-
support mixed strategies, i.e., mixed strategies that randomise over finitely
many pure strategies. Such strategies can thus only use a limited form of
randomisation.

Multi-objective Markov decision processes. We consider Markov
decision processes with multi-dimensional payoff functions, i.e., multi-objective
Markov decision processes. Multi-dimensional payoff functions can be used to
model specifications imposing several simultaneous constraints on a system,
e.g., constraints on the response time and energy consumption of a system. In
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this setting, some expected payoff vectors may be incomparable; an analysis of
trade-offs between the different dimensions may be necessary.

The goal is generally to determine, given a vector, whether it is achievable,
i.e., whether there exists a strategy whose expected payoff from an initial
state is greater than or equal to the vector in all components (e.g., [EKVY08,
CFW13, RRS17]). A related problem is to compute or approximate the Pareto
curve of the set of expected payoffs, i.e., the expected payoffs that are Pareto-
optimal (e.g., [FKP12, CKK17, QK21]). Intuitively, an expected payoff is
Pareto-optimal if there is no strategy whose expected payoff is as good on
all dimensions and strictly better on one dimension. Alternatively, one can
look for strategies with expected payoffs that are optimal for the lexicographic
order over vectors (e.g., [HPS+21, CKM+23, BCM+23]). For instance, in a
two-dimensional setting, this equates to finding strategies that maximise the
expected payoff on the second dimension among the strategies that maximise
the expected payoff on the first dimension.

In general, strategies with both memory and randomisation may be necessary
in multi-objective MDPs to achieve some vectors (see, e.g., [RRS17, DKQR20,
BGMR23] and the example below). Our focus is on randomisation requirements
in (countable) multi-objective MDPs: we study whether limited randomisation
power suffices to achieve vectors.

A simple example. For the sake of illustration, let us consider the MDP
depicted in Figure 3.4a. This MDP models a situation where a person wants
to go to work. They must choose between riding their bicycle or taking the
train. However, the train may be delayed with high probability due to an
ongoing strike. The goal of the commuter is twofold: maximise the likelihood
of reaching work within 40 time units (to reach work on time) and do so as
fast as possible on average. We model the two goals with a shortest-path cost
function.

We illustrate the set of expected payoffs for this situation in Figure 3.4b.
We label some expected payoffs with their corresponding strategies. On the
one hand, σtrain and σbike denote the pure strategies that always choose the
action in the subscript. On the other hand, we denote by σℓt+b the strategy
that attempts to take the train ℓ times before choosing the bicycle.
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(a) Transitions are labelled by actions
and probabilities. Weights next to ac-
tions represent the time taken by the
action. The target is doubly circled.
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(b) A set of expected payoffs. The probability
of reaching work before 40 time units is given
on the first dimension. The other dimension
represents the expected time to reach work.

Figure 3.4: An MDP with two payoffs and its associated set of expected payoffs.

This simple example highlights the need for randomisation and memory
in multi-objective MDPs. When limited to pure strategies, for instance, it
is not possible to reach work on time with probability exceeding 90% while
guaranteeing an expected commute time lower than 27. While the figure does
not feature the expected payoffs of all pure strategies, we observe that any
pure strategy whose payoff is not represented will reach work on time with a
smaller probability than σtrain, and thus will not be satisfactory. However, as
suggested by the point labelled by σmix on the illustration, these constraints
can be satisfied by mixing σtrain and σ2t+b. In fact, here, all expected payoffs
can be obtained by finite-support mixed strategies. We explain below how this
property generalises.

We remark that, in general, expected payoff sets need not be convex poly-
topes like in the previous example. We depict a set of expected payoffs that is
not a polytope in Figure 3.5; this set has infinitely many extreme points. This
figure is taken from a multi-objective MDP with two discounted-sum payoffs
that is presented in Chapter 14.1.
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Figure 3.5: An expected payoff set that is not a polytope; taken from the
example of Chapter 14.1 of a multi-objective MDP with two discounted-sum
payoffs.

3.3.2 Contributions

Philosophy. Our goal is to provide general results, i.e., that apply to a
broad class of payoffs. We only consider universally unambiguously integrable
payoffs (Definition 2.26), i.e., payoffs that have a well-defined (possibly infinite)
expectation no matter the strategy. This constitutes a natural requirement when
aiming to reason about expectations. We obtain finer results for universally
integrable payoffs (Definition 2.27), i.e., payoffs whose expectation is finite
under all strategies.

Overview. Our contributions are twofold. On the one hand, we study
the structure of sets of expected payoffs in countable multi-objective MDPs,
focusing on the relationship between what can be obtained with pure and with
randomised strategies. Through these relationships, we obtain results regarding
randomisation requirements in multi-objective MDPs. On the other hand,
we investigate sufficient conditions that ensure that any achievable vector is
dominated by a Pareto-optimal payoff. We show that this holds for a subclass of
continuous payoffs in finite MDPs. We remark that Pareto-optimal payoffs need
not exist in general; already in the one-dimensional case, optimal strategies
need not exist.
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Payoff type Univ. int. Univ. unamb. int.

Lexico. opt.
Pure strat. Inf. support

(Thm. 14.1) (Ex. 14.1)

Achieving a vect.
Fin.-support mixed strat. Inf. support

(Thm. 14.4) (Ex. 14.4)

Approx. a vect.
Fin.-support mixed strat. Fin.-support mixed strat.

(Thm. 14.4) (Thm. 14.7)

Table 3.2: Summary of randomisation requirements in countable multi-objective
MDPs for lexicographic optimisation, achieving a vector and approximating
an expected payoff vector. Univ. int. and univ. unamb. int. respectively
stand for universally integrable and universally unambiguously integrable. For
each case, either pure strategies or finite-support mixed strategies suffice, or
finite-support mixed strategies do not suffice.

The structure of expected payoff sets. We relate the set of expected
payoffs of pure strategies and the set of expected payoffs of general strategies
in countable multi-objective MDPs. We summarise the results described in the
following in Table 3.2.

First, we prove that for universally integrable (multi-dimensional) payoffs,
for all strategies, there exists a pure strategy with a greater or equal expected
payoff in the lexicographic sense (Theorem 14.1). In other words, randomisation
is not necessary for lexicographic optimisation of universally integrable payoffs.

This first result serves as a building block to one of our main results: any
expected payoff vector of a universally integrable (multi-dimensional) payoff is
a convex combination of expected payoffs of pure strategies (Theorem 14.4).
From a strategic perspective, this means that in multi-objective MDPs, finite-
support mixed strategies suffice to exactly obtain any (Pareto-optimal) expected
payoff vector. As a corollary, we obtain that any extreme point of a set of
expected payoffs of a universally integrable payoff can be obtained by a pure
strategy (Corollary 14.5). These results generalise known properties for classical
combinations of objectives on finite MDPs for which the set of expected payoffs
is a convex polytope (e.g., combinations of ω-regular specifications [EKVY08]
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and universally integrable total-reward payoffs [FKP12]), and for which the
set of expected payoff vectors need not be a polytope (e.g., discounted-sum
payoffs [CFW13] – see Figure 3.5).

Although none of the previous properties generalise to the whole class
of universally unambiguously integrable payoffs (even in finite MDPs, see
Examples 14.1 and 14.4), we prove that, for such payoffs, convex combinations of
pure strategies can be used to approximate any expected payoff (Theorem 14.7).

In both cases, we can bound the number of strategies that are mixed
depending on the number of dimensions d. Depending on the setting, we can
match or approximate expected payoffs by mixing no more than d+1 strategies
(Theorem 14.8).

Our results highlight the role of randomisation in strategies for multi-
objective MDPs: it is useful only to balance the payoffs on different dimensions
in many cases.

To establish these results, we mainly reason on mixed strategies rather
than behavioural strategies. Mixed strategies provide a crucial link between
expected payoffs of pure and randomised strategies: the expected payoff of a
mixed strategy is an integral with respect to the mixed strategy of the expected
payoffs under all pure strategies (Lemma 13.4). Kuhn’s theorem allows us to
extend our results to behavioural strategies.

We comment on the applicability of the above results. The class of univer-
sally integrable payoffs is large: it contains most classical payoffs. Indeed, all
bounded payoffs are de facto in this class. For example, all indicators of objec-
tives are in it. This means that all settings where one considers the probabilities
of sets of plays (i.e., either an inherently qualitative objective or one arising
from fixing a threshold for a quantitative payoff) are in it, for any definition of
such sets of plays. Classical examples include ω-regular objectives [EKVY08],
window objectives [BDOR20] or percentiles queries [RRS17]. Bounded payoffs
also encompass discounted-sum [Sha53] and mean-payoff [BBC+14b, CKK17]
functions. Heterogeneous combinations, such as, e.g., combinations of energy
and mean-payoff [BHRR19] also fit under this umbrella.

Payoffs that are not universally unambiguously integrable fall out of scope
of our results. It makes sense to exclude such payoffs: their expectation need
not be well-defined. Such out-of-scope payoffs include some instances of total
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reward payoff or shortest-path cost with both negative and positive weights,
e.g., when there are plays with a payoff of positive infinity and negative infinity
with non-zero probability under some strategy. When only non-negative weights
(or only non-positive weights) are used, a classical restriction [FKP12, RRS17],
these two types of payoffs are universally unambiguously integrable (but not
necessarily universally integrable), and thus are covered by our results.

We now briefly discuss memory requirements in multi-objective MDPs with
respect to mixing. For some universally integrable payoffs in finite MDPs, the
sets of expected payoffs are polytopes whose extreme points can be obtained
via pure finite-memory strategies (e.g., ω-regular objectives [EKVY08] or mean-
payoff [BBC+14b]). It follows that for these objectives, mixing over finitely many
pure finite-memory strategies is sufficient to fulfil any achievability requirement.
In other words, one of the least expressive models of randomised finite-memory
strategies (with respect to our classification in Part III), i.e., RDD strategies,
suffices. Furthermore, the blow-up in memory from this mixing argument is
small: it suffices to mix, at most, one more strategy than the number of payoffs.

Continuous payoffs. We provide a sufficient condition on payoffs to
guarantee that the set of expected payoffs is closed in finite MDPs. We show
that this is the case for continuous universally square integrable payoffs, i.e.,
continuous payoffs that are universally integrable when squared (Theorem 15.8).
Universally square integrable payoffs are a special case of universally integrable
payoffs (due to the Cauchy-Schwarz inequality, see, e.g., [Dur19, Thm. 1.5.2.]).

The class of continuous universally square-integrable payoffs includes real-
valued continuous payoffs (in particular discounted-sum payoffs) and universally
integrable shortest-path costs based on a positive weight function (see Chap-
ter 15.4). It follows that for combinations of these payoffs, any achievable
vector can be bounded from above by a Pareto-optimal expected payoff. We
remark that expected payoff sets for continuous universally square integrable
payoffs need not be polytopes: this is witnessed by the example illustrated in
Figure 3.5, which is based on discounted-sum payoffs.

To prove that expected payoffs sets are closed for continuous universally
square integrable payoffs in finite MDPs, we introduce a notion of convergence
of behavioural strategies (Chapter 15.1) and show that the function mapping a
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strategy to the expectation under this strategy is continuous (Theorem 15.7).
Our approach depends on the compactness of the set of plays, and therefore
does not translate to countable MDPs.

3.4 Counter-based strategies in one-counter Markov
decision processes

We motivate and summarise the results presented in Part V. The results
presented in this section are based on joint work with Michal Ajdarów, Petr
Novotný and Mickaël Randour [AMNR25].

3.4.1 Context

Strategies and their representations. In reactive synthesis via games,
the goal is to automatically construct a strategy representing the sought con-
troller. Traditionally, synthesised strategies are finite-memory and are repre-
sented by Mealy machines. A special subclass of particular interest is that of
memoryless strategies.

Memoryless strategies are functions assigning (distributions over) actions
to each state. Therefore, in infinite arenas, even these strategies, which can be
seen as the simplest strategies from the viewpoint of memory, need not admit a
finite representation. The contribution presented in this part focuses on small
(and particularly, finite) counter-based representations of memoryless strategies
in a fundamental class of infinite-state MDPs: one-counter MDPs.

One-counter MDPs. One-counter MDPs [BBE+10] (see Definition 2.49)
are finite MDPs augmented with a counter that can be incremented (by one),
decremented (by one) or left unchanged on each transition. Considering such
counter updates is not restrictive for modelling: any integer counter update
can be obtained with several transitions. However, this impacts the complexity
of decision problems.

An OC-MDP induces a possibly infinite MDP over a set of configurations
given by states of the underlying MDP and counter values (Definition 2.51). In
this induced MDP, we interrupt plays that reach counter value zero; this event
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is called termination. We consider two variants of the model: unbounded OC-
MDPs, where counter values can grow arbitrarily large, and bounded OC-MDPs,
in which plays are interrupted when a fixed counter upper bound is reached.
OC-MDPs are small representations of large MDPs: unbounded OC-MDPs
have infinitely many configurations and bounded OC-MDPs have exponentially
many configurations with respect to the binary encoding of the counter upper
bound.

Termination is the canonical objective in OC-MDPs [BBE+10]. Also rel-
evant is the more general selective termination objective (Definition 2.54),
which requires terminating in a target set of states. In this work, we study
both the selective termination objective and the state-reachability objective
(Definition 2.53), which requires visiting a target set of states regardless of the
counter value.

Synthesis in OC-MDPs. Optimal strategies need not exist in unbounded
OC-MDPs for these objectives [BBEK13]. The general synthesis problem in
unbounded OC-MDPs for selective termination is not known to be decidable,
and it is at least as hard as the positivity problem for linear recurrence se-
quences [PB24], whose decidability would yield a major breakthrough in number
theory [OW14]. Optimal strategies exist in bounded OC-MDPs: the induced
MDP is finite and we consider reachability objectives. However, constructing
optimal strategies is already EXPTIME-hard for reachability in finite-horizon
MDPs [BKN+19], i.e., OC-MDPs in which all weights are negative (and thus
the number of steps in the play is bounded by the initial counter value).

We propose to tame the inherent complexity of analysing OC-MDPs by
restricting our analysis to a class of succinctly representable (yet natural and
expressive) strategies called interval strategies.

3.4.2 Contributions

Interval strategies. We introduce interval strategies (Definition 17.2):
an interval strategy is based on some (finite or infinite but finitely-representable)
partitioning of N into intervals, and the strategy’s decision depends on the
current state and on the interval containing the current counter value. More
precisely, we focus on two classes of these strategies. On the one hand, in
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bounded and unbounded OC-MDPs, we consider open-ended interval strategies
(OEISs) for which the underlying partitioning is finite. On the other hand,
in unbounded OC-MDPs, we also consider cyclic interval strategies (CISs):
strategies for which there exists a (positive integer) period such that, for any
two counter values that differ by the period, we take the same decisions.

We collectively refer to OEISs and CISs as interval strategies. While interval
strategies are not sufficient to play optimally in unbounded OC-MDPs [BKSV08]
(see also Examples 17.2 and 17.3), they can be used to approximate the
supremum probability for the objectives we consider (Lemma 17.5).

We can show that OEISs in bounded OC-MDPs and CISs in unbounded OC-
MDPs can be exponentially more concise than equivalent Mealy machines, and
OEISs in unbounded OC-MDPs can even represent infinite-memory strategies
(Chapter 17.2).

Decision problems. For selective termination and state-reachability, we
consider three decision problems. First is the interval strategy verification
problem (Definition 17.6): it asks whether the probability of the objective
from an initial state under the given strategy is greater or equal to a given
threshold. The other two problems are realisability problems for structurally-
constrained interval strategies. On the one hand, the fixed-interval realisability
problem (Definitions 17.7 and 17.8) asks, given an interval partition, whether
there is an interval strategy built on this partition that ensures the objective
with a probability greater than a given threshold. Intuitively, in this case,
the system designer specifies the desired structure of the controller and it
remains to specify the action choices for each interval. On the other hand,
the parameterised realisability problem for interval strategies (Definitions 17.9
and 17.10), asks whether there exists a well-performing strategy built on a
partition of size no more than a parameter d such that no finite interval is
larger than a second parameter n. We consider two variants of the realisability
problems: one for checking the existence of a suitable pure strategy and another
for randomised strategies. Randomisation allows for better performance when
imposing structural constraints on strategies (see Example 17.4), but pure
strategies are however often preferred for synthesis [DKQR20], as randomness
is undesirable for certain applications (e.g., in the medical field).
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Compressed Markov chains. Analysing the performance of a memory-
less strategy in an MDP amounts to studying the Markov chain it induces on
the MDP (Definition 2.14). Our results rely on the analysis of a compressed
Markov chain derived from the (potentially infinite) Markov chain induced
by an interval strategy (Chapter 18). We remove certain configurations and
aggregate several transitions into one. This compressed Markov chain preserves
the probability of selective termination and of hitting counter upper bounds
(Theorem 18.4). However, its transition probabilities may require exponential-
size representations or even be irrational. To represent these probabilities,
we characterise them as the least solutions of quadratic systems of equations
(Theorems 18.6 and 18.9); these characterisations are respectively derived from
and inspired by those of [KEM06] for termination probabilities in probabilistic
pushdown automata. Compressed Markov chains are finite for OEISs and are
induced by a one-counter Markov chain for CISs (Section 18.5).

Complexity results. We summarise our complexity results in Table 3.3.
The crux of our algorithmic results is the aforementioned compression. For
verification, we reduce the problem to checking the validity of a universal formula
in the theory of the reals, by exploiting our characterisation of transition
probabilities in compressed Markov chains. This induces a PSPACE upper
bound. For bounded OC-MDPs, we can do better: verification can be solved
in polynomial time in the unit-cost arithmetic RAM model of computation
of Blum, Shub and Smale [BSS89] (described in Chapter 2.9), by computing
transition and reachability probabilities of the compressed Markov chain. This
yields a PPosSLP complexity in the Turing model (see [ABKM09]).

Both realisability variants exploit the verification approach through the
theory of the reals. For fixed-interval realisability for pure strategies, we
exploit non-determinism to select good strategies and then verify them with the
above. In the randomised case, in essence, we build on the verification formulae
and existentially quantify over the probabilities of actions under the sought
strategy. Finally, for parameterised realisability, we build on our algorithms for
the fixed-interval case by first non-deterministically building an appropriate
partition.

We also provide complexity lower bounds. We show that all of our considered
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Semantics Bounded Unbounded

Strategy type Open-ended Open-ended Cyclic

Verification

PPosSLP co-ETR co-ETR

Thm. 19.1 Thm. 19.5 Thm. 19.9

sqrt-sum-hard
sqrt-sum-hard [EWY10]

Thm. 21.7

Realisability
(both variants)

Pure Random Pure Random Pure Random

NPPosSLP NPETR NPETR PSPACE NPETR PSPACE

Thm. 20.2 Thm. 20.4 Thm. 20.5 Thm. 20.7 Thm. 20.8 Thm. 20.10

NP-hard (termination, Thm. 21.12) and sqrt-sum-hard (cf. verification)

Table 3.3: Complexity bound summary for our problems. All bounds are below
PSPACE. Square-root-sum-hardness results are derived from instances of the
form

∑√
xi ≥ y.

problems are hard for the square-root-sum problem (Definition 21.1), a problem
that is not known to be solvable in polynomial time but that is solvable
in polynomial time in the Blum-Shub-Smale model [Tiw92]. We also prove
NP-hardness for our realisability problems for selective termination, already
when checking the existence of good single-interval strategies. We provide a
reduction from the problem of deciding whether a finite directed graph contains
a Hamiltonian cycle (Definition 21.11).

Impact. Our results provide a natural class of strategies for which realis-
ability is decidable (whereas the general case remains open and known to be
difficult [PB24]), and with arguably low complexity (for synthesis). Furthermore,
the class of interval strategies is of practical interest thanks to their concise
representation and their inherently understandable structure (in contrast to
the corresponding Mealy machine representation).
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Chapter 4

Introduction

In this part, we present the results described in Chapter 3.1, originating from
the single-author paper [Mai24]. We study Nash equilibria in multi-player games
on turn-based deterministic arenas with reachability objectives, shortest-path
costs and Büchi objectives. We investigate how much memory is sufficient to
obtain a constrained pure Nash equilibrium from an initial state, i.e., a Nash
equilibrium whose cost profile is bounded from above (with respect to the
component-wise order) by a given vector, when considering Mealy machines
whose updates disregard actions.

We refer the reader to Chapter 3.1 for an extended presentation of the
context. We divide this part into three chapters. We summarise their contents
below. We comment on related work at the end of this chapter.

Memory for constrained Nash equilibria. Chapter 5 presents the
constrained Nash equilibrium existence problem and move-independent Mealy
machines. Throughout this part, we focus on move-independent Mealy machines
as our means of representing strategies and quantifying memory.

In an n-player game, the constrained NE existence problem asks, given
an initial state and an n-dimensional vector, whether there exists an NE
from the initial state whose cost profile is bounded from above by the given
vector (Definition 5.1). Such an NE is called a solution to the constrained
NE existence problem. Memory is necessary in general for solutions to the
constrained NE existence problem: it is useful if there are several targets to
be visited (Example 5.1) and to threaten other players to prevent them from

89
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having profitable deviations (Example 5.2).
We then consider move-independent strategies and Mealy machines. A

strategy is move-independent if its decisions depend only on the sequence of
game states occurring throughout the play. Similarly, a deterministic Mealy
machine is move-independent if its memory updates depend only on states and
not on actions. When considering deterministic turn-based arenas described by
directed graphs (i.e., there is at most one transition from one state to another),
all strategies are move-independent – this presentation of arenas is used, e.g.,
in [GTW02, BCJ18].

In finite arenas, all finite-memory move-independent strategies are induced
by move-independent Mealy machines (Lemma 5.5). However, this is no longer
the case in infinite arenas: move-dependent Mealy machines can represent
pure strategies that cannot be represented through (finite) move-independent
Mealy machines (Example 5.3). In particular, upper bounds on the sufficient
memory for solutions to the constrained NE existence problem obtained through
general (action-aware) Mealy machines do not yield upper bounds when using
move-independent Mealy machines. For this reason, we directly construct
move-independent Mealy machines in our analysis.

Punishing strategies and characterisations of NE outcomes. In
Chapter 6, we provide an overview of several technical results that we use to
construct Nash equilibria. We present results for zero-sum games on deter-
ministic turn-based arenas and characterisations of outcomes of pure Nash
equilibria.

We build NEs through a variant of the punishing mechanism: the players
follow along a given outcome and, if some player deviates from the intended
outcome, the other players join together to sabotage the deviating player. This
sabotage is executed through punishing strategies obtained via coalition games
(Definition 6.7). A coalition game is a zero-sum game derived from a multi-
player game in which one player Pi plays against the coalition of the other
players, who aim to maximise the cost of Pi. We recall classical results on
zero-sum reachability and Büchi games on deterministic turn-based arenas from
which we obtain memoryless punishing strategies (see Theorems 6.1 and 6.2).
We also show that pure memoryless punishing strategies exist in shortest-path
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games (Theorem 6.5), despite the fact that, in zero-sum shortest path games,
optimal strategies need not exist for the second player who aims to maximise
the shortest-path cost (Example 6.1).

To implement the punishing mechanism, we require an NE outcome. Fur-
thermore, this outcome must be well-structured to result from a finite-memory
strategy profile. In Chapter 7, we describe methods to appropriately simplify
NE outcomes while improving their cost profile. To guarantee that this simplifi-
cation approach yields NE outcomes, we use characterisations of NE outcomes
based mainly on values in zero-sum coalition games (Theorems 6.8 and 6.9).
Intuitively, these characterisations state that a play is an NE outcome if the
values of states along the play do not suggest the existence of a profitable
deviation.

We close the chapter by discussing the fact that pure NEs exist from
all states in the games we consider. This follows from known results in all
cases besides shortest-path games on infinite arenas. We recall these results
and we provide an existence proof in multi-player shortest-path games with
non-negative integer weights that applies to finite and infinite arenas (see
Theorem 6.11). Our argument is based on our characterisation of NE outcomes
in these games.

Memory bounds for Nash equilibria. We provide our main results
regarding memory requirements for constrained Nash equilibria in Chapter 7.
On the one hand, we show that there exist arena-independent upper bounds
on the sufficient amount of move-independent memory for constrained NEs in
reachability games (Theorem 7.7) and in shortest-path games (Theorem 7.9)
that hold in particular in infinite arenas. On the other hand, we show that for
Büchi games, if there exists a solution to an instance of the constrained pure
NE existence problem, then there exists one where the strategies are induced
by move-independent Mealy machines (Theorem 7.13).

For all of the aforementioned games, we rely on a relaxation of the pun-
ishment mechanism: we consider NE outcomes and construct strategies such
that players only punish certain deviations and disregard some others. To
obtain finite-memory strategies via this mechanism, we build on well-structured
outcomes; see Lemmas 7.3 and 7.4 for shortest-path and reachability games
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and Lemmas 7.11 and 7.12 for Büchi games.

Related work. We discuss three directions related to multi-player non-
zero sum games. The first direction is related to the constrained equilibrium
existence problem as a decision problem (e.g., [BMR14, BBMU15]). On fi-
nite arenas, deciding the existence of a constrained NE is NP-complete for
reachability and (non-negative weighted) shortest-path games [BBGT21] and
is in P for Büchi objectives [Umm08]. This problem has also been studied for
other types of equilibria, e.g., for subgame perfect equilibria in reachability and
(non-negative weighted) shortest-path games [BBG+20] and in mean-payoff
games [BvdBR23, BRvdB22] and for secure equilibria in weighted games for the
supremum, infimum, limit superior, limit inferior and mean payoffs [BMR14].

Second, the construction of our finite-memory NEs rely on characterisations
of plays resulting from NEs. Their purpose is to ensure that the punishment
mechanism can be used to guarantee the stability of an equilibrium. In general,
these characterisations can be useful from an algorithmic perspective; deciding
the existence of a constrained NE boils down to finding a play that satisfies the
characterisation. Characterisations appear in the literature for NEs [Umm08,
UW11, BBMU15], but also for other types of equilibria, e.g., subgame perfect
equilibria [BBG+20] and secure equilibria [BMR14].



Chapter 5

The role of memory in constrained
Nash equilibria

In general, even if Nash equilibria are guaranteed to exist, there need not be
guarantees on their cost profile. In practice however, we are more interested
in Nash equilibria in which the players have a low cost, e.g., if players model
different (independent) components of a system to be controlled. This motivates
the constrained (pure) Nash equilibrium existence problem, which asks, in an
multi-player game, whether there exists a pure NE from a given initial state
whose cost profile is no more than a given vector. Such an NE is called a
solution to the constrained existence problem.

In the subsequent chapters, we endeavour to provide upper bounds on
the amount of memory that is sufficient for these solutions when considering
move-independent Mealy machines, i.e., Mealy machines whose memory updates
only depend on states (and thus disregard actions). Strategies induced by such
Mealy machines are called move-independent : their decisions do not take in
account the actions taken throughout the play.

The main purpose of this chapter is to formalise the constrained existence
problem, due to its role as a motivation for this work, and move-independent
Mealy machines, as our chosen strategy representation. We also provide
examples witnessing the need for memory in solutions to the constrained NE
existence problem.

In Section 5.1, we formalise the constrained NE problem. We then prove
the necessity of memory in Section 5.2 and highlight two roles that memory
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plays. Finally, we discuss move-independent strategies and move-independent
(deterministic) Mealy machines in Section 5.3. In addition to formalising these
notions, we investigate the impact of removing actions from Mealy machine
updates on memory size requirements.

We fix an n-player deterministic turn-based arena A = ((Si)i∈J1,nK, A, δ) for
the remainder of the chapter.

Contents
5.1 Constrained equilibrium existence problem . . . . . 94

5.2 The necessity of memory . . . . . . . . . . . . . . . . 95
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5.3.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . 98

5.3.2 Move-independent Mealy machines in finite arenas . 99

5.3.3 The cost of move independence . . . . . . . . . . . . 102

5.1 Constrained equilibrium existence problem

For all types of games we consider in this section, deciding whether a pure NE
exists from a given initial state is trivial: there exists an NE from any initial
state. We discuss NE existence results in Chapter 6.3. Existence results from
the literature do not directly apply to games with shortest-path costs on infinite
arenas; we provide an explicit existence proof instead (Theorem 6.11).

Although NEs are guaranteed to exist, several incomparable NEs may co-
exist within a game, as we have seen in Example 2.5, i.e., this existence result
does not provide any guarantees on the quality of the cost profile. Therefore, a
natural question is to ask, given an initial state, whether there exists an NE
from this initial state in which the costs of the players are good enough. This
problem is formalised as follows.

Definition 5.1 (Constrained NE existence problem). Let G = (A, (fi)i∈J1,nK)

be a game where fi is a cost function for all i ∈ J1, nK. The constrained (pure)
NE existence problem asks, given an initial state sinit ∈ S and q ∈ R̄n, whether
there exists a pure NE σ from sinit such that (fi(OutA(σ, sinit)))i∈J1,nK ≤ q. Such
an NE is called a solution to the constrained NE existence problem.
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s0s1 s2

a

ba

b

Figure 5.1: A two-player deterministic turn-based arena.

In games where the goals of the players are given by objectives, the con-
strained NE existence problem asks whether there exists an NE the outcome of
which is winning for a given subset of players. Our goal is to bound the sufficient
amount of memory for solutions to the constrained NE existence problem.

5.2 The necessity of memory

Memory may be required for solutions to the constrained Nash equilibrium
existence problem. In this section, we provide two examples that highlight this
need for memory. We use these examples to explain the roles of memory for
NEs in games with reachability objectives; this discussion is inspired by an
invited contribution co-authored with Thomas Brihaye, Aline Goeminne and
Mickaël Randour [BGMR23]. While we only focus on reachability objectives,
the following also applies to games with shortest-path cost functions and games
with Büchi objectives, due to their similarity.

Intuitively, memory serves two roles. On the one hand, memory is useful to
satisfy several objectives, i.e., for reachability, to visit several targets that do
not all lie on a single simple history. On the other hand, memory may be useful
to prevent profitable deviations of other players. We illustrate these needs via
two examples.

We first provide an example highlighting the need for memory to visit
several targets.

Example 5.1. We let A be the arena depicted in Figure 5.1. We consider the
reachability game G = (A, (Reach(s1),Reach(s2)), i.e., the target of Pi is the
state si for i ∈ {1, 2}. We show that there exists a solution to the constrained
NE existence problem instance asking for a pure NE from s0 such that the
objectives of both players are satisfied in its outcome, and that any solution to
this problem instance requires memory.
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s0 s1 s2 t1

s3t2 t3

a a a

b b

a b
a a

a

Figure 5.2: A three-player deterministic turn-based arena. Circles, squares and
diamonds are resp. P1, P2, P3 states.

We let σ2 denote the pure memoryless strategy of P2 in A such that
σ2(s2) = b. This is the only strategy of P2 in A. We consider a pure strategy σ1

of P1 that alternates between actions a and b after each visit to s0. It follows
that the outcome of σ1 and σ2 from s0 satisfies the objectives of the two players,
i.e., the strategy profile (σ1, σ2) is an NE from s0 such that both players win in
its outcome.

However, there are no pure memoryless NE from s0 with an outcome that
is winning for both players: the only two outcomes from s0 of pure memoryless
strategy profiles in A are (s0as1a)

ω and (s0bs2b)
ω. In other words, memory is

needed to obtain an NE from s0 that visits both s1 and s2. ◁

We now showcase the second application of memory: to prevent profitable
deviations. In this case, we use memory to implement a punishment mechanism:
the players band together to sabotage any player who strays from the intended
outcome of the NE (see also: the description of this mechanism in Chapter 3.1).

Example 5.2. We consider the three-player reachability game G on the arena
depicted in Figure 5.2 where the objective of Pi is Reach(ti) for i ∈ J1, 3K. We
claim that memory is necessary to obtain a pure NE from s0 such that t1 is
visited in its outcome.

Let σ = (σi)i∈J1,3K be a pure memoryless strategy profile such that t1 is
visited in OutA(σ, s0), i.e., σ(s0) = σ(s1) = σ(s2) = a. We claim that σ is not
an NE from s0. If σ(s3) = a, then P2 has a profitable deviation by choosing b

in s1 instead of a. Similarly, if σ(s3) = b, then P3 has a profitable deviation by
choosing b in s2 instead of a. Therefore, σ is not an NE from s0.

We can construct a pure NE σ = (σi)i∈J1,3K from s0 such that t1 is visited
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as follows. We let σ2 and σ3 be the pure memoryless strategies of P2 and P3
that select action a in all states. We define σ1 to be the strategy that chooses
b in s3 if s2 has not been visited, and chooses a otherwise. We check that σ is
an NE from s0 as follows: if P2 deviates and uses action b in s1, then P1 reacts
to this deviation by avoiding t2, and similarly, if P3 deviates and uses action b

in s2, then P1 reacts to this deviation by avoiding t3.
We have shown that there exists an NE from s0 in G such that the target

of P1 is visited, and that any such NE requires memory. ◁

The two previous examples illustrate that memory is necessary for solutions
to the constrained NE existence problem.

5.3 Move-independent strategies

Upper bounds on the memory sufficient to win in zero-sum games or to obtain
NEs in multi-player games are sensitive to the choice of strategy model. Intu-
itively, more general models of strategies yield smaller bounds. For instance,
in certain settings, better memory bounds can be obtained by considering
randomised strategies instead of pure strategies (e.g., [CdH04, CHP08, Hor09,
CRR14, MPR20]). On the other hand, establishing memory bounds for more
restrictive models implies memory bounds for more general models.

In this section, we introduce move-independent strategies and Mealy ma-
chines. We then show that all finite-memory move-independent strategies can
be implemented with move-independent Mealy machines in finite arenas: we
provide a translation from a general Mealy machine to a move-independent one
that involves encoding the previous visited state in the memory. Finally, we
provide an example illustrating that any translation from Mealy machines im-
plementing move-independent strategies to move-independent Mealy machines
requires a blow-up relative to the number of states of the arena. In particular,
in infinite arenas, strategies implemented by move-independent Mealy machines
are a strict subset of move-independent finite-memory strategies.

Definitions are given in Section 5.3.1. We show that, in finite arenas, move-
independent pure strategies are finite-memory strategies if and only if they
are induced by a move-independent Mealy machine in Section 5.3.2. Finally,
we show that a blow-up proportional to the size of the memory state space is
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necessary to construct move-independent Mealy machines from general ones in
Section 5.3.3.

5.3.1 Definitions

A strategy is move-independent if its decisions are agnostic to the actions chosen
throughout histories. This can be formalised as follows.

Definition 5.2. Let i ∈ J1, nK. A strategy σi of Pi in A is move-independent
if for any two histories h = s0a0s1 . . . ar−1sr and h = s0b0s1 . . . br−1sr that
traverse the same sequence of states, we have σi(h) = σi(h

′).

Similarly, we say that a Mealy machine is move-independent if its updates
disregard the chosen actions. Formally, a deterministic move-independent Mealy
machine is defined as follows.

Definition 5.3. Let i ∈ J1, nK. A deterministic Mealy machine M =

(M,minit, nxtM, upM) of Pi is move-independent if for all m ∈ M , s ∈ S and
a, b ∈ A(s), upM(m, s, a) = upM(m, s, b). If M is move-independent, we view
its update function as a function M × S →M .

As the name suggests, a deterministic move-independent Mealy machine
induces a move-independent strategy.

Remark 5.4 (Stochastic Mealy machines). The above definition is not satisfac-
tory for stochastic Mealy machines: for a stochastic Mealy machine, even if the
update function disregards the chosen action, the strategy it induces may not be
move-independent. For instance, consider a one-state deterministic MDP with
two actions and the mixed strategy that randomises over the two pure constant
strategies of the MDP. This strategy is not move-independent: its decisions
depend on the choice of action in the first round. However, this strategy can be
implemented by a Mealy machine with two states, a randomised initialisation
and updates that leave memory states unchanged. In particular, these updates
are agnostic to actions. This motivates the restriction of the above definition
to deterministic Mealy machines. ◁

We close the section by commenting on the use of move-independent Mealy
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machines in the literature. Some authors define Mealy machines as move-
independent Mealy machines (e.g., [CRR14, CHVB18, BBGT21]), i.e., with
updates that depend only on states and not actions. This definition is also used
in the paper [Mai24] from which the results presented in Chapter 7 originate.
In these works, (turn-based) arenas are presented as finite directed graphs
where vertices are partitioned among the different players and transitions are
described by the edge relation of the graph. In such arenas, all strategies
are move-independent. Furthermore, as these works are concerned with finite
arenas, a pure strategy is finite-memory if and only if it is induced by a move-
independent Mealy machine. However, this choice of model can influence any
memory requirements obtained for winning strategies or equilibrium profiles.

In our case, restricting our attention to move-independent strategies can
also be seen as imposing a specific type of imperfect information on the decision
making of the players: they can only observe the state of the world and not
the actions that are taken by the others. This models the situation in which
actions are internal to the players, and only their effect on the state of the
arena can be observed.

5.3.2 Move-independent Mealy machines in finite arenas

We now assume that A is finite. Our goal is to show that any pure finite-memory
strategy that is move-independent is induced by a move-independent Mealy
machine. We consider a (move-dependent) deterministic Mealy machine M that
induces a move-independent strategy and derive a move-independent Mealy
machine N from M as follows. The state space of N is obtained by augmenting
memory states of M with the state visited in the previous step of the play. We
use this additional information to mimic the memory updates of M in N one
time step later. We formalise this idea in the following proof.

Lemma 5.5. Assume that the state space of A is finite. Let i ∈ J1, nK. For
all deterministic Mealy machines M = (M,minit, nxtM, upM) of Pi that induce
move-independent strategies, there exists a move-independent Mealy machine
inducing an outcome-equivalent strategy with |M | · |S|+ 1 memory states.
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Proof. For all s ∈ S \ Si and t ∈ S, we let as,t denote a fixed action such that
δ(s, as,t) = t if such an action exists. We use these actions in the definition of
the update and next-move functions of our move-independent Mealy machines,
to avoid having to observe actions.

Let M = (M,minit, nxtM, upM) be a deterministic Mealy machine inducing
a strategy of Pi. We define an outcome-equivalent move-independent Mealy
machine N = (N,⊤, nxtN, upN) as follows. First, we let N = (M × S) ∪ {⊤}
where ⊤ is a new initial memory state. For all m ∈ M and all s, t ∈ S, we
define upN(⊤, t) = (minit, t) and

upN((m, s), t) =

(upM(m, s, nxtM(m, s)), t) if s ∈ Si

(upM(m, s, as,t), t) otherwise,

and, if t ∈ Si, we define nxtN(⊤, t) = nxtM(minit, t) and

nxtN((m, s), t) =

nxtM(upM(m, s, nxtM(m, s)), t) if s ∈ Si

nxtM(upM(m, s, as,t), t) otherwise.

We remark that |N | = |M | · |S|+ 1.
We now show that M and N induce outcome-equivalent strategies. Two

strategies are outcome-equivalent if and only if they agree over the histories
consistent with the two strategies (see the outcome-equivalence criterion of
Lemma 9.1 for a formal argument); we establish outcome-equivalence through
this property. Let σi and τi denote the strategies induced by M and N respec-
tively.

First, we establish the following property by induction: for any history
prefix w = w′sa ∈ (SA)+ consistent with σi, there exists a history u′s ∈ Hist(A)
consistent with σi and sharing the same sequence of states as w′s such that
ûpN(w) = (ûpM(u′), s). We prove this by induction on the number of actions in
the history prefixes. For the base case, we consider a history prefix w = sa and
let u′ be the empty word. By definition of upN (and its iterated version), we
have ûpN(w) = (minit, s). This ends the proof of the base case.

We now let w = w′′tbsa ∈ (SA)+ be a history prefix consistent with σi.
We let w′ = w′′tb. We assume by induction that there exists a history u′′t

consistent with σi and sharing the same sequence of states as w′′t such that
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ûpN(w
′) = (ûpM(u′′), t). We first define a suitable history prefix u′. If t ∈ Si,

we let u′ = u′′tb. Otherwise, we let u′ = u′′tat,s. In both cases, we obtain that
u′s shares the same sequence of states as w′s and is consistent with σi: for the
first case, it follows from the consistency of w with σi and move-independence
of σi.

To end the induction argument, it remains to show that ûpN(w) =

(ûpM(u′), s). By definition and the induction hypothesis, we have

ûpN(w) = upN(ûpN(w
′), s) = upN

((
ûpM(u′′), t

)
, s
)
.

We distinguish two cases, depending on whether Pi controls t. First, assume
that t ∈ Si. By consistency of w with σi, we obtain that nxtM (ûpM(w′′), t) = b.
It follows from the above and the definition of upN that

ûpN(w) =
(
upM

(
ûpM(u′′), t, b

)
, s
)
=
(
ûpM(u′), s

)
.

This ends the first case. We now assume that t /∈ Si. It follows from the above,
the definition of upN and of u′ that

ûpN(w) =
(
upM

(
ûpM(u′′), t, at,s

)
, s
)
=
(
ûpM(u′), s

)
.

This ends the inductive argument.
We use the property proven above to show that σi and τi agree over the set

of histories consistent with σi. For histories consisting of a single state s (all
of which are consistent with σi), the result is direct by definition of nxtN. Let
h = w′tbs ∈ Histi(A) be a history consistent with σi in which at least two states
occur. We let w = w′tb. We let u′t ∈ Histi(A) be a history consistent with σi

sharing the same sequence of states as w′t such that ûpN(w) = (ûpM(u′), t),
given by the above property. We distinguish two cases depending on the
ownership of t (due to the definition of nxtN).

First, we assume that t ∈ Si. By consistency of h with σi and move-
independence of σi, we obtain that

b = σi(w
′t) = σi(u

′t) = nxtM
(
ûpM(u′), t

)
.

We let u = u′tb; us and h share the same sequence of states. Therefore, by
move-independence of σi, we have

σi(h) = σi(us) = nxtM(ûpM(u), s).
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We now apply our assumption on ûpN(w) and b = nxtM (ûpM(u′), t), together
with the definition of nxtN to obtain

τi(h) = nxtM
(
upM

(
ûpM(u′), t, b

)
, s
)
= nxtM(ûpM(u), s) = σi(h).

This ends the proof of the case t ∈ Si.
We now assume that t /∈ Si. In this case, we let u = u′tat,s. Like above,

move-independence of σi implies that

σi(h) = σi(us) = nxtM(ûpM(u), s).

We now apply our assumption on ûpN(w) with the definition of nxtN to obtain

τi(h) = nxtM
(
upM

(
ûpM(u′), t, at,s

)
, s
)
= nxtM(ûpM(u), s) = σi(h).

We have shown the outcome-equivalence of σi and τi.

We comment on the increase in size of the memory state space that follows
from the construction of Lemma 5.5 in the following section.

5.3.3 The cost of move independence

Lemma 5.5 requires that the state space of A be finite. The construction
presented in its proof yields a move-independent Mealy machine whose memory
state space depends on the size of |S|. We show through the following example
that such a dependency cannot be avoided in general. Through the same
example, we show that the result of Lemma 5.5 cannot be adapted to infinite
arenas: there exists a move-independent finite-memory strategy in an infinite
arena that cannot be encoded in a (finite) move-independent Mealy machine.

Example 5.3. We define a two-player turn-based arena for each non-empty
subset of the natural numbers. For each of these arenas, we define a pure
finite-memory strategy of P1 in this arena and show that if there exists a
move-independent Mealy machine inducing it, then it requires a number of
memory states equal to the size of the considered subset of N.

Let I ⊆ N be non-empty. We define a two-player turn-based arena AI =

({t}×I, ({s}×I)∪{sinit, s̸=, s=}, I, δ) where the transition function δ is defined,



5.3 – Move-independent strategies 103

sinit (s, 2)

(s, 3)
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(t, 2)

(t, 3)

(t, 1)

s=
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Figure 5.3: The arena AJ1,3K of Example 5.3. Action labels for transitions from
(s, 2), (s, 3), (t, 2) and (t, 3) are omitted to lighten the figure. The strategy of
P1 that moves to s= if and only if the counter value in the previously visited
states coincide cannot be represented with a move-independent Mealy machine
with less than three states.

for all k, a ∈ I, by δ(sinit, a) = (s, a), δ((s, k), a) = (t, a), δ((t, k), 1) = s=,
δ((t, k), 0) = s ̸= and s= and s ̸= are absorbing. We depict AJ1,3K in Figure 5.3.
We remark that the size of the state space of AI is proportional to the size of
I: if I is finite, we have 2 · |I|+ 3 states in the arena.

We consider the strategy σ1 of P1 that moves from (t, k) to s= if and only
if the play starts in (t, k) or if (s, k) was visited previously. We provide a
two-state (move-dependent) Mealy machine implementing this strategy and
then show that there is no move-independent Mealy machine with strictly less
than |I| states that induces it.

We define M = (M,minit, nxtM, upM) as follows. We let M = {0, 1}
and minit = 1. For any m ∈ M and a, k ∈ I such that a ̸= k, we let
upM(m, (s, k), a) = 0. In other cases, the update function leaves the memory
state unchanged. Finally, for all m ∈M and k ∈ I, we let nxtM(m, (s, k)) = m.
It is easy to see that M implements the strategy described previously.

We now show that any move-independent Mealy machine with less than
|I| states cannot induce σ1. For any such Mealy machine, because there
are |I| actions but fewer memory states, there exist two different history
prefixes sinita(s, a)c and sinitb(s, b)c that lead to the same memory state for
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all actions c ∈ I (this last property follows from the Mealy machine being
move-independent). By choosing c = a, we obtain that the strategy induced by
the move-independent Mealy machine agrees on the histories sinita(s, a)a(t, a)

sinitb(s, b)a(t, a), and thus differs from σ1. ◁



Chapter 6

Punishing strategies and
characterisations of Nash equilibrium

outcomes

In Chapter 7, we build Nash equilibria via an adaptation of the classical
punishment mechanism. Intuitively, the punishment mechanism functions as
follows: if some player deviates from the intended outcome, the other players
coordinate as a coalition to prevent the player from having a profitable deviation.
The strategy of the coalition used to sabotage the deviating player is called
a punishing strategy. To obtain finite-memory Nash equilibria through the
punishment mechanism, we need simple punishing strategies and well-structured
Nash equilibrium outcomes.

We present results on strategies in zero-sum games in Section 6.1, that imply
the existence of simple punishing strategies. We then provide characterisations
of Nash equilibrium outcomes in Section 6.2; we use them in Chapter 7 to
construct well-structured Nash equilibrium outcomes. Although unrelated
to Chapter 7, we close this section by discussing existence results for Nash
equilibria in Section 6.3.
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6.1 Zero-sum games

We present an overview of relevant results for two-player zero-sum games where
P1 has a reachability, Büchi objective, or a shortest-path cost function. The
main takeaway of this section is that we can always find pure memoryless
punishing strategies in the three classes of games we consider.

In Section 6.1.1, we recall classical results on reachability and Büchi games.
In Section 6.1.2, we show that memoryless punishing strategies exist in shortest-
path games.

We fix a two-player turn-based deterministic arena A = (S1, S2, A, δ) and a
target T ⊆ S for the remainder of this section.

6.1.1 Reachability and Büchi games

In a two-player zero-sum game where P1’s goal is expressed by an objective,
we call winning region the set of states from which P1 has a (surely) winning
strategy.

We first discuss zero-sum reachability games. Let G = (A,Reach(T )) denote
the zero-sum reachability game on A where the target of P1 is T . A well-known
result is that zero-sum reachability games on turn-based deterministic arenas
enjoy memoryless determinacy : they are determined and for both players, there
exist pure memoryless uniformly winning strategies. In other words, in G, there
exist pure memoryless strategies σ1 and σ2 such that, for all s ∈ S,

• if P1 has a winning strategy from s, then all outcomes of σ1 from s are
in Reach(T );

• otherwise, all outcomes of σ2 from s are in Safe(T ) = Plays(A)\Reach(T ).

The classical proof of memoryless determinacy of reachability games (see,
e.g., [Maz01, Prop. 2.18]) relies on a characterisation of the winning region
of P1 in G as the least fixed point of the controllable predecessor operator
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when starting from T . Intuitively, this operator adds takes a set of states X,
and adds to it the states from which P1 can enforce a visit to X in a single
step. A by-product of this characterisation is that all strategies (even with
memory) of P2 that select actions that do not enter the winning region of P1
whenever possible are uniformly winning strategies of P2. We use this property
to establish the effectiveness of our punishing strategies. We summarise the
properties of interest for reachability games in the following theorem.

Theorem 6.1. Zero-sum reachability games on turn-based deterministic arenas
are determined and both players have pure memoryless uniformly winning strate-
gies in reachability games. Any pure strategy of P2 that only selects actions that
do not lead to the winning region of P1 whenever it can be avoided are uniformly
winning strategies of P2.

We now move on to zero-sum Büchi games. Let G = (A,Büchi(T )) denote
the zero-sum Büchi game on A where the target of P2 is T . Like reachability
games, Büchi games also enjoy memoryless determinacy. This can be seen as
a corollary of the memoryless determinacy of parity games [EJ88], a class of
objectives subsuming Büchi and co-Büchi objectives.

Theorem 6.2. Büchi games on deterministic arenas are determined and both
players have pure memoryless uniformly winning strategies.

6.1.2 Shortest-path games

We now study zero-sum shortest-path games on A in which weights are non-
negative integers. Let w : S×A→ N be a weight function and G = (A, SPathTw)
be a zero-sum shortest-path game on A. Recall that the goal of P1 is to
minimise the shortest-path cost function.

Shortest-path games are determined (see, e.g., [BGHM17] for finite arenas).
We provide a direct argument using the determinacy of games with open
objectives [GS53]: in a game on a deterministic arena with an open objective,
from all initial states, one of the players has a pure (surely) winning strategy. An
objective is open if it can be written as a union of cylinder sets. A by-product
of our argument is that P1 has a pure optimal strategy from any state.
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Lemma 6.3. The game G is determined, P1 has a pure optimal strategy from
all states and P2 has a pure optimal strategy from all states with a finite value.

Proof. Let θ ∈ R. We let {SPathTw ≤ θ} = {π ∈ Plays(A) | SPathTw(π) ≤ θ}.
The objective {SPathTw ≤ θ} is open: it is the union of the cylinder of histories
of weight no more than θ ending in a state of T . Therefore, in the zero-sum
game Gθ = (A, {SPathTw ≤ θ}), for all s ∈ S, either P1 or P2 has a pure surely
winning strategy from s [GS53].

Let s ∈ S. For all θ ∈ R, if P1 wins from s in Gθ, then P1 can ensure (a cost
of at most) θ in G, whereas if P2 wins from s in Gθ, then P2 can ensure (a cost
of at least) θ in G.

First, assume that for all θ ∈ N, P2 wins from s in Gθ. We conclude that
ValG(s) = +∞. All strategies of P1 are optimal (because all plays have a cost
at most +∞), and thus P1 has a pure optimal strategy from s.

Assume now that there exists some θ ∈ N such that P1 wins in Gθ from s

and let θ⋆ denote the minimum of all such θ ∈ N. We claim that ValG(s) = θ⋆.
First, we observe that P2 wins in Gθ⋆− 1

2
from s and thus P2 has a pure strategy

ensuring a cost of at least θ⋆ − 1
2 from s in G. Indeed, if P1 has a winning

strategy in Gθ⋆− 1
2
, then P1 wins in Gθ⋆−1 because SPathTw : Plays(A)→ N̄. For

the same reason, it follows that P2 can ensure a cost of at least θ⋆ from s in
G. We conclude that ValG(s) = θ⋆. Any pure winning strategy of P1 from s in
GValG(s) is optimal in G from s and, similarly, any pure winning strategy of P2
from s in GValG(s)− 1

2
is optimal in G from s.

We now refine the result on optimal strategies of P1 proven above: P1 has a
memoryless uniformly optimal strategy (even if A is infinite). To prove this, we
follow the following steps. First, we argue the existence of optimal strategies for
P1 regardless of memory and uniformity. Second, we construct a shortest-path
game by removing transitions from A without introducing deadlocks. We then
show that values coincide in this new game and the original game. Finally, we
establish that memoryless uniformly winning reachability strategies of the new
game are optimal in both this new game and the original shortest-path game.
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Theorem 6.4. In G, P1 has a pure uniformly optimal memoryless strategy that
is uniformly winning in the reachability game (A,Reach(T )).

Proof. By Lemma 6.3, ValG(s) is well-defined for all s ∈ S.
First, we show that for all s ∈ S1 \ T , there exists a ∈ A(s) such that

ValG(s) = ValG(δ(s, a)) + w(s, a). Let s ∈ S1 \ T . If P1 uses a ∈ A in
s, P1 can ensure ValG(δ(s, a)) + w(s, a) at best. It follows that ValG(s) =

min{ValG(δ(s, a)) + w(s, a)) | a ∈ A(s)} (this minimum is well-defined because
N̄ is well-ordered). This implies the claim.

Second, we claim that for all s ∈ S2 \T and all a ∈ A(s), we have ValG(s) ≥
ValG(δ(s, a)) + w(s, a). Let s ∈ S2 \ T and a ∈ A(s). Let s′ = δ(s, a). We first
assume that ValG(s

′) is finite. Then, P2 has an optimal strategy from s′ by
Lemma 6.3. It follows that P2 can ensure ValG(s

′) + w(s, a) from s by playing
action a in s and playing optimally from s′, which implies the desired inequality.
Assume now that ValG(s

′) is infinite. Then for all θ ∈ N, P2 has a strategy
ensuring θ from s′. We conclude, similarly to the previous case, that ValG(s) is
infinite and therefore satisfies the inequality.

Third, we remove transitions of A to derive a game G′ in which values are
unchanged with respect to G. Intuitively, we remove transitions from states of
P1 that cannot be used by an optimal strategy. Let A′ = (S1, S2, A, δ

′) denote
the arena where δ′ is the restriction of δ over the union of S2 ×A and

{(s, a) ∈ S1 ×A | a ∈ A(s) and ValG(s) = ValG(δ(s, a)) + w(s, a)} .

By the first point above, A′ does not have any deadlocks.
We let G′ = (A′,SPathTw). We claim that

(i) for all s ∈ S, ValG(s) = ValG′(s) and

(ii) the winning regions in the reachability games (A,Reach(T )) and
(A′,Reach(T )) coincide.

For (i), we observe that for all s ∈ S, ValG′(s) ≥ ValG(s) by construction of
A′: P1 has fewer strategies than in A, but no actions of P2 have been removed.
In particular, if ValG(s) = +∞, then ValG′(s) = +∞. We show the other
inequality of (i) by induction on ValG(s) for states of finite value. For the base
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case, let s ∈ S such that ValG(s) = 0. In this case, an optimal strategy of P1
from s (which exists by Lemma 6.3) surely reaches T by only using zero-weight
transitions and that only traversing states with zero-value in G until T regardless
of the choices of P2. It follows that this same strategy can be used to ensure a
cost of 0 in G′. This ends the argument for the base case.

We now assume by induction that for all β ≤ θ and all s ∈ S, if ValG(s) = β,
then ValG′(s) = β. Let s ∈ S such that ValG(s) = θ + 1 and let us show that
ValG′(s) = θ + 1. To this end, we construct an optimal strategy from s in G′ as
follows.

Fix a pure strategy σ1 of P1 in A that is optimal from s. We consider the
strategy σ′

1 of P1 in A′ that plays consistently with σ1 until a state s′ with
ValG(s

′) < ValG(s) is reached, and then plays accordingly to an optimal strategy
from s′ in G′. Under the assumption that σ′

1 is well-defined, it ensures ValG(s)

from s in G′ by construction.
It remains to show that σ′

1 only uses actions that are available in A′. We
prove this by contradiction. Assume that there exists a history h ∈ Hist(A)
consistent with σ′

1 starting in s such that σ′
1(h) is an action that is not enabled

in last(h) in A′. By choosing h of minimal length, we obtain that h ∈ Hist(A′).
Since σ′

1 switches to a strategy of A′ once a state with value strictly less than
ValG(s) is reached, all states of h have value equal to ValG(s) and all transitions
in h have weight zero. Furthermore, h is consistent with σ1 and σ′

1(h) = σ1(h).
By definition of transitions in A′, we have

w(last(h), σ1(h)) + ValG(δ(last(h), σ1(h))) > ValG(last(h)) = ValG(s).

We now extend h to construct an outcome of σ1 with a cost exceeding ValG(s),
which contradicts the optimality of σ1 from s. We extend h by choosing the
actions of P2 according to strategies that ensure some threshold from last(h).
If ValG(δ(last(h), σ1(h))) ∈ N, we extend h by relying on a strategy of P2 that
is optimal from δ(last(h), σ1(h)) (which exists by (see Lemma 6.3). Otherwise,
if ValG(δ(last(h), σ1(h))) is infinite, we extend h by using a strategy of P2 that
ensures a cost strictly greater than ValG(s) from δ(last(h), σ1(h)). Through this
scheme, we obtain an outcome of σ1 from s with cost greater than ValG(s),
which shows that σ1 is not optimal from s. This ends the proof of (i).

We now prove that (ii) holds. Clearly any state that is winning in
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(A′,Reach(T )) also is in (A,Reach(T )). Conversely, fix a state s that is winning
for P1 in (A,Reach(T )). If its value is finite, the claim follows from (i). There-
fore, assume that ValG(s) = +∞. Let σ1 be a winning strategy of P1 from s in
(A,Reach(T )). Its behaviours in states of infinite value need not be restricted
to obtain a strategy of A′, as the outgoing edges from P1 states of infinite value
are the same in A and A′. Furthermore, all outcomes of σ1 eventually reach
a state of finite value. By changing σ1 so it conforms to a strategy optimal in
G′ from the earliest such visited state, we obtain a strategy σ′

1 that is winning
from s in (A′,Reach(T )). This ends the proof of (ii).

Finally, we prove the claim of the theorem. Let σ1 be a memoryless uni-
formly winning reachability strategy in the reachability game (A′,Reach(T )).
It follows from (ii) that σ1 is also a uniformly winning reachability strategy in
(A,Reach(T )). It remains to show that σ1 is optimal from all states with finite
value. Let s0 ∈ S such that ValG(s0) is finite. Let π = s0a0s1 . . . be consistent
with σ1. We prove that SPathTw(π) ≤ ValG(s0). Let r = min{ℓ ∈ N | sℓ ∈ T} (it
exists by (ii) and the fact that ValG(s0) is finite). We have, by choice of E′ and
the third claim above, that

SPathTw(π) = w(π≤r)

=
r−1∑
ℓ=0

w(sℓ, aℓ)

≤
r−1∑
ℓ=0

ValG(sℓ)− ValG(sℓ+1)

= ValG(s0),

because ValG(sr) = 0. This shows that σ1 is optimal from s and ends the
proof.

On the other hand, we can show that P2 does not necessarily have a pure
optimal strategy from states with an infinite value in an infinitely branching
shortest-path game. Furthermore, although there do exist pure optimal strate-
gies of P2 from states with a finite value, there need not exist memoryless pure
strategies of P2 that are optimal from all states with finite value. In other
words, intuitively, it is not possible to have a strategy that is uniformly optimal
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s0 s∞

s1 s2 s3 . . .t

Figure 6.1: An infinite-state turn-based deterministic arena. The action la-
belling an edge (s, s′) is the outgoing state s′; we omit actions from the figure
to lighten it. Circles and squares respectively denote states of P1 and P2.

over all finite-value states.

Example 6.1. We consider the two-player countable-state arena A depicted
in Figure 6.1 and the two-player zero-sum game G = (A, SPath{t}1 ) where 1

denotes the constant weight function assigning 1 to all pairs in S ×A.

Let θ ∈ N>0. We have ValG(sθ) = θ. On the one hand, P1 can ensure a cost
of no more than θ from sθ by moving leftward in the illustration. On the other
hand, P2 can ensure a cost of at least θ from sθ with the memoryless strategy
that moves from s∞ to sθ. It follows that this same memoryless strategy of P2
ensures θ + 1 from s∞. We conclude that ValG(s∞) = +∞.

However, P2 does not have an optimal pure strategy from s∞. Consider a
pure strategy σ2 of P2. If σ2 moves from s∞ to sθ in the first round, then P2
cannot ensure a cost higher than θ+ 1 from s∞. Therefore, P2 does not have a
pure optimal strategy from s∞.

We now show that P2 does not have a pure memoryless strategy that is
optimal from all finite-value state in G. Consider the pure memoryless strategy
σ2 of P2 such that σ2(s∞) = sθ for some θ ∈ N>0. This strategy ensures, at
best, a cost of θ + 2 from the state sθ+3; if P1 moves from sθ+3 to s∞, then
moves leftwards from sθ, the cost of the resulting outcome is θ+2 < ValG(sθ+3).
Therefore, there is no memoryless strategy of P2 in this game that ensures,
from all finite-value states, their value. ◁

To implement the punishment mechanism to construct finite-memory NEs,
we need punishing strategies that are effective regardless of the state from
which the punishment starts. Example 6.1 shows that we cannot do this with
(uniform) optimal strategies. We establish a weaker, albeit sufficient property
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of G: there exists a family of P2 memoryless strategies (σθ
2)θ∈N such that, for all

θ ∈ N, σθ
2 is winning from any state in the winning region W2(Safe(T )) of P2

in the reachability game (A,Reach(T )) and ensures the minimum of θ and the
value of the state from any other state. Intuitively, the parameter θ quantifies
by how much P1 should be sabotaged (uniformly).

Let θ ∈ N. The construction of σθ
2 can be sketched as follows. On

W2(Safe(T )), we let σθ
2 coincide with a uniformly winning memoryless strategy

of P2 in (A,Reach(T )). Outside of W2(Safe(T )), σθ
2 selects successors such that

the sum of the edge weight and the value of the successor state is maximum if
there is one such maximum, and otherwise, selects a successor such that this
sum is at least θ (which exists because all such sums are in N̄). This definition
of σθ

2 yields the desired properties.

Theorem 6.5. Let s ∈ W2(Safe(T )) denote the winning region of P2 in the
reachability game (A,Reach(T )). For all θ ∈ N, there exists a memoryless
strategy σθ

2 of P2 such that, for all s ∈ S:

(i) σθ
2 is winning from s for P2 in (A,Reach(T )) if s ∈W2(Safe(T )) and

(ii) σθ
2 ensures a cost of at least min{ValG(s), θ} from s.

Proof. In the following, we extend w to histories by letting w(h) =∑r−1
ℓ=1 w(sℓ, aℓ) for all h = s0a0s1 . . . ar−1sr ∈ Hist(A).
Let σ

Safe(T )
2 be a memoryless uniformly winning strategy of P2 in

(A,Reach(T )) (cf. Theorem 6.1). For s ∈ S2, we let σθ
2(s) = σ

Safe(T )
2 (s) if

s ∈W2(Safe(T )), otherwise, if maxa∈A(s)w(s, a) + ValG(δ(s, a)) is defined, we
let σθ

2(s) be an action achieving this maximum, and, otherwise, we let σθ
2(s) = a

where a ∈ A(s) is such that w(s, a) + ValG(δ(s, a)) ≥ θ.
We prove that σθ

2 satisfies the claimed properties. First, we observe that any
play starting in W2(Safe(T )) consistent with σ

Safe(T )
2 never leaves W2(Safe(T )).

Property (i) follows. To establish (ii), we show the following property: for any
history h = s0a0s1a1 . . . sr that is consistent with σθ

2 such that for all ℓ < r,
sℓ /∈ T , it holds that w(h) + min{ValG(sr), θ} ≥ min{ValG(s0), θ}.

We proceed by induction on the length of histories. For a history of the
form h = s0, the property is immediate. We now consider a suitable history
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h = h = s0a0s1a1 . . . sr and assume the property holds for h′ = h≤r−1 by
induction (note that h′ is of the suitable form as well). We discuss two cases
depending on whether ValG(sr−1) is finite and split each case depending on
whom controls last(h′) = sr−1.

We first assume that ValG(sr−1) is finite. Both players have pure optimal
strategies from any state s with finite value (Lemma 6.3). We observe that

w(h) + min{ValG(sr), θ} = w(h′) + w(sr−1, ar−1) + min{ValG(sr), θ}
≥ w(h′) + min{ValG(sr) + w(sr−1, ar−1), θ}.

To conclude by induction, it suffices to show that ValG(sr) + w(sr−1, ar−1) ≥
ValG(sr−1). If sr−1 ∈ S1, P1 can ensure a cost of at most ValG(sr)+w(sr−1, ar−1)

from sr−1 by playing action ar−1 in sr−1 and then playing optimally from sr,
yielding the desired inequality. Assume now that sr−1 ∈ S2. For all a ∈ A(sr−1),
it holds that if P2 can ensure β ∈ N from δ(sr−1, a), then P2 can ensure
β + w(δ(sr−1, a)) from sr−1. It follows that

ValG(sr−1) = sup
a∈A(sr−1)

ValG(δ(sr−1, a)) + w(sr−1, a).

Because ValG(sr−1) is finite and values are in N̄, we obtain that σθ
2(sr−1) is an

action witnessing that the above supremum is a maximum, and obtain that
ValG(sr−1) = ValG(δ(sr−1, σ

θ
2(sr−1))) + w(sr−1, σ

θ
2(sr−1)). This ends the proof

of this case.
Assume now that ValG(sr−1) = +∞. We first consider the case sr−1 ∈ S1.

Then all successors of sr−1 have an infinite value, otherwise P1 could ensure
a finite cost from sr−1 by moving to a successor with finite value and playing
optimally from there. We must therefore show that w(h)+θ ≥ min{ValG(s0), θ}.
This follows directly from the induction hypothesis w(h′)+θ ≥ min{ValG(s0), θ}
and the inequality w(h) ≥ w(h′).

Next, we assume that sr−1 ∈ S2. It follows from ValG(sr−1) = +∞ and
the definition of σθ

2 that ValG(sr) + w(sℓ−1, aℓ−1) ≥ θ ≥ min{ValG(s0), θ}. The
desired inequality follows from w(h) ≥ w(sℓ−1, aℓ−1), ending the induction
proof.

Let s ∈ S \W2(Safe(T )). We now use the previous property to conclude
that σθ

2 ensures min{ValG(s), θ} from s. Let π be a play consistent with σθ
2
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starting in s. If π does not visit T , then SPathTw(π) = +∞. Otherwise,
let h be the prefix of π up to the first state in T included. Then, we have
SPathTw(π) = w(h) ≥ min{ValG(s), θ} by the previous property. This shows
that σθ

2 ensures min{ValG(s), θ} from s, ending the proof.

Remark 6.6 (Optimal strategies for P2). The proof above suggests that if A(s)

is a finite set for all s ∈ S2, then P2 has a memoryless uniformly optimal
strategy for the SPathTw cost function. We formalise this below.

Assume that A(s) is a finite set for all s ∈ S2. In this case, the definition of
σθ
2 is independent of θ. Let σ2 = σ0

2 and let us show that σ2 is optimal from all
states.

Let s ∈ S. It follows from the proof above that σ2 is optimal from all
states with finite value and all states in W2(Safe(T )). We therefore assume
that ValG(s) = +∞. It suffices to show that s ∈W2(Safe(T )). We proceed by
contradiction and assume that s is in the winning region of P1 in the reachability
game (A,Reach(T )). We argue that ValG(s) is finite. Fix a strategy σ1 that
is winning from s for P1 in the reachability game (A,Reach(T )). All plays
starting in s0 that are consistent with σ1 eventually reach T . The set of their
prefixes up to the first occurrence of a state of T is a finitely branching tree:
branching occurs only when P2 selects an action. If s has an infinite value, i.e.,
there are histories in the tree with arbitrarily large weight, then the tree must
be infinite. By König’s lemma [Kön27], there must be an infinite branch in this
tree, i.e., a play consistent with σ1 that does not visit T . This contradicts the
assumption that σ1 is winning from s. Therefore, ValG(s) must be finite. This
is a contradiction with ValG(s) = +∞, which yields the desired result. ◁

6.2 Characterising Nash equilibria outcomes

We provide characterisations of plays that are outcomes of Nash equilibria in
reachability, Büchi and shortest-path games. These characterisations refer to
zero-sum games with the same objective or cost function. Intuitively, a play
is an NE outcome if and only if the cost incurred by a player from a state of
the play is no more than the value of said state in the zero-sum game where
the state owner plays against the others. In other words, there is a profitable
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deviation if and only if there is a profitable deviation when the other players
are adversaries.

We fix a turn-based deterministic arena A = ((Si)i∈J1,nK, A, δ) and targets
T1, . . . , Ti ⊆ S for the remainder of this section.

In the following, we consider values in so-called coalition games. For all
i ∈ J1, nK, we let Ai denote the two-player arena (Si, S \ Si, A, δ) where all
players other than Pi are grouped in a coalition.

Definition 6.7. Given a game G = (A, (fi)i∈J1,nK) and i ∈ J1, nK, we let
Gi = (Ai, fi) be the zero-sum game where all players coordinate against Pi as a
coalition. We call Gi a coalition game (against Pi).

We provide a characterisation for NE outcomes based on values in coalition
games for reachability and Büchi games in Section 6.2.1 and a characterisation
for shortest-path games in Section 6.2.2.

6.2.1 Reachability and Büchi games

We present a characterisation of NE outcomes in games where all players have
either a reachability objective or a Büchi objective. In this section, we allow
games where players may have objectives of different types, to provide a uniform
characterisation for the NE outcomes of the considered objectives.

We consider the game G = (A, (Ωi)i∈J1,nK) where, for all i ∈ J1, nK, we have
Ωi ∈ {Reach(Ti),Büchi(Ti)}. Let Wi(Ωi) be the winning region of the first
player of the coalition game Gi = (Ai,Ωi), in which Pi is opposed to the other
players. Let π = s0a0s1a1 . . . ∈ Plays(A) be a play. Then π is an outcome of
an NE from s0 if and only if, for all i ∈ J1, nK such that π /∈ Ωi, all states in π

are in the complement of Wi(Ωi).
On the one hand, if there is i ∈ J1, nK such that the objective of Pi is not

satisfied and Wi(Ωi) is visited along π, then Pi has a profitable deviation by
switching to a (memoryless uniform) winning strategy in Gi once Wi(Ωi) is
reached. Conversely, one constructs a Nash equilibrium as follows. The players
follow the play π, and, if Pi deviates from π, then all other players conform to
a (memoryless uniformly) winning strategy for the second player in Gi for the
complement of Ωi (i.e., Safe(Ti) if Ωi is a reachability objective or coBüchi(Ti)
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if Ωi is a Büchi objective). This ensures no player has a profitable deviation.

We formally state and prove this characterisation below. The following
characterisation is similar to the characterisation of NE outcomes in finite
arenas of [CFGR16], where it is assumed that all players have objectives of
the same type. We provide a formal proof below for the sake of completeness.
In the following argument, we exploit the prefix-independence of the Büchi
objective: adding or removing a prefix to a play does not change whether the
Büchi objective is satisfied or not.

Theorem 6.8. Let G = (A, (Ωi)i∈J1,nK) be a game where, for all i ∈ J1, nK,
Ωi ∈ {Reach(Ti),Büchi(Ti)}. Let Wi(Ωi) denote the winning region of the first
player of the coalition game Gi = (Ai,Ωi). Let π = s0a0s1a1 . . . be a play. Then
π is the outcome of an NE from s0 if and only if, for all i ∈ J1, nK such that
π /∈ Ωi, sℓ /∈Wi(Ωi) for all ℓ ∈ N.

Proof. First, assume that there exists some i ∈ J1, nK such that π /∈ Ωi and
there exists some ℓ ∈ N such that sℓ ∈Wi(Ωi). We claim that for all strategy
profiles σ such that π = OutA(σ, s0), Pi has a profitable deviation with respect
to σ from s0 (i.e., π is not the outcome of an NE). We consider a pure strategy
τi of Pi that agrees with σi on strict prefixes of π≤ℓ and otherwise agrees
with a memoryless uniformly winning strategy of the coalition game Gi. The
play OutA((τi, σ−i), s0) is the concatenation of π≤ℓ and a play π′ starting in sℓ

that is consistent with τi. It follows from s ∈ Wi(Ωi) that π′ ∈ Ωi. Because
Ωi is either a reachability objective or is prefix-independent, it follows that
OutA((τi, σ−i), s0) ∈ Ωi. We have shown that τi is a profitable deviation with
respect to σ from s0.

We now prove the converse. Assume that for all i ∈ J1, nK such that π /∈ Ωi,
sℓ /∈Wi(Ωi) for all ℓ ∈ N. We formalise the NE suggested prior to the proof. For
all i ∈ J1, nK, we fix a memoryless uniformly winning strategy τ−i of the second
player in the coalition game Gi. Let i ∈ J1, nK. We define σi as follows. We
let σi be arbitrary over Hist(A) \ Hist(A, s0) (we are only concerned with plays
starting in s0). Let h ∈ Hist(A, s0). If h = π≤ℓ for some ℓ ∈ N and last(h) ∈ Si,
we let σi(h) = aℓ. We now assume that h is not a prefix of π. Let h′ be the
longest common prefix of π and h; h′ is necessarily a history because transitions
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are deterministic. Let i′ ∈ J1, nK such that last(h′) ∈ Si′ . If i′ = i, we let σi(h
′)

be arbitrary; this is the case in which Pi has deviated from π. Otherwise, we
let σi(h) = τ−i(last(h)).

We let σ = (σi)i∈J1,nK. It is easy to see that OutA(σ, s0) = π. It remains
to establish that σ is an NE from s0. Let i ∈ J1, nK. If π ∈ Ωi, i.e., if the
objective of Pi is satisfied, then Pi has no profitable deviation. We now assume
that π /∈ Ωi. Let τi be a strategy of Pi. We must show that OutA((τi, σ−i), s0)

does not satisfy Ωi. If OutA((τi, σ−i), s0) = π, there is nothing to show. We
assume the contrary. It follows that OutA((τi, σ−i), s0) can be written as the
concatenation of a prefix of π and of a play π′ consistent with τ−i by definition
of σ. Since all states of π are outside of Wi(Ωi), π′ is not in Ωi. If Ωi is a
reachability objective, there are no visits to Ti in OutA((τi, σ−i), s0) because
there are none in π nor in π′. Otherwise, we obtain that OutA((τi, σ−i), s0) /∈ Ωi

by prefix-independence.
We have thus shown that Pi does not have a profitable deviation, i.e., σ is

an NE from s0 in G.

6.2.2 Shortest-path games

We now provide a characterisation for NE outcomes in shortest-path games. We
state this result for games in which each player has their own weight function.
For all i ∈ J1, nK, let wi : E → N be a weight function for Pi. We consider
the shortest-path game G = (A, (SPathTi

wi
)i∈J1,nK). For any s ∈ S, we denote

by ValiG(s) the value of s in the coalition game Gi = (Ai,SPath
Ti
wi
). As in the

previous section, we let Wi(Reach(Ti)) denote the winning region of the first
player of the coalition reachability game (Ai,Reach(Ti)).

Theorem 6.8 asserts that the value (i.e., whether a player wins) is sufficient
to characterise NE outcomes in reachability games. A natural generalisation
of this characterisation in shortest-path games would be to impose, for each
player, a constraint on the values of all suffixes of the play up to a target of the
player (or for all states of the play if no target appears), stating that the cost
of the suffix is preferable to the value of its first state. This matches an existing
characterisation in finite arenas [BBGT21, Thm. 15]. However, we argue that
this is not sufficient in infinite arenas with the following example.
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Example 6.2. Let us consider the arena depicted in Figure 6.1 (Page 112)
and let T1 = {t} and T2 = {s0}. It follows from Val1G(s∞) = +∞ that
Val1G(s0) = +∞ (the former equality is shown in Example 6.1). Therefore, the
cost of all suffixes of the play sω0 for P1 matches the value of their first state s0.
However, for any strategy profile resulting in sω0 from s0, P1 has a profitable
deviation in moving to s∞ and using a reachability strategy to ensure a finite
cost. ◁

A value-based characterisation fails because of states s ∈ Wi(Reach(Ti))

such that ValiG(s) is infinite. Despite the infinite value of such states, Pi has a
strategy such that their cost is finite no matter the behaviour of the others. For
this reason, to characterise NE outcomes, we impose additional conditions on
players whose targets are not visited that are related to coalition reachability
games.

We show, using a similar approach to the proof of Theorem 6.8, that a play
in a shortest-path game is the outcome of an NE if and only if it is an outcome
of an NE for the reachability game (A, (Reach(Ti))i∈J1,nK) such that, for players
who do see their targets, the values in (Ai,SPath

Ti
wi
) suggest they do not have

a profitable deviation, in a sense we formalise below.

Theorem 6.9. Let G = (A, (SPathTi
wi
)i∈J1,nK). Let π = s0a0s1 . . . ∈ Plays(A).

Then π is an outcome of an NE from s0 in G if and only

(i) for all i ∈ J1, nK such that π /∈ Reach(Ti) and for all ℓ ∈ N, we have
sℓ /∈Wi(Reach(Ti)) and

(ii) for all i ∈ J1, nK such that π ∈ Reach(Ti) and all ℓ ≤ ri, it holds that
SPathTi

wi
(π≥ℓ) ≤ ValiG(sℓ) where ri = min{r ∈ N | sr ∈ Ti}.

Proof. For all i ∈ J1, nK, we let Gi = (Ai, SPath
Ti
wi
) denote the coalition game

against Pi. Recall that we denote values in Gi by ValiG .
We first prove that if (i) or (ii) does not hold, then π cannot be the outcome

of an NE. Let σ = (σi)i∈J1,nK such that π = OutA(σ, s0). We show that some
player has a profitable deviation with respect to σ from s0.

First, assume that (i) does not hold. Let i ∈ J1, nK such that π /∈ Reach(Ti)



120 Chapter 6 – Punishing strategies and characterisations of NE outcomes

and ℓ ∈ N such that sℓ ∈W1(Reach(Ti)). Consider a strategy τi of Pi such that
π≤ℓ is consistent with τi and τi agrees with a uniformly winning memoryless
strategy in the zero-sum reachability game (Ai,Reach(Ti)) for all histories that
are not a prefix of π≤ℓ. We obtain that OutA((τi, σ−i), s0) is the concatenation
of π≤ℓ and a play starting in sℓ that is in Reach(Ti). This shows that τi is a
profitable deviation, and therefore σ is not an NE from s0.

We now assume that (ii) does not hold. Let i ∈ J1, nK such that π ∈
Reach(Ti), ri = min{r ∈ N | sr ∈ Ti} and ℓ ≤ ri such that SPathTi

wi
(π≥ℓ) >

ValiG(sℓ). Similarly to above, we consider a strategy τi of Pi such that π≤ℓ is
consistent with τi and τi agrees with a memoryless uniform optimal strategy in
the zero-sum shortest-path game (Ai,SPath

Ti
wi
) for all histories that are not a

prefix of π≤ℓ. In this case, we obtain that OutA((τi, σ−i), s0) is the concatenation
of π≤ℓ and a play π′ starting in sℓ such that SPathTi

wi
(π′) ≤ ValiG(sℓ). This implies

that SPathTi
wi
(OutA((τi, σ−i), s0)) < SPathTi

wi
(π). We have shown that τi is a

profitable deviation with respect to σ, ending the proof of the first implication.
We now show the converse implication. Let σ = (σi)i∈J1,nK be a strategy

profile such that all players follow π, and if Pi deviates from π, the coalition
consisting of the other players switches to a winning strategy in the reachability
game (Ai,Reach(Ti)) if π /∈ Reach(Ti) and otherwise the coalition switches to a
strategy that ensures min{ValiG(sℓ), SPathTi

wi
(π≥ℓ) + 1} (we specify a minimum

to ensure that the threshold to be ensured is finite) from sℓ if the deviation
occurs in sℓ. It is easy to see that no player has a profitable deviation with
respect to σ from in s0 thanks to (i) and (ii); one can use a straightforward
adaptation of the arguments of the proof of Theorem 6.9 to show this.

Remark 6.10. We complement the above proof by arguing that [BBGT21,
Thm. 15] holds in a class of arenas more general than finite arenas. Informally,
this characterisation states that a play is the outcome of an NE if and only if
condition (ii) of Theorem 6.9 holds for all players (the minimum in the condition
is replaced by an infinimum to be well-defined for all players).

This characterisation only fails when there are states s ∈ Wi(Reach(Ti))

with ValiG(s) = +∞. However, such states do not exist if there are finitely many
enabled actions in P2 states (refer to Remark 6.6). Therefore, the finite-arena
characterisation of [BBGT21] extends to finitely-branching arenas. ◁
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6.3 Existence of Nash equilibria

It is known that Nash equilibria exist from all states in games where all players
have a reachability or a Büchi objective [Umm06], and in games on finite
arenas with shortest-path cost functions built on non-negative weights [BDS13].
In this section, we prove the existence of Nash equilibria in games where all
players have a shortest-path cost function on arbitrary arenas by building on
the approach of [BDS13]. We remark that the argument given below can also
be adapted to prove the existence of Nash equilibria in games with reachability
and Büchi objectives.

We fix a turn-based deterministic arena A = ((Si)i∈J1,nK, A, δ), and, for
all i ∈ J1, nK, a weight function wi : S × A → N and a target Ti ⊆ S for the
remainder of this section. We let G = (A, (SPathTi

wi
)i∈J1,nK).

In [BDS13], the authors construct a Nash equilibrium from any state as
follows: the players follow uniformly optimal memoryless strategies from their
coalition game (in which they are opposed to the other players), and, whenever
someone plays otherwise, the other players switch (and commit) to (memoryless
uniformly optimal) punishing strategies. In finite arenas, this construction
yields a finite-memory Nash equilibrium, as the resulting outcome is a lasso
(i.e., we eventually keep repeating the same simple cycle).

Theorem 6.4 guarantees the existence of memoryless uniformly optimal
strategies of P1 in two-player zero-sum shortest-path games. Although memory-
less uniformly optimal strategies need not exist for the adversary in a two-player
zero-sum shortest-path game (Example 6.1), the strategies provided by The-
orem 6.5 suffice to implement the punishing mechanism described above. To
avoid redundancy with the proof of Theorem 6.9, we use its characterisation
instead of formalising the NE suggested above.

Theorem 6.11. Let G = (A, (SPathTi
wi
)i∈J1,nK). There exists an NE in G from

any initial state.

Proof. Let s0 ∈ S be an initial state. For all i ∈ J1, nK, let σi be a memoryless
uniformly optimal strategy in the coalition game Gi = (Ai, SPath

Ti
wi
) that

is uniformly winning in (Ai,Reach(Ti)), the existence of which follows from
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Theorem 6.4. We define σ = (σi)i∈J1,nK. We argue that π = OutA(σ, s0) is the
outcome of an NE by Theorem 6.9. Establishing this implies the existence of
an NE from s0.

The first condition of Theorem 6.9 follows from the strategies σi being mem-
oryless uniformly winning strategies in the reachability game (Ai,Reach(Ti)).
The second condition follows from the uniform optimality of the strategies σi in
Gi: it ensures ValG(s) from all s ∈ S. Therefore, the inequality in the second
condition must hold in all relevant cases.



Chapter 7

Memory requirements for constrained
Nash equilibria

This chapter presents our upper bounds on the sufficient amount of memory
for solutions to the constrained pure Nash equilibrium existence problem when
using move-independent Mealy machines in games on turn-based deterministic
arenas. We only consider pure strategies for the remainder of the chapter.

Section 7.1 briefly introduces some terminology and an abuse of notation
used to lighten proofs. We establish, in Section 7.2, that from any NE in a
reachability or shortest-path game, we can derive an NE from the same state
given by move-independent Mealy machines of size quadratic in the number of
players whose outcome has a less or equal cost profile than the outcome of the
original NE. In particular, we obtain an upper bound on the size of these Mealy
machines that is independent of the arena. We then consider Büchi games in
Section 7.3, in which we show that from any NE in a Büchi game, we can
obtain an NE from the same initial state given by move-independent Mealy
machines such that the same players win in the outcomes of the two NEs.

We fix a turn-based deterministic arena A = ((Si)i∈J1,nK, A, δ), target sets
T1, . . . , Tn ⊆ S and a weight function w : E → N for the whole chapter.

Contents
7.1 Terminology and notation . . . . . . . . . . . . . . . 124

7.2 Reachability and shortest-path games . . . . . . . . 125

7.2.1 Illustrating finite-memory Nash equilibria . . . . . . 125

123



124 Chapter 7 – Memory requirements for constrained Nash equilibria

7.2.2 Simple Nash equilibria outcomes . . . . . . . . . . . 129

7.2.3 Decomposition-based finite-memory strategies . . . . 134

7.2.4 Nash equilibria in reachability games . . . . . . . . . 137

7.2.5 Nash equilibria in shortest-path games . . . . . . . . 140

7.3 Büchi games . . . . . . . . . . . . . . . . . . . . . . . 143

7.3.1 Limitations of decomposition-based strategies . . . . 143

7.3.2 Simple Nash equilibria outcomes . . . . . . . . . . . 148

7.3.3 Finite-memory Nash equilibria . . . . . . . . . . . . 153

7.1 Terminology and notation

Segments of plays. Throughout this section and the next section, by
a segment of π ∈ Plays(A), we mean either an infix h of π (i.e., we can write
π = h′ · h · π′ for some h′ ∈ Hist(A) and π′ ∈ Plays(A)) or suffix π≥ℓ of π. We
denote segments by sg to avoid distinguishing finite and infinite segments of
plays.

A history is simple if no state occurs twice within this history. A lasso is
a play of the form h · wω where h ∈ Hist(A) and w = s0a1 . . . srar ∈ (SA)+ is
such that ws0 is a cycle of A. A lasso is simple if it can be written as h ·wω in
such a way that no state occurs twice in h · w. A simple segment is either a
simple history, a simple play or a simple lasso.

Weight of a history. As in the proof of Theorem 6.5, we extend w

to histories by letting w(h) =
∑r−1

ℓ=1 w(sℓ, aℓ) for all h = s0a0s1 . . . ar−1sr ∈
Hist(A).

Iterated update function. To prove that the finite-memory strategies
we introduce are NEs, we reason on the memory states reached after a given
history. In the remainder of the chapter, we focus on move-independent Mealy
machines (Definition 5.3). As the updates of these Mealy machines depend
only on the sequence of states along a history, we make the following abuse of
notation with respect to the iterated memory update function (defined over
(SA)∗ – see Definition 2.20) of a move-independent Mealy machine.
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Let i ∈ J1, nK and M = (M,minit, nxtM, upM) be a move-independent Mealy
machine of Pi in A. Let h ∈ Hist(A) be a history. We let ûpM(h) = ûpM(ha)

for some a ∈ A(last(h)). This definition is independent of the chosen action
due to the move-independence of M. Formally, ûpM(h) is the memory state
reached after h has taken place. This abuse of notation enables us to avoid
introducing actions when reasoning on the memory state reached after a given
history.

7.2 Reachability and shortest-path games

We first study multi-player reachability and shortest-path games on A. The
strategies forming our finite-memory NEs behave differently than those de-
scribed in the NE outcome characterisations of Theorem 6.8 and Theorem 6.9.
While the strategies used to establish these characterisation implement a strict
punishment mechanism, we provide strategies that do not resort to punishing
player who deviate from the intended outcome. Instead, if a deviation occurs,
the players may attempt to keep following a suffix of the equilibrium’s original
outcome so long as the deviation does not appear to prevent it.

We first illustrate this idea with examples in Section 7.2.1. We then describe
well-structured NE outcomes from which we design our finite-memory NEs in
Section 7.2.2. Section 7.2.3 then provides partially-defined move-independent
Mealy machines derived from NE outcomes Finally, we extend these Mealy
machines to construct NEs in reachability games in Section 7.2.4 and in shortest-
path games in Section 7.2.5.

7.2.1 Illustrating finite-memory Nash equilibria

We illustrate the core ideas behind our move-independent Mealy machines
implementing NEs on simple examples. We provide an example in a reachability
game and in a shortest-path game, to illustrate the slight differences that arise
in these two contexts. We open with a reachability game.

Example 7.1. We consider the reachability game G on the arena depicted in
Figure 7.1a where the objective of Pi is Reach(ti) for i ∈ J1, 4K. We present a
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Figure 7.1: A reachability game and a representation of a move-independent
Mealy machine update scheme suitable for an NE from s0.

finite-memory move-independent pure NE with outcome

π = s0as1as2at1bs2bs1bs0b(t2a)
ω

to illustrate the idea behind the upcoming construction. To aid readability, we
note that the sequence of states underlying π is s0s1s2t1s2s1s0t

ω
2 .

First, observe that π can be seen as the combination of the simple history
sg1 = s0as1as2at1 and the simple lasso sg2 = t1bs2bs1bs0b(t2a)

ω. The simple
history sg1 connects the initial state to the first visited target, and the simple
lasso sg2 connects the first target to the second and contains the suffix of the
play. Therefore, if we were not concerned with the stability of the equilibrium,
the outcome π could be obtained by using a finite-memory strategy profile where
all strategies are defined by a Mealy machine with state space J1, 2K. Intuitively,
these strategies would follow sg1 while remaining in their first memory state 1,
then, when t1 is visited, they would update their memory state to 2 and follow
sg2.

We build on these simple Mealy machines with two states. We include
additional information in each memory state. We depict a suitable Mealy
machine state space and update scheme in Figure 7.1b. We only label transitions
of the Mealy machines with states instead of state-action pairs as we consider
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move-independent strategies. The rectangles grouping together states (P3, j)
and (P4, j) represent the memory state j of the simpler Mealy machine, for
j ∈ J1, 2K. Intuitively, the additional information encodes the last player to
act among the players whose objective is not satisfied in π. More precisely, an
update is performed from the memory state (Pi, j) only if the state fed to the
Mealy machine appears in sgj for j ∈ J1, 2K.

By construction, if Pi (among P3 and P4) deviates and exits the set of states
of sgj when in a memory state of the form (·, j), then the memory updates to
(Pi, j) and does not change until the play returns to some state of sgj (which
is not possible here due to the structure of the arena, but may be in general).
For instance, assume that P3 moves from s1 to s3 (with action c). after the
history h = sg1bs2bs1. Then the Mealy machine state after h is (P3, 2) and no
longer changes from there on.

It remains to explain how the next-move function of the Mealy machine
should be defined to ensure an NE. Essentially, for a state of the form (Pi, j)
and states in sgj , we assign actions as in the simpler two-state Mealy machine
described previously. On the other hand, for a state of the form (Pi, j) and a
state not in sgj , we use a memoryless punishing strategy against Pi. In this
particular case, we need only specify what P1 should do in s5. Naturally, in
memory state (Pi, j), P1 should move to the target of the other player. It is
essential to halt memory updates for states s3 and s4 to ensure that the correct
player is punished.

We close this example with comments on the structure of the Mealy machine.
Assume the memory state is of the form (Pi, j). If a deviation occurs and
leads to a state of sgj other than the intended one, then the other players will
continue trying to progress along sgj and do not specifically try punishing the
deviating player. Similarly, if after a deviation leaving the set of states of sgj
(from which point the memory is no longer updated until this set is rejoined),
a state of sgj is visited again, then the players resume trying to progress along
this history and memory updates resume. In other words, these finite-memory
strategies do not pay attention to all deviations and do not have dedicated
memory that commit to punishing deviating players for the remainder of a play
after a deviation. ◁

We now give an example in game with shortest-path cost functions. The
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Figure 7.2: A shortest-path game and a representation of a move-independent
Mealy machine update scheme suitable for some NE from s0.

Mealy machines we propose for this case are slightly larger: it may be necessary
to commit to a punishing strategy if the set of states of the segment that the
players want to progress along is left. This requires additional memory states.
Our example illustrates that it may be necessary to punish deviations from
players whose targets are visited, as they could possibly improve their cost
otherwise.

Example 7.2. Let A and w respectively denote the arena and weight function
depicted in Figure 7.2a. We consider the game G = (A, (SPathTi

w )i∈J1,3K) where
the targets of P1 and P2 are T1 = T2 = {t, t12} and the target of P3 is T3 = {t}.
We argue that a finite-memory NE with outcome π = s0as1as3(at)

ω from s0

cannot be obtained by adapting the construction of Example 7.1. We provide
an alternative construction that builds on the same ideas.

The play π is a simple lasso, much like the second part of the play in the
previous example. First, let us assume a Mealy machine similar to that of
Example 7.1, i.e., such that it tries to progress along π whenever it is in one of
its states. The update scheme of such a Mealy machine would be obtained by
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removing the transitions to states of the form Pi from Figure 7.2b (replacing
them by self-loops).

If P3 uses a strategy based on such a Mealy machine, then P1 has a profitable
deviation from s0. Indeed, if P1 moves from s0 to s2 with action b, then either
P1 incurs a cost of 2 if P2 uses action b in s2 (i.e., moves to t12) or a cost of 3
if P2 uses action a (i.e., moves to s3) as P3 would then use a and move to t by
definition of the Mealy machine. To circumvent this issue, if Pi exits the set of
states of π, we update the memory to the punishment state Pi. This results in
the update scheme depicted in Figure 7.2b. Next-move functions to obtain an
NE can be defined as follows, in addition to the expected behaviour to obtain π:
for P2, nxtM2((P1, 1), s2) = nxtM2(P1, s2) = s3 and for P3, nxtM3(P1, s3) = s4.

Similarly to the previous example, players do not explicitly react to devia-
tions that move to states of π; if P3 deviates after reaching s3 and moves back
to s0, the memory of the other players does not update to state P3. Intuitively,
there is no need to switch to a punishing strategy for P3 as going back to the
start of the intended outcome is more costly than conforming to it, preventing
the existence of a profitable deviation. ◁

Remark 7.1. Example 7.2 differs slightly from the general construction below.
According to the general construction, we should decompose π into two parts: a
history s0as1as3at from the initial state to the first target and the suffix (ta)ω

of the play after all targets are visited. Furthermore, we can argue that such a
split is sometimes necessary (see Example 7.3). ◁

7.2.2 Simple Nash equilibria outcomes

A common trait of the NE outcomes of Examples 7.1 and 7.2 is that they are
derived from NE outcomes that can be written as a concatenation of simple
segments. We construct our move-independent finite-memory NEs from such
outcomes. In this section, we show that given an NE outcome from an initial
state s, we can find another NE outcome whose form is suitable to generalise
the ideas underlying Examples 7.1 and 7.2.

We formulate the results of this section for shortest-path games. They
apply to reachability games through the following observation: a pure NE
of (A, (Reach(Ti))i∈J1,nK) from a state s ∈ S is an NE of the shortest-path
game (A, (SPathTi

0 )i∈J1,nK) where all weights are zero. Therefore, we fix G =
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(A, (SPathTi
w )i∈J1,nK) for the remainder of the section.

First, we introduce segment decompositions of plays.

Definition 7.2. Let π ∈ Plays(A). A segment decomposition of π is a (possibly
infinite) sequence S = (sgj)

k
j=1 of segments of π such that π is the concatenation

sg1 · sg2 · . . . of the segments in S. The segment decomposition S is finite if
k ∈ N>0 and is simple if all segments in S are simple.

In the following, we assume that among the histories of a decomposition,
there are none of the form h = s, i.e., there are no trivial segments.

The goal of this section is to prove that given an NE outcome of G, we can
find an NE outcome of G with the same initial state, a preferable cost profile
and a finite simple segment decomposition (with some additional technical
properties).

To concisely formulate our results, we introduce some notation. For any
π = s0a0s1 . . . ∈ Plays(A), we let VisPlG(π) = {i ∈ J1, nK | π ∈ Reach(Ti)}
denote the set of players whose targets are visited in π and VisPosG(π) =

{min{ℓ ∈ N | sℓ ∈ Ti} | i ∈ VisPlG(π)} be the set of indices of π at which the
target of a player is visited for the first time.

We consider two types of NE outcomes in reachability games. First, we
consider NE outcomes such that all players who see their target have the initial
state of the outcome in it. This generalises the case in which no players see
their target. From these outcomes, we can directly derive an NE outcome that
is a simple lasso or simple play.

Lemma 7.3. Let π′ ∈ Plays(A) be the outcome of an NE from s0 ∈ S in game
G = (A, (SPathTi

w )i∈J1,nK) such that VisPosG(π′) ⊆ {0}. There exists an NE
outcome π ∈ Plays(A) from s0 with the same cost profile as π′ that is a simple
lasso or a simple play and such that VisPosG(π) ⊆ {0}. In particular, π has the
simple segment decomposition (π).

Proof. We first observe that if π′ is a simple play, the result follows immediately.
Therefore, we assume that π′ is not a simple play. This implies that there is
a simple lasso π ∈ Plays(A) starting from s0 that only uses states that occur
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in π′. It follows that VisPosG(π) ⊆ {0}. By Theorem 6.9, π is an NE outcome;
condition (i) of the characterisation follows from it holding for π′ and condition
(ii) holds because VisPosG(π) ⊆ {0}.

We now consider NE outcomes such that some player sees their target later
than in the initial state. From an NE outcome π′, we derive an NE outcome π

(from first(π′)) with a finite simple decomposition such that the simple histories
of this decomposition end in the first occurring elements of the visited target
sets along π′. The idea is to first decompose π′ into segments connecting
these target elements. We then replace the histories of this decomposition
with simple histories and change the last segment so the concatenation of the
last two segments is a simple lasso or simple play. We impose an additional
condition on the simple histories in the decomposition of the resulting play π,
to ensure that, when building a finite-memory NE from π, no player can obtain
profitable deviation by skipping ahead in a segment.

Lemma 7.4. Let π′ be the outcome of an NE from s0 ∈ S in G =

(A, (SPathTi
w )i∈J1,nK). Assume that |VisPosG(π′) \ {0}| = k > 0. There ex-

ists an NE outcome π from s0 in G with VisPosG(π) \ {0} = {ℓ1 < . . . < ℓk}
that admits a simple segment decomposition (sg1, . . . , sgk+1) such that

(i) (sg1, . . . , sgk · sgk+1) is also a simple decomposition of π;

(ii) for all j ∈ J1, kK, sg1 · . . . · sgj = π≤ℓj ;

(iii) for all j ∈ J1, kK, w(sgj) is minimum among all histories that share their
first and last state with sgj and traverse a subset of the states occurring
in sgj; and

(iv) for all i ∈ J1, nK, SPathTi
w (π) ≤ SPathTi

w (π′).

Proof. We define π by describing the simple decomposition S = (sg1, . . . , sgk+1).
Let ℓ′1 < . . . < ℓ′k be the elements of VisPosG(π′)\{0} and ℓ′0 = 0. For j ∈ J1, kK,
we let sg′j denote the segment of π between positions ℓ′j−1 and ℓ′j . We let sgj
be a simple history that shares its first and last state with sg′j and traverses
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a subset of the states occurring in sg′j , with minimal weight among all such
histories (actions that do not occur in sg′j may be used in sgj). It remains to
define the segment sgk+1. We let sgk+1 be π′

≥ℓk
if sgk · π′

≥ℓk
is a simple play,

and otherwise we let sgk+1 be any play starting in last(sgk) such that sgk · sgk+1

is a simple lasso in which only states of π occur. It follows from this choice of
sgk+1 that π = sg1 · . . . · sgk+1 satisfies condition (i).

We now argue that the play π is an NE outcome satisfying conditions (ii)-
(iv). Let π = s0a0s1 . . ., ℓ1 < . . . < ℓk be the elements of VisPosG(π) \ {0} and
ℓ0 = 0. To argue that π is an NE outcome, we rely on the characterisation in
Theorem 6.9. Because π′ is an NE outcome and all states occurring in π occur
in π′, it follows the first condition of the characterisation of Theorem 6.9 holds
for π.

For the second condition of the characterisation, we fix i ∈ VisPlG(π) and
ji ≤ k such that ℓji = min{ℓ ∈ N | sℓ ∈ Ti}. We show that for all ℓ ≤ ℓji , we
have SPathTi

w (π≥ℓ) ≤ ValiG(sℓ) where ValiG(sℓ) is the value of sℓ in the coalition
game Gi = (Ai, SPath

Ti
w ).

Let ℓ ≤ ℓji and j ≤ ji such that ℓj ≤ ℓ < ℓj+1. By construction, there is
an occurrence of sℓ in the segment sg′j of π′. We consider a suffix π′

≥ℓ′ of π′

starting from an occurrence of sℓ in sg′j . The desired inequality follows from
the relations SPathTi

w (π≥ℓ) ≤ SPathTi
w (π′

≥ℓ′) ≤ ValiG(sℓ).
We prove that the first inequality holds by contradiction. Assume that

SPathTi
w (π≥ℓ) > SPathTi

w (π′
≥ℓ′). It must be the case that either a suffix of sg′j

starting in sℓ must have weight strictly less than the suffix sℓaℓ . . . sℓj of sgj , or
that w(sgj′) > w(sg′j′) for some j < j′ ≤ ji. Both possibilities contradict the
choice of the elements of S, therefore we have SPathTi

w (π≥ℓ) ≤ SPathTi
w (π′

≥ℓ′).
The second inequality holds by Theorem 6.9 as π′ is an NE outcome. We remark
(for condition (iv)) that in the special case ℓ = 0, the first inequality implies
that SPathTi

w (π) ≤ SPathTi
w (π′) as we can choose ℓ′ = 0. We have shown that π

is an NE outcome.
We now show that conditions (ii)-(iv) hold. Condition (ii) follows immedi-

ately by construction. Let j ∈ J1, kK. The minimum in condition (iii) for j is
attained by some simple history. By construction, it must be realised by sgj .
This implies that condition (iii) holds. For condition (iv), due to the above,
we need only consider players who do not see their target. For these players,
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Figure 7.3: The turn-based arena of Figure 2.6. Circles and squares respectively
denote P1 and P2 states. Unspecified weights are 1 and are omitted to lighten
the figure.

the condition follows from the equality VisPlG(π) = VisPlG(π′) implying that
players have an infinite cost in π if and only if they have an infinite cost in π′.
This concludes the proof that conditions (ii)-(iv) are satisfied by π.

We provide further comments on the statement of Lemma 7.4. Due to
condition (i) on the outcome, we could consider decompositions with one less
element. However, working with a decomposition where these segments are
merged may prevent us from ensuring the stability of an NE with strategies
that only punish players who exit the current segment of the decomposition
(as in Example 7.1) during the play. Intuitively, some player could have an
incentive to move to sgk+1 before reaching the last state of sgk. We illustrate
one such situation in the following example.

Example 7.3. We revisit the game used in Example 2.5. We recall the
relevant arena A and weight function w in Figure 7.3. We consider the game
G = (A, (SPathT1

w ,SPathT2
w )) where the target of P1 is T1 = {t1, t12} and the

target of P2 is T2 = {t12}. The play π = s0at12(as1at1a)
ω is a simple lasso

that is an NE outcome by Theorem 6.9. We claim that there are no NEs where
P2 selects action a in s1, i.e., where P2 plays consistently with the simple
decomposition S = (π) when in its unique segment.

Let σ2 be a strategy of P2 such that σ2(h) = a for all h ∈ Hist(A) such that
all states in h occur in π and last(h) = s1. The history h = s0bs1 satisfies these
last two properties, and thus σ2(h) = a. If P1 moves from s0 to s1 while P2
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follows σ2, P1 can obtain a cost of 2 rather than 3 (3 being the cost of π for
both players). This shows that there are no NEs where P2 uses σ2. ◁

Condition (i) on decompositions in Lemma 7.4 is relevant for reachability
games. The issue highlighted by Example 7.3 is specific to the shortest-path
setting: players whose targets are visited do not have profitable deviations
in reachability games. Merging these last two segments provides us with a
smaller decomposition, which in turn yields smaller memory bounds for move-
independent finite-memory NEs in reachability games. Intuitively, in this
qualitative setting, there is no need to distinguish the last two segments of the
decomposition given by the lemma.

7.2.3 Decomposition-based finite-memory strategies

Lemma 7.3 and Lemma 7.4 imply that we can improve the cost profile of any
NE outcome by considering NE outcomes that admit a (well-structured) simple
segment decomposition. We now endeavour to construct move-independent
finite-memory NEs from such outcomes. In this section, we introduce strategies
based on a simple segment decomposition. We then provide partially-defined
Mealy machines that induce strategies based on simple segment decompositions.
We build on these Mealy machines in the following section to obtain our arena-
independent memory bounds for (move-independent) pure NEs in reachability
and shortest-path games. We fix a play π that admits a simple decomposition
S = (sg1, . . . , sgk) for the remainder of the section.

In the NEs of Examples 7.1 and 7.2, not all deviations were punished:
players would try to continue along the segment of the intended outcome being
built as long as it is not left. For instance, in Example 7.2, if P3 deviates,
resulting in the history s0as1as3cs0, the other players do not try to prevent
P3 from reaching a target (despite it being possible from s0). Instead, they
attempt to follow the moves suggested by the segment s0as1as3t, i.e., they
maintain their initial behaviour. In a sense, it is because this history is coherent
with the considered simple decomposition, i.e., whenever the players try to
complete a segment, the set of states of this segment is never left.

Formally, we say that a history is coherent with S if there is some j ∈ J1, kK
such that it is j-coherent with S. We define j-coherence inductively as follows.
The base case of the induction is the history s0; it is 1-coherent with S. We now
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consider a j-coherent history h, and let a ∈ A(last(h)) and s = δ(last(h), a). If
j < k and s = last(sgj), then has is (j + 1)-coherent with S. Otherwise, if s
occurs in sgk, then has is j-coherent. In any other case, has is not coherent
with S.

We now define strategies that, given a coherent history, attempt to complete
the segment in progress. First, we define the action that players should use
after a coherent history. Given a history h that is j-coherent, we define the
next action of h with respect to S as the action that follows last(h) in sgj . We
prove that this action is well-defined below.

Lemma 7.5. Let h be a history that is coherent with the simple decomposition
S = (sg1, . . . , sgk). The next action of h with respect to S is well-defined.

Proof. We assume that h is j-coherent. We establish existence and uniqueness
of this action. Uniqueness follows from the simplicity of the decomposition.
Existence is clear if j = k: sgk does not have a final state.

We therefore assume that j < k and establish the existence of a next
action by contradiction. Assume there is no suitable action. This implies
that last(h) = last(sgj). By simplicity and the absence of trivial histories in a
decomposition, we have first(hj) ̸= last(hj). Therefore, there must be a prefix
of h that is j-coherent by definition of j-coherence. We obtain that h should
either be (j + 1)-coherent or not coherent, a contradiction.

We say that a pure strategy of Pi is based on S if to any history h ∈ Histi(A)
that is coherent with S, it assigns the next action of h with respect to S. Any
strategy profile σ = (σi)i∈J1,nK such that σi is based on S for all i ∈ J1, nK is
such that OutA(σ, s0) = π.

We now formalise partially-defined Mealy machines for all players that
induce strategies that are based on S. These Mealy machines serve as the
basis for the finite-memory NEs described in the next sections. These Mealy
machines share the same memory state space, initial memory state and memory
update function.

The memory state space is made of pairs of the form (Pi, j) where i ∈ J1, nK
and j ∈ J1, kK. We do not consider all such pairs, e.g., it is not necessary in
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Example 7.1. Therefore, we parameterise our construction by a non-empty set
of players I ⊆ J1, nK. We consider the memory state space M I,S = {Pi | i ∈
I} × J1, kK. The initial state mI,S

init is any state of the form (Pi, 1) ∈M I,S .
The update function upI,SM behaves similarly to Figure 7.1b. It keeps track

of the last player in I to have moved and the current segment. Formally, for any
(Pi, j) ∈ M I,S and state s occurring in sgj , we let upI,SM ((Pi, j), s) = (Pi′ , j′)
where (i) i′ is such that s ∈ Si′ if s ∈

⋃
i′′∈I Si′′ and otherwise i′ = i, and (ii)

j′ = j + 1 if j < k and s = last(sgj) and j′ = j otherwise. Updates from (Pi, j)
for a state that does not appear in sgj are left undefined.

The next-move function nxtI,SMi
of Pi proposes the action following the input

state in the current segment. Formally, given a memory state (Pi′ , j) ∈M I,S

and a state s ∈ Si that occurs in sgj , we let nxtI,SMi
((Pi′ , j), s) be the action

occurring after s in sgj+1 if j < k and s = last(sgj), and otherwise we let it be
the action occurring after s in sgj . Like updates, the next-move function is left
undefined in memory states (Pi, j) for a state that does not appear in sgj .

We now prove that any finite-memory strategy induced by a Mealy machine
that extends the partially defined Mealy machine (M I,S ,mI,S

init , up
I,S
M , nxtI,SMi

) is
based on S. To this end, we establish that if a history h is j-coherent with
S, then the memory state after the Mealy machine processes h is of the form
(Pi, j).

Lemma 7.6. Let Mi = (M,minit, nxtMi , upMi
) be a move-independent Mealy

machine of Pi such that M I,S ⊆M , mI,S
init = minit, upMi

and nxtMi coincide with
upI,SM and nxtI,SMi

respectively on the domain of the latter functions. The strategy
σi induced by Mi is based on S and for all h ∈ Hist(A), if h is j-coherent with
S, then ûpMi

(h) = (Pi′ , j) for some i′ ∈ I.

Proof. We first show the second claim of the lemma. We proceed by induction
on the number of states in h. The only coherent history with a single state is s0.
The assumption that S contains no trivial segments ensures that s0 ̸= last(sg1),
thus we have that upMi

(minit, s0) is of the form (Pi′ , 1).
We now consider a j-coherent history h and assume by induction that

ûpMi
(h) = (Pi′ , j). Let a ∈ A(last(h)) such that has is coherent with S where

s = δ(last(h), a). It follows that s occurs in sgj . Therefore, ûpMi
(has) =
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upMi
((Pi′ , j), s) = upI,SM ((Pi′ , j), s). We distinguish two cases. If j < k and s =

last(sgj), then has is (j+1)-coherent and by definition of upI,SM , upI,SM ((Pi′ , j), s)
is of the form (Pi′′ , j + 1). Otherwise, has is j-coherent and by definition of
upI,SM , upI,SM ((Pi′ , j), s) is of the form (Pi′′ , j).

It remains to argue that σi is based on S. Let h ∈ Histi(A) be a history
coherent with S. If h contains only one state, then by coherence h = s0. The
definition of nxtI,SMi

ensures that σi(s0) is the next action of the history s0 with
respect to S. If h contains more than one state, let h = h′as and assume that
h′ is j-coherent. By the previous point, it holds that ûpMi

(h′) = (Pi′ , j) for
some i′ ∈ I. Therefore, σi(h) = nxtI,SMi

((Pi′ , j), s). It follows from the definition
of nxtI,SMi

that σi maps h to its next action with respect to S.

7.2.4 Nash equilibria in reachability games

We consider the reachability game G = (A, (Reach(Ti))i∈J1,nK). We generalise
the construction illustrated in Example 7.1. We construct finite-memory NEs
by extending the partially-defined Mealy machines of Section 7.2.3. We build
on the NE outcomes with simple decompositions provided by Lemma 7.3 and
Lemma 7.4.

The general idea of the construction is to use the state space M I,S where
I ⊆ J1, nK is the set of players who do not see their targets if it is non-empty, or
a single arbitrary player if all players see their target. Let i′ ∈ I and j ∈ J1, kK.
We extend upI,SM so that the memory state is unchanged when performing an
update in a memory state (Pi′ , j) by reading a game state that does not occur in
sgj . In this same situation, the next-move function nxtI,SMi

is extended to assign
moves from a memoryless uniformly winning strategy of the second player in
the coalition game Gi = (Ai,Reach(Ti)) (which exists by Theorem 6.1). The
equilibrium’s stability is a consequence of the NE outcome characterisation in
Theorem 6.8 and the description of winning strategies of the second player in
two-player zero-sum reachability games of Theorem 6.1: if the target of Pi is
not visited in the intended outcome, all states along this play are not winning
for the first player of the coalition game Gi. We formalise the explanation above
in the proof of the following theorem.
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Theorem 7.7. Let G = (A, (Reach(Ti))i∈J1,nK) be a reachability game. Let σ′

be a pure NE from a state s0. There exists a pure finite-memory NE σ from
s0 such that VisPlG(OutA(σ, s0)) = VisPlG(OutA(σ

′, s0)) where each strategy of
σ is induced by a move-independent Mealy machine of size at most n2. More
precisely, we can bound the size of these Mealy machines by

max{1, n− |VisPlG(OutA(σ′, s0))|} ·max{1, |VisPosG(OutA(σ′, s0)) \ {0}|}.

Proof. Let k = max{1, |VisPosG(OutA(σ′, s0)) \ {0}|}. By Lemma 7.3 or
Lemma 7.4 (condition (i) on the outcome, there exists an NE outcome π

from s0 that admits a simple segment decomposition S = (sg1, . . . , sgk) and
such that VisPlG(π) = VisPlG(OutA(σ

′, s0)).
Let I = J1, nK \ VisPlG(π) if it is not empty and otherwise let I = {1}. For

i ∈ I, let τ−i denote a memoryless strategy of the second player in the coalition
game Gi = (Ai,Reach(Ti)) that is uniformly winning on their winning region
(Theorem 6.1). We let W−i(Safe(Ti)) denote this winning region.

We formally extend the Mealy machines of Section 7.2.3. Let i ∈ J1, nK. We
consider the Mealy machine Mi = (M I,S ,mI,S

init , nxtMi , upM) where nxtMi and
upM respectively extend nxtI,SMi

and upI,SM as follows. Let (Pi′ , j) ∈ M I,S and
s ∈ S that does not occur in sgj . We let upM((Pi′ , j), s) = (Pi′ , j) and, if s ∈ Si,
we let nxtMi((Pi′ , j), s) = τ−i′(s) if i′ ≠ i and otherwise we let nxtMi((Pi′ , j), s)
be arbitrary. We let σi denote the strategy induced by Mi. By definition of
M I,S , we have the asserted bounds on the memory size of σi. It follows from
Lemma 7.6 that the outcome of σ = (σi)i∈J1,nK from s0 is π.

We now prove that σ is an NE from s0. It suffices to show that for all
i /∈ VisPlG(π), Pi does not have a profitable deviation. Fix i /∈ VisPlG(π). It
suffices to show that all histories starting in s0 that are consistent with the
strategy profile σ−i = (σi′)i′ ̸=i only traverse states of W−i(Safe(Ti)). We prove
this by induction on the length of histories. To aid in this proof, we show in
parallel that for all has ∈ Hist(A, s0) consistent with σ−i, if (Pi′ , j) = ûpM(h)

and s does not occur in sgj , then i′ = i.
We first remark that, by our characterisation of NE outcomes in reachability

games (Theorem 6.8), all states occurring in π are in W−i(Safe(Ti)). The base
case of the induction is the history s0. Both claims hold without issue. We now
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assume that the claim holds for a history has starting in s0 consistent with σ−i

by induction, and show they hold for hasbt, assumed consistent with σ−i. Let
(Pi′ , j) = ûpM(mI,S

init , h).
We first argue that t ∈W−i(Safe(Ti)). Assume that s ∈ Si. The induction

hypothesis implies that s ∈ W−i(Safe(Ti)). If t /∈ W−i(Safe(Ti)), then by
determinacy of zero-sum reachability games (Theorem 6.1), P1 could force a
visit to Ti from t and therefore could also win from s, which is a contradiction.
We now assume that s /∈ Si. We have b = σi′′(has) = nxtMi′′ ((Pi′ , j), s) for
some i′′ ̸= i. We consider two cases. If s occurs in sgj , then t = δ(s, b) occurs
in π by definition of nxtMi′′ . This implies that t ∈ W−i(Safe(Ti)). Otherwise,
by the induction hypothesis, we have i′ = i, which implies b = τ−i(s), and thus
t ∈W−i(Safe(Ti)) (otherwise, τ−i would not be winning in Gi).

We now move on to the second half of the induction. Let (Pi′′ , j′) =

ûpM(has). By definition of upM, we have j′ = j + 1 if j < k and s = last(sgj)

and j′ = j otherwise. It follows that s occurs in sgj if and only if it occurs
in sgj′ . Assume that t does not occur in sgj′ . We consider two cases. First,
assume that s occurs in sgj′ . We must have s ∈ Si by definition of σ−i. The
definition of upI,SM ensures that i′′ = i. Second, assume that s does not occur in
sgj′ . On the one hand, we have i′ = i by the induction hypothesis. On the other
hand, the definition of upM implies that (Pi′′ , j′) = (Pi′ , j), implying i′′ = i.
This ends the proof by induction.

We have shown that players whose targets are not visited in π = OutA(σ, s0)

do not have a profitable deviation. This shows that σ is an NE from s0.

Theorem 7.7 provides a memory bound that is linear in the number of
players when at most one player does not see their target, and when at most
one player sees their target.

Corollary 7.8. If there exists a pure NE from s0 such that at most one player
sees (resp. does not see) their target in its outcome, then there is a pure finite-
memory NE from s0 such that the same targets are visited in its outcome and
all strategies are induced by a move-independent Mealy machine of size at most
n.
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7.2.5 Nash equilibria in shortest-path games

We now consider the shortest-path game G = (A, (SPathTi
w )i∈J1,nK). We extend

the partially-defined Mealy machines described in Section 7.2.3 to generalise
the strategies provided in Example 7.2. Once again, we build on NE outcomes
with simple decompositions provided by Lemma 7.3 and Lemma 7.4.

First, let us comment on the use of a different construction than in games
with reachability objectives. Example 7.2 highlights that it may be necessary to
commit to punishing strategies when the current segment of the decomposition
of the intended outcome is left. Therefore, it is not sufficient to simply extend
the construction used for Theorem 7.7 (i.e., freezing memory updates outside of
the current segment) to monitor and punish players whose targets are visited.

We modify the construction of Theorem 7.7 as follows. We change the
approach in such a way that players commit to punishing any player who exits
the current segment of the intended outcome. When the current segment is
left, if the memory state is of the form (Pi, j), the memory switches to a newly
introduced memory state Pi that is never left. This switch can only occur if Pi
deviates. The next-move function, for this memory state, assigns moves from
a punishing strategy obtained from the coalition game Gi = (Ai,SPath

Ti
w ) by

Theorem 6.5, chosen to hinder Pi enough to ensure that in case of a deviation,
the cost of Pi is at least that of the original outcome.

The conditions imposed on outcomes of Lemma 7.4 (notably condition
(iii)) and the characterisation of Theorem 6.9 imply the correctness of this
construction. Condition (iii) of Lemma 7.4 ensures that a player cannot reach
their target with a lesser cost by changing the order in which states of the
segment are visited, whereas the characterisation of Theorem 6.9 guarantees
that the punishing strategies sabotage deviating players sufficiently.

Theorem 7.9. Let G = (A, (SPathTi
w )i∈J1,nK) be a shortest-path game. Let

σ′ be a pure NE from a state s0. There exists a pure finite-memory NE σ

from s0 such that VisPlG(OutA(σ, s0)) = VisPlG(OutA(σ
′, s0)) and, for all i ∈

J1, nK, SPathTi
w (OutA(σ, s0)) ≤ SPathTi

w (OutA(σ
′, s0)) where each strategy of σ

is induced by a move-independent Mealy machine of size of at most n2 + 2n.
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More precisely, we can bound the size of these Mealy machines by

n · (|VisPosG(OutA(σ′, s0)) \ {0}|+ 2).

Proof. Let k = |VisPosG(OutA(σ′, s0)) \ {0}|. By Lemma 7.3 and Lemma 7.4,
there exists an NE outcome π from s0 which admits a simple segment decom-
position S = (sg1, . . . , sgk+1) satisfying conditions (ii)-(iv) of Lemma 7.4 (these
conditions hold trivially if Lemma 7.3 is applicable).

If VisPlG(π) is non-empty, we let θ = max{SPathTi
w (π) | i ∈ VisPlG(π)}, and,

otherwise we let θ = 1. For i ∈ J1, nK, let τ−i denote a memoryless strategy
of the second player in the coalition game Gi = (Ai,SPath

Ti
w ) such that τ−i is

uniformly winning on their winning region W−i(Safe(Ti)) in the reachability
game (Ai,Reach(Ti)) and such that τ−i ensures a cost of at least min{ValiG(s), θ}
from any s ∈ S, where ValiG(s) denotes the value of s in Gi. The existence of
these strategies is guaranteed by Theorem 6.5.

We extend the Mealy machine of Section 7.2.3. We work with I = J1, nK
in the following and drop I from the notation to lighten it. Let i ∈ J1, nK.
We consider the Mealy machine Mi = (M,mS

init, upM, nxtMi). We let M =

MS ∪ {Pi | i ∈ J1, nK}. The functions upM and nxtMi extend upSM and nxtSMi

as follows. For all (Pi′ , j) ∈ MS and s ∈ S that does not occur in sgj , we
let upM((Pi′ , j), s) = Pi′ and, if s ∈ Si, we let nxtMi((Pi′ , j), s) = τ−i′(s) if
i′ ≠ i and nxtMi((Pi, j), s) is left arbitrary. For all i′ ∈ J1, nK and s ∈ S, we
let upM(Pi′ , s) = Pi′ and, if s ∈ Si, we let nxtMi(Pi′ , s) = τ−i′(s) if i′ ̸= i and
nxtMi(Pi, s) is left arbitrary.

We let σi denote the strategy induced by Mi. We have |M | = n · (k + 2),
therefore the memory size of σi satisfies the announced bounds. Furthermore,
it follows from Lemma 7.6 that the outcome of σ = (σi)i∈J1,nK from s0 is π and
σi is based on S for all i ∈ J1, nK.

We now argue that σ is an NE from s0. Let i ∈ J1, nK. Let π′ be a play
starting in s0 consistent with σ−i = (σi′)i′ ̸=i. To end the proof, it suffices to
show that we have SPathTi

w (π′) ≥ SPathTi
w (π).

We first show the following claim. If some prefix of π′ is not coherent with
S, then there exists ℓ ∈ N such that π′

≤ℓ is the longest prefix of π′ coherent
with S and π′

≥ℓ is a play that is consistent with τ−i. Assume that some prefix
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of π′ is not coherent with S. Let ℓ ∈ N such that π′
≤ℓ is the longest prefix of π′

coherent with S, and assume that it is j-coherent. As the strategies of σ−i are
based on S, we must have first(π′

≥ℓ) ∈ Si. Lemma 7.6 and the definition of upM
ensure that ûpM(π′

≤ℓ) = (Pi, j). It follows from π′
≤ℓ+1 being inconsistent with

S that its last state does not occur in sgj . The definitions of upM and nxtMi′

for i′ ̸= i combined with the above ensure that π′
≥ℓ is consistent with τ−i.

We now show that SPathTi
w (π′) ≥ SPathTi

w (π). We first assume that i /∈
VisPlG(π). We establish that π′ /∈ Reach(Ti). By the characterisation of NE
outcomes of Theorem 6.9, all states occurring in π belong to W−i(Safe(Ti)).
Therefore, if all prefixes of π′ are coherent with S, as all states of π′ occur
in π, it holds that Ti is not visited in π′. Otherwise, let ℓ ∈ N such that π′

≤ℓ

is the longest prefix of π′ that is coherent with S and π′
≥ℓ is consistent with

τ−i. No states of Ti occur in π′
≤ℓ by coherence with S. It follows from the

coherence of π′
≤ℓ with S that first(π′

≥ℓ) = last(π′
≤ℓ) occurs in π. We obtain that

first(π′
≥ℓ) ∈W−i(Safe(Ti)), therefore π≥ℓ /∈ Reach(Ti). We have shown that for

all i /∈ VisPlG(π), we have SPathTi
w (π′) = SPathTi

w (π) = +∞.
We now assume that i ∈ VisPlG(π). The desired inequality is immediate

if Ti is not visited in π′. Similarly, it holds directly if s0 ∈ Ti. We therefore
assume that we are in neither of the previous two cases. We write the shortest
prefix of π′ ending in Ti (the weight of which is SPathTi

w (π′)) as a combination
h · h′ where h is its longest prefix that is coherent with S. We note that h′ is
consistent with τ−i because h is a prefix of the longest prefix of π′ coherent
with S: if h is a strict prefix, then h′ is a trivial (i.e., one-state) history, and
otherwise it follows from the above.

We provide lower bounds on the weights of h and h′. Assume that h is
j-coherent. By definition of coherence, we can write h as a history combination
h1 · . . . · hj where, for all j′ < j, hj′ shares its first and last states with sgj′ and
contains only states of sgj′ , and hj shares its first state with sgj and contains
only states of sgj . Let sg′j be the prefix of sgj up to last(hj).

On the one hand, we have
∑

j′<j w(hj′) ≥
∑

j′<j w(sgj′) and w(hj) ≥ w(sg′j).
This follows from π satisfying property (iii) of Lemma 7.4 (for hj , having
w(hj) < w(sg′j) would contradict property (iii) with respect to sgj). On the other
hand, by choice of τ−i, we obtain that w(h′) ≥ min{ValiG(first(h′)), θ}. From
the characterisation of Theorem 6.9, we obtain ValiG(first(h

′)) ≥ SPathTi
w (π)−
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w(sg1 ·. . .·sgj−1 ·sg′j). It follows from SPathTi
w (π) ≥ θ that w(h′) ≥ SPathTi

w (π)−
w(sg1 · . . . · sgj−1 · sg′j). By combining all of the above inequalities, we obtain
SPathTi

w (π′) ≥ SPathTi
w (π), ending the proof.

In this case, Theorem 7.9 provides the memory bound 2n if no players visit
their target. However, the construction of Theorem 7.7 applies to such NEs in
shortest path games. We obtain the following result.

Corollary 7.10. If there exists a pure NE from s0 such that no players see
their target in its outcome, then there is a pure move-independent finite-memory
NE from s0 such that no players see their target in its outcome such that all
strategies are induced by move-independent Mealy machines of size at most n.

7.3 Büchi games

We now prove that for any NE from a given initial state in a Büchi game on
A, we can find a move-independent finite-memory NE from the same initial
state where the same objectives are satisfied. We provide several examples in
Section 7.3.1. We illustrate that decomposition-based strategies are no longer
sufficient for Büchi objectives, and that we cannot obtain arena-independent
memory bounds when restricted to move-independent strategies. We build on
the techniques of Section 7.2.3 to provide move-independent finite-memory NEs
in Section 7.3.3.

Throughout this section, for the sake of simplicity, we extend the definition
of simple segment to also include simple cycles, i.e., cycles of A in which only
all states occur only once besides the first state, which occurs exactly twice.

7.3.1 Limitations of decomposition-based strategies

For reachability and shortest-path games, we relied on simple segment de-
compositions between consecutive targets along an NE outcome to obtain
finite-memory NEs. Our strategies based on these decompositions do not explic-
itly punish players who deviate without leaving the current segment. Intuitively,
this can pose an issue in a Büchi game as a losing player may have an incentive
to loop within a segment that contains one of their targets.
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s0 s1 s2

a

b

a
b a

Figure 7.4: An arena where a direct decomposition-based approach fails to
obtain an NE.

Example 7.4. Consider the game on the arena depicted in Figure 7.4 where
the objectives of P1 and P2 are Büchi({s1}) and Büchi({s2}) respectively. The
play s0as1(as2)

ω is the outcome of an NE by Theorem 6.8. To mimic the
construction underlying Theorems 7.7 and 7.9, we would consider a finite-
memory strategy based on the decomposition S = (s0as1as2, (s2a)

ω). However,
if P2 uses a strategy based on S, the memoryless strategy σ1 of P1 such that
σ1(s1) = b would be a profitable deviation of P1: if P1 uses this strategy, we
obtain the outcome (s0as1b)

ω, as P2 would not punish the deviation of P1. ◁

In the previous example, the issue with the proposed decomposition lies
with the occurrence of a target of P1, whose objective is not satisfied in the
intended outcome, within some segment of the decomposition. To circumvent
this issue in the next section, we construct strategies that follow two phases.
In their first phase, these strategies punish any deviations from the intended
outcome. For their second phase, we adapt the strategies of Section 7.2.3. To
ensure that no profitable deviations may exist, we start the second phase at
a point of the intended outcome from which no more targets of losing players
occur.

The following example illustrates that the punishing mechanism used for
finite-memory NEs in reachability games does not suffice. In other words,
players must commit to punishing strategies once some player exits the current
segment in the second phase mentioned above.

Example 7.5. Consider the game on the arena depicted in Figure 7.5 where the
objectives of P1, P2 and P3 are Büchi({s1}) and Büchi({s2, s4}) and Büchi({s4})
respectively. The play π = (s0as1as3a)

ω is the outcome of an NE by Theo-
rem 6.8. Consider a P1 strategy based on the decomposition (π) that uses
the punishment mechanism we introduced for reachability games. Then the
behaviour of P1 does not change if P2 moves from s0 to s2 instead of s1: P1
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s0 s1
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Figure 7.5: An arena where there exists an NE such that players should commit
to punishing strategies once a segment of a given decomposition of its outcome
is left. The diamond is a P3 state.

would move from s1 to s3 and then to s0. It follows that P2 would have a
profitable deviation no matter the strategy of P3.

To obtain an NE where all players use strategies based on the decomposition
(π), P1, must commit to a punishing strategy for P2 if s2 is visited. For P2
and P3 we consider the memoryless strategies σ2 and σ3 such that σ2(s0) =

σ3(s2) = a. It is easy to check that this is an NE.
We remark that there is no NE from s0 using the construction we had used

in reachability games in this game such that the objective of P1 is satisfied in
the outcome of the NE. ◁

In the two-phase approach described above, players must precisely enforce
a specific segment of a play during the first phase of the strategy (profile). This
results in move-independent finite-memory NEs with a size that is dependent
on the arena. We provide an example that proves that arena-independent
memory bounds cannot be obtained in general for move-independent solutions
to the constrained existence NE problem in Büchi games. We illustrate it with
a generalisation of the game of Example 7.4.

Example 7.6 (Arena-dependence of memory size for move-independent NEs
in Büchi games). Our argument is based on a family of two-player turn-based
deterministic arenas (Ap)p≥1. We fix p ∈ N>0 for the remainder of the example.
We define Ap = ((Sp

1 , S
p
2), A

p, δp) as follows. We let Sp
1 = {t1, . . . , tp}, Sp

2 =

{s1, . . . , sp+1} and A = {a=, a+}∪{aq | q ∈ J1, p+1K}. The transition function
δ : S ×A→ S is defined by the three following rules. Let q ∈ J1, pK. From sq,
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s1 t1 s2 t2 s3 t3 s4

Figure 7.6: The graph underlying the arena A3 of Example 7.6, in which P2
needs a memory of size at least 3 in any NE from s1 in which P2 wins. Circles
and squares are resp. P1 and P2 vertices.

there is a self-loop labelled by a= and a transition to tq labelled by a+. There
also is an a=-labelled self-loop in sp+1. Finally, for all q′ ∈ J1, q + 1K, we have
δp(tq, aq′) = sq′ . We illustrate A3 (without action labels) in Figure 7.6, and
remark that A1 matches the arena of Figure 7.4 up to a renaming of the states
and actions.

We now define a game on Ap. We define T p
1 = Sp

1 and T p
2 = {sp+1}, and

consider the Büchi game Gp = (Ap, (Büchi(T p
1 ),Büchi(T

p
2 ))). We prove that, in

Gp,

(i) there exists a pure move-independent finite-memory NE σ = (σ1, σ2) from
s1 such that OutA(σ, s1) ∈ Büchi(T p

2 ), σ1 is memoryless and σ2 is induced
by a Mealy machine with at most p+ 1 states and

(ii) for all pure move-independent strategy profiles σ = (σ1, σ2) such that
which σ2 is induced by a Mealy machine with at most p memory states,
σ is not an NE from s1 such that OutA(σ, s1) ∈ Büchi(T p

2 ).

It follows from these two points that arena-dependent memory is necessary for
move-independent constrained NEs in Büchi games.

We start with claim (i). For P1, we consider the memoryless strategy σ1

such that for all q ≤ p, σ1(tq) = aq+1. For P2, we consider the strategy σ2

induced by the Mealy machine M = (M,minit, nxtM, upM) defined as follows.
We let M = J1, p+ 1K and minit = 1.

Memory updates follow three rules. First, the memory is not updated
in sp+1 and in P1 states. Formally, for all q ∈ M and q′ ∈ J1, pK, we let
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upM(q, sp+1) = upM(q, tq′) = q. Second, if the index of the current P2 game
state does not match the memory state, we do not update the memory, i.e.,
for all q, q′ ∈ J1, pK such that q ̸= q′, we let upM(q, sq′) = q. Finally, for all
q ∈ J1, pK, if in memory state q and game state sq, we increment the memory
state, i.e., we let upM(q, sq) = q + 1.

For the next-move function, we take the self-loop if the memory state
is not the index of the current state, and otherwise take the other action.
Formally, for all q ∈M and q′ ∈ J1, pK, w e let nxtM(q, sq′) = a+ if q = q′ and
nxtM(q, sq′) = a= otherwise. Intuitively, σ2 moves rightward (with respect to
the depiction of the arena in Figure 7.6) at each step so long as P1 does so,
and stops progressing as soon as P1 moves to the left.

To lighten notation, in the remainder of this example, we omit actions from
plays and histories of Ap: the sequence of states of a play uniquely determines
the sequence of actions due to the structure of Ap.

The outcome of σ1 and σ2 from s1 is s1t1 . . . sptps
ω
p+1, which is winning

for P2. To argue that (σ1, σ2) is an NE, it suffices to argue that P1 does
not have a profitable deviation. Let τ1 be an arbitrary strategy of P1. We
consider two cases. First, assume that for all q ∈ J1, pK, for hq = s1t1 . . . sqtq,
we have τ1(hq) = aq+1. In this case, the outcome from s1 of (τ1, σ2) matches
that of (σ1, σ2), hence τ1 is not a profitable deviation of P1. Second, assume
that for some q ∈ J1, pK, we have τ1(hq) = aq′ for some q′ < q + 1. We
consider the smallest such q. It follows from a straightforward induction that
ûpM(hq) = q + 1. By definition of M, we obtain that the outcome of τ1 and
σ2 from s1 is the play hqs

ω
q′ , hence τ1 is not a profitable deviation in this case

either. This shows that (σ1, σ2) is an NE from s1.

We now prove claim (ii). We let σ = (σ1, σ2) be a strategy profile such that
its outcome from s1 is winning for P2 and such that σ2 is given by a Mealy
machine M = (M,minit, nxtM, upM) with memory size at most p. We establish
that P1 has a profitable deviation if the initial vertex is s1.

We first observe that all vertices of Ap occur in OutA(σ, s1); the arena is
such that reaching sp+1 from s1 implies so. For all q ∈ J1, pK, we let hq be
the shortest prefix of OutA(σ, s1) that ends in tq, and let h0 denote the empty
word. It follows from our assumption on the memory size of M that there exist
q < q′ ∈ J1, pK ∪ {0} such that ûpM(hq) = ûpM(hq′). Let h = v0 . . . vr be the
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non-empty history such that hq′ = hqh. We show that hqh
ω is consistent with

σ2, which implies the existence of a profitable deviation for P1.
The history hqh is a prefix of OutA(σ, s1), thus it is consistent with σ2.

We continue by induction. Assume that hqh
zv0 . . . vℓ+1 (with ℓ + 1 ≤ r) is

consistent with σ2 and that ûpM(hqh
zv0 . . . vℓ) = ûpM(hqv0 . . . vℓ). We remark

that these properties hold for the case z = 0 and ℓ = r−1, which we consider to
be the base case. We show that same property holds for ℓ+ 1. In the following,
we abusively let vr+1 denote v0 to avoid treating the case ℓ+ 1 = r separately.

We have ûpM(hqh
zv0 . . . vℓvℓ+1) = ûpM(hqv0 . . . vℓvℓ+1) directly from the

induction hypothesis and the definition of ûpM. We consider two cases for the
consistency. First, we assume that vℓ+1 ∈ Sp

1 . The consistency of the relevant
history follows directly by induction as P2 does not select the last transition.
Second, we assume that vℓ+1 ∈ Sp

2 . The induction hypothesis implies that
hqh

zv0 . . . vℓ+1vℓ+2 is consistent with σ2 if and only if the action labelling the
transition from vℓ+1 to vℓ+2 is nxtM(ûpM(hqh

zv0 . . . vℓ), vℓ+1). By consistency
of hqh with σ2, the action nxtM(ûpM(hqv0 . . . vℓ), vℓ+1) is the sought action. By
combining this with the induction hypothesis on memory updates, we conclude
the required consistency claim.

We have shown that in the game Gp, any move-independent NE from s1 with
an outcome that is winning for P2 requires P2 to have a memory size of at least
p, which is roughly half of the number of vertices in the game. This ends our
illustration that arena-dependent memory is required for general constrained
move-independent NEs in Büchi games. ◁

7.3.2 Simple Nash equilibria outcomes

In a Büchi game, there need not exist NE outcomes with a finite simple
decomposition as we have shown in games with reachability objectives and
shortest-path costs. We consider two ways of simplifying NE outcomes in Büchi
games depending on the form of these outcomes.

First, we consider NE outcomes such that some state occurs infinitely often
in it. The following example illustrates that we cannot transform these outcomes
into plays with a finite simple decomposition in general.

Example 7.7. In the two-player arena A depicted in Figure 7.7, if we consider
the game in which the objectives of P1 and P2 are respectively Büchi({s1}) and
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s0s1 s2

a

ba

a

Figure 7.7: A two-player arena where there is no outcome from s0 with a finite
simple decomposition satisfying the objectives Büchi({s1}) and Büchi({s2}).

Büchi({s2}), it is easy to see that the play π = (s0as1as0bs2a)
ω is the outcome

of a pure NE from s0 as both players satisfy their objective.

We observe that there is no play of A with a finite simple decomposition
that visits both s1 and s2 infinitely often; simple lassos of A can only loop in
one of s1 or s2. We remark that π admits the ultimately periodic simple de-
composition (s0as1, s1as0bs2, s2as0as1, s1as0bs2, s2as0as1, . . .). We will build
move-independent NEs on plays that admit such decompositions. ◁

We now prove that from any NE outcome of G in which a state occurs
infinitely often, we can derive an NE outcome from the same initial state
that admits an ultimately periodic simple decomposition. We choose the first
segment of this decomposition to correspond to the first phase of the two-phase
approach mentioned in the previous section: no targets of losing players must
appear outside of this first segment.

The idea of the following proof is as follows. There is ℓ ∈ N such that
no targets of losing players occur in π≥ℓ by definition of the Büchi objective.
Furthermore, due to the presence of an infinitely occurring state in π, for all
i ∈ J1, nK such that π ∈ Büchi(Ti), there is ti ∈ Ti such that all these states are
connected by simple histories or simple cycles that traverse only states in π≥ℓ.
Our desired decomposition is obtained by letting its first segment be a simple
history starting in s0 up to some ti and then selecting the other segments to
be the simple segments mentioned above such that all of the relevant targets
appears in their concatenation. Through this approach, we obtain an NE
outcome with an ultimately periodic decomposition S = (sgj)j∈N of period no
more than n.



150 Chapter 7 – Memory requirements for constrained Nash equilibria

Lemma 7.11. Let π′ be the outcome of an NE from s0 ∈ S in G such that some
state occurs infinitely often in π′ and let k = |{i ∈ J1, nK | π′ ∈ Büchi(Ti)}|.
There exists an NE outcome π from s0 in G such that, for all i ∈ J1, nK,
π ∈ Büchi(Ti) if and only if π′ ∈ Büchi(Ti), and π admits an infinite simple
segment decomposition (sg0, sg1, . . .) such that

(i) for all j ≥ 1 and all i ∈ J1, nK, if π /∈ Büchi(Ti), then no state of Ti occurs
in sgj and

(ii) for all j ≥ 1, sgj = sgj+max{k,1}.

Proof. We assume without loss of generality that k ≥ 1, i.e., that at least one
Büchi objective of G is satisfied. If this is not the case, we can add a new
player controlling no states whose target is S to enforce this assumption. For
convenience of notation, we assume that π satisfies Büchi(T1), . . . , Büchi(Tk).

We fix ℓ ∈ N such that for all i > k, no states of Ti occur in π≥ℓ. For all
i ∈ JkK, we fix ti ∈ Ti which appears in π≥ℓ. We define the decomposition S as
follows. We let sg0 be a simple history from s0 to t1 using only vertices from π

(we tolerate the history s0 if s0 = t1). For all 1 ≤ j < k, we let sgj be a simple
history or cycle from tj to tj+1. Finally, we let sgk be a simple segment from
tk to t1. Other segments are defined so condition (ii) holds. By construction,
the π generated from this decomposition satisfies condition (i). Theorem 6.8
ensures that π is the outcome of an NE.

When dealing with a play in an infinite arena, there need not be a state
occurring infinitely often within the play. This is the case, e.g., in arenas devoid
of cycles. We provide an example illustrating a game in which an NE in which
all players win cannot have an outcome with a finite simple decomposition, nor
with an ultimately periodic decomposition.

Example 7.8. We consider the two-player arena A (where all states are
controlled by P1) depicted in Figure 7.8, and the game G = (A, (Büchi({tℓ | ℓ ∈
2N}),Büchi({tℓ | ℓ ∈ 2N+ 1}))). On the one hand, we observe that the play π

obtained by playing the sequence of actions (b2a)ω is the outcome of an NE
from s0 in G as both objectives are satisfied.

We now show that no play of A that admits a finite or ultimately periodic
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s0 s1 s2 s3 s4

t0 t1 t2 t3 t4

. . .a a a a a

b b b b bb b b b b

Figure 7.8: A two-player arena where there is no outcome from s0 with a
finite simple decomposition satisfying the objectives Büchi({tℓ | ℓ ∈ 2N}) and
Büchi({tℓ | ℓ ∈ 2N+ 1}).

simple decomposition satisfies both Büchi objectives of G. A play admitting an
ultimately periodic simple decomposition is a lasso. Similarly, a play admitting
a finite simple decomposition has a simple play or simple lasso as a suffix. In
both cases, it is not possible to visit both targets infinitely often due to the
structure of A.

The play π admits the infinite simple decomposition S = (sgj)j∈N of π

defined by sg0 = s0bt0 and, for all j ∈ N>0, sgj = tj−1bsj−1asjbtj , consisting
of simple histories connecting consecutive target visits along π. An important
property of S that we will use in the sequel to construct finite-memory NE
is that no two segments of S with an index of the same parity have states in
common. ◁

We now explain how to derive NE outcomes with decompositions similar to
that of the previous example from arbitrary NE outcomes. Let π ∈ Plays(A)
be the outcome of an NE from s0 ∈ S in G such that no state occurs infinitely
often in π. We sketch how to derive an NE outcome from π that has an infinite
simple segment decomposition S = (sgj)j∈N such that for all odd (resp. even)
j ̸= j′, no state of sgj occurs in sgj′ and, for all j ≥ 1, no targets of players
whose objective is not satisfied by π occurs in sgj .

Once again, we aim to use sg0 of S to implement the first phase of our
two-phase mechanism. We obtain sg0 similarly to the case of outcomes with
states occurring infinitely often: there exists a position ℓ ∈ N such that no
states of Ti occur in π≥ℓ for all i ∈ J1, nK such that π /∈ Büchi(Ti). We let
ℓ0 ≥ ℓ be such that sℓ0 ∈ Ti for some i ∈ J1, nK such that π ∈ Büchi(Ti), and
choose sg0 to be a simple history that shares its first and last states with π≤ℓ0
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and that uses only states occurring in this prefix.

The other segments are constructed by induction. We explain how sg1 is
defined from ℓ0 to illustrate the idea of the general construction. As no states
appear infinitely often in π, there exists some position ℓ1 > ℓ0 such that no state
of π≤ℓ0 occurs in π≥ℓ1 and sℓ1 ∈ Ti for some i ∈ J1, nK such that π ∈ Büchi(Ti).
We let sg1 be a simple history that starts in last(sg0), ends in last(π≤ℓ1) and
uses only states that occur in the segment of π between positions ℓ0 and ℓ1. If
we construct sg2 similarly from ℓ1 (by induction), then it shares no states with
sg0 by choice of ℓ1. Proceeding with this inductive construction while ensuring
that all targets that are visited infinitely often in π occur infinitely often in
the decomposition being constructed, we obtain the desired decomposition.
Furthermore, the play described by this decomposition is an NE outcome the
characterisation of NE outcomes of Theorem 6.8. We formalise the sketch above
in the following proof.

Lemma 7.12. Let π′ be the outcome of an NE from s0 ∈ S in G such that no
state occurs infinitely often in π′. There exists an NE outcome π from s0 such
that, for all i ∈ J1, nK, π ∈ Büchi(Ti) if and only if π ∈ Büchi(Ti), and π admits
an infinite simple segment decomposition S = (sgj)j∈N such that

(i) for all j ≥ 1 and all i ∈ J1, nK, if π /∈ Büchi(Ti), then no state of Ti occurs
in sgj and

(ii) for all j ≠ j′, sgj and sgj′ have no states in common if j and j′ have the
same parity.

Proof. We let π′ = s0a0s1 . . . We assume without loss of generality that there
exists i ∈ J1, nK such that π ∈ Büchi(Ti) (this can be enforced by adding a
player for whom all states are targets if necessary). For convenience of notation,
we assume that {i ∈ J1, nK | π ∈ Büchi(Ti)} = J1, kK where k = |{i ∈ J1, nK |
π ∈ Büchi(Ti)}| ≥ 1. We define the sought outcome π via an infinite segment
decomposition.

We let ℓ ∈ N such that for all i > k, no states of Ti occur in π≥ℓ. There
exists some position ℓ0 ≥ ℓ such that sℓ0 ∈ T1. We let sg0 be a simple history
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from s0 to sℓ0 that only traverses states occurring in π′
≤ℓ0

.
We now assume that segments sg0, . . . , sgj and positions ℓ0, . . . , ℓj are

defined. We assume by induction that (a) for all j′ ≤ j, last(sgj′) ∈ Tj′ mod k+1,
(b) for all j′ ≤ j, sgj′ contains only states occurring in π′

≤ℓj′
, (c) for all j′ < j,

no states of π′
≤ℓj′

occur in π′
≥ℓj′+1

, and (d) for all j′′ ≤ j′− 2, sgj′ and sgj′′ have
no states in common.

We define ℓj+1 and sgj+1 as follows. There exists some ℓ ∈ N such that no
state of π′

≤ℓj
occurs in π′

≥ℓ. We choose ℓj+1 > ℓ such that sℓj+1
∈ T(j′+1) mod k+1.

We let sgj+1 be a simple history from sℓj to sℓj+1
that uses only states occurring

in the segment sℓjaℓj . . . sℓj+1
of π′.

We argue that the induction hypothesis is preserved by this choice. Properties
(a), (b) and (c) hold by definition. We show that (d) holds, i.e., that for all
j′ ≤ j − 1, sgj+1 and sgj′ have no states in common. Let j′ ≤ j − 1. It holds
that the states occurring in sgj+1 all appear in π′

≥ℓj
. By induction, all states

of sgj′ occur in π′
≤ℓj′

, and none of these states occur in π′
≥ℓj

. This ends the
inductive construction.

It remains to prove that the play π = sg0 · sg1 · . . . is the outcome of an NE.
This is immediate by Theorem 6.8 as all states appearing in π appear in π′ and,
by construction, π and π′ satisfy the same Büchi objectives of G.

7.3.3 Finite-memory Nash equilibria

In this section, we prove the following theorem by considering the two cases
distinguished in the previous section.

Theorem 7.13. Let G = (A, (Büchi(Ti))i∈J1,nK) be a Büchi game. Let σ′ be a
pure NE from a state s0 ∈ S. There exists a finite-memory pure NE σ from s0

such that all strategies of σ are induced by move-independent Mealy machines
and, for all i ∈ J1, nK, OutA(σ, s0) ∈ Büchi(Ti) if and only if OutA(σ

′, s0) ∈
Büchi(Ti).

We build finite-memory move-independent NEs from NE outcomes and
decompositions obtained through Lemma 7.11 and Lemma 7.12. In both cases,
we construct strategies following two phases from these decompositions. In
the first phase, players react and punish any deviation from the sequence of
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states of the first segment of the decomposition (i.e., if different actions are
used but they lead to the same successor, no punishment is used). This can be
achieved by adding all states of the segment in memory. A deviation can be
detected by checking whether the current state of the play is the current state
in the memory until the first segment is completed. In the second phase, the
players follow a strategy based on the suffix of the decomposition that excludes
the first segment, implemented similarly to the partially-defined strategies of
Section 7.2.3 that we had used for games with reachability objectives and
shortest-path costs. In practice, the constructions for the second phase differ
slightly for each type of outcome.

First, we consider an NE σ′ from s0 in G such that a state occurs infinitely
often in OutA(σ

′, s0). By Lemma 7.11, we can derive an NE outcome π from
s0 such that π and OutA(σ

′, s0) satisfy the same objectives of G, and π admits
a simple segment decomposition S = (sg0, sg1, . . . , sgk, sg1, . . . , sgk, . . .) where
no targets of losing players occur in segments sg1, . . . , sgk of S.

We only describe the second phase of the two-phase approach described
above. For the second phase, we switch to a strategy that is based on the
periodic decomposition S ′ = (sg1, sg2, . . . , . . .) of period k. We slightly adapt
the construction presented in Section 7.2.3 to loop back to the memory states
for the first segment at the end of sgk. More precisely, when reading last(sgk)

in memory states of the form (Pi, k), we update the memory to an appropriate
memory state of the form (Pi′ , 1).

By completing the above behaviour with switches to memoryless punishing
strategies (Theorem 6.2) if sg0 is not accurately simulated or if a player exits
the current segment, we obtain a finite-memory NE. The stability of the NE
follows from the characterisation of Theorem 6.8 for deviations that induce the
use of punishing strategies and the property that no targets of losing players
occur in segments sgj , j ≥ 1 for other (in-segment) deviations. We formally
present these finite-memory strategies in the following proof.

Lemma 7.14. Let σ′ be a pure NE from a state s0 such that some state occurs
infinitely often in OutA(σ

′, s0). There exists a finite-memory pure NE σ from s0

such that all strategies of σ are induced by move-independent Mealy machines
and, for all i ∈ J1, nK, π ∈ Büchi(Ti) if and only if OutA(σ

′, s0) ∈ Büchi(Ti).
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If A is finite, move-independent Mealy machines of size at most |S|+ n2 + n

suffice to implement the strategies of σ.

Proof. Let π be an NE outcome obtained via Lemma 7.11 from OutA(σ
′, s0).

We let k = max{1, |{i ∈ J1, nK | π ∈ Büchi(Ti)}|} and (sg0, sg1, . . .) be the
decomposition provided by the lemma. We argue that π is the outcome of a
finite-memory NE. Before constructing the Mealy machines, we first introduce
some notation. Let I ⊆ J1, nK be {i ∈ J1, nK | π /∈ Büchi(Ti)} if this set is not
empty, or {1} otherwise. For all i ∈ I, we let τ−i be a memoryless uniformly
winning strategy for the second player of the coalition game Gi = (Ai,Büchi(Ti))

(it exists by Theorem 6.2) and let W−i(coBüchi(Ti)) denote the winning region
of this player in Gi. We write sg0 = s0a0 . . . sr. Finally, we define SI =

⋃
i∈I Si.

For each i ∈ J1, nK, we define a Mealy machine Mi = (M,minit, nxtMi , upM)

as follows. We define M as the union of sets

{sℓ ∈ S | 0 ≤ ℓ ≤ r} ∪ ({Pi | i ∈ I} × J1, kK) ∪ {Pi | i ∈ I}

and minit = s0. The memory states that are game states correspond to the first
phase in the sketch above, and the others to the second phase. We note that
the memory bounds claimed for finite arenas follow from sg0 being simple.

The update function upM is defined as follows. For all ℓ < r, we let
upM(sℓ, sℓ) = sℓ+1. We let upM(sr, sr) = (Pi, 1) where i ∈ I is such that Pi
controls sr if sr ∈ SI and i is arbitrary otherwise. For all ℓ ≤ r and s ̸= sℓ,
if ℓ ≥ 1 and there exists i ∈ I such that sℓ−1 ∈ Si (i.e., s ∈ SI), we let
upM(sℓ, s) = Pi, and otherwise the update is arbitrary. Intuitively, in the first
phase, the strategy checks that the current state matches the one it should be
while following sg0 and switches to a special punishment state if a deviation
is detected. For all states of the form (Pi, j) ∈ M and all s ∈ S occurring in
sgj , we let upM((Pi, j), s) = (Pi′ , j′) where (a) Pi′ is the player controlling s

if s ∈ SI and otherwise, i′ = i, and (b) j′ = j if s ̸= last(sgj), and otherwise,
if s = last(sgj), we set j′ = j + 1 if j < k and j′ = 1 otherwise. For all
states of the form (Pi, j) ∈ M and all s ∈ S that do not occur in sgj , we let
upM((Pi, j), s) = Pi. Finally, for all i ∈ I and s ∈ S, we let upM(Pi, s) = Pi.

Let i ∈ I. We now define nxtMi . Let s ∈ Si. We first consider memory
states of the form sℓ. Fix ℓ ≤ r. If s = sℓ, we let nxtMi(sℓ, s) = aℓ if ℓ ̸= r and
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let nxtMi(sr, sr) be the first action of sg1 (i.e., the only action that follows sr

in sg1). Assume that s ̸= sℓ. If ℓ ≥ 1 and sℓ−1 ∈ SI , we let i′ ∈ I such that
s ∈ Si′ and set nxtMi(sℓ, s) = τ−i′(s) if i′ ̸= i. We let nxtMi(sℓ, s) be arbitrary
in all other cases.

We now deal with memory states of the form (Pi′ , j). Fix i′ ∈ I and
j ∈ J1, kK. If s occurs in sgj and s ̸= last(sgj), we let nxtMi((Pi′ , j), s) be the
action following s in sgj . If s = last(sgj) and j < k (resp. j = k), we let
nxtMi((Pi′ , j), s) be the first action of sgj+1 (resp. sg1). If s does not occur in
sgj , we let nxtMi((Pi′ , j), s) = τ−i′(s). Finally, we let nxtMi(Pi′ , s) = τ−i′(s) if
i′ ̸= i, and otherwise we let it be arbitrary.

We let σi be the strategy induced by Mi. It can be shown by induction that
the outcome of σ = (σi)i∈J1,nK is π. We omit the proof here; it is very close to
the argument for coherence appearing in the proof of Lemma 7.6.

It remains to show that σ is an NE from s0. It suffices to show that for all
i ∈ J1, nK, if π /∈ Büchi(Ti), then Pi does not have a profitable deviation. We
fix one such i ∈ J1, nK. By the characterisation of NE outcomes in Theorem 6.8,
all states in π are elements of W−i(coBüchi(Ti)).

Let π′ = s′0a
′
0s

′
1a1 . . . be a play starting in s0 that is consistent with the

strategy profile σ−i. We consider three cases. First, assume that the sequence of
states of π′ does not have the sequence of states of sg0 as a prefix. Let ℓ < r be
such that the sequence of states of π′

≤ℓ has the longest common prefix with that
of sg0. We have that ûpM(π′

≤ℓ) = sℓ+1. The definition of σ and the relation
s′ℓ+1 ̸= sℓ+1 imply that sℓ ∈ Si. It follows that π′

≥ℓ is a play consistent with
τ−i starting in sℓ ∈W−i(coBüchi(Ti)), thus π′

≥ℓ ∈ coBüchi(Ti). We obtain that
π′ ∈ coBüchi(Ti), ending this first case.

For the two other cases, we assume that the sequence of states of sg0 is
a prefix of the sequence of states of π′. For the second case, we assume that
for all states s occurring in π′

≥r, there is some j ≥ 1 such that s appears in
some sgj . Because there are no elements of Ti in these segments, it follows that
π′ ∈ coBüchi(Ti).

Finally, assume that some state appearing in π′
≥r does not occur in any of

the segments sgj with j ≥ 1. It follows that the memory state of the players
relying on Mi eventually becomes of the form Pi′ . Let ℓ ∈ N be the largest
number such that ûpM(π′

≤ℓ) is of the form (Pi′ , j). It holds that s′ℓ occurs in
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sgj and s′ℓ+1 does not occur in sgj by choice of ℓ. It follows that s′ℓ ∈ Si by
definition of σ (otherwise, s′ℓ+1 would occur in sgj). We obtain that i′ = i and
that π′

≥ℓ is a play consistent with τ−i starting in s′ℓ. Because s′ℓ occurs in sgj ,
we have s′ℓ ∈W−i(coBüchi(Ti)). As in the first case, we obtain π′ ∈ coBüchi(Ti),
ending the proof.

The classical approach to derive move-independent NEs from lasso NE
outcomes (e.g., those provided by Lemma 7.11) is to encode the whole lasso in
the memory. If |S| is finite, the resulting strategies from this approach have a
memory size of at most (|S|+ 2)n. When there are few players compared to
states of the game, the bound given in Theorem 7.14 can be seen as preferable
to the one obtained via this classical construction.

We now consider the case of NE such that no state occurs infinitely often
in their outcome. Let σ′ be an NE from s0 in G such that no state occurs
infinitely often in OutA(σ

′, s0). By Lemma 7.12, we can derive an NE outcome
π from s0 such that π and OutA(σ

′, s0) satisfy the same objectives of G, and π

admits a simple segment decomposition S = (sg0, sg1, sg2, . . .) where no targets
of losing players occur in segments other than sg0, and any two segments with
an index with the same parity traverse different sets of states.

Once more, we only describe the second phase of our two-phase approach.
We adapt the definitions of Section 7.2.3 in another way. Intuitively, to construct
a finite-memory strategy profile, we allocate infinitely many disjoint segments
to a same group of memory state. Due to this, players may not react to someone
exiting the current segment.

The update and next-move function in the original definitions are defined
from on the segment sgj for each memory state of the form (Pi, j). In this
setting, we define the update and next-move functions in memory states of
the form (Pi, 1) (resp. (Pi, 2)) from all odd segments (resp. all even segments
besides sg0) of S simultaneously. When the end of an even segment is reached
in a memory state of the form (Pi, 2), the memory is updated to a state of
the form (Pi′ , 1) (and similarly for odd segments). The choice that all odd
(resp. even) segments traverse pairwise disjoint set of vertices ensures that the
next-move function is well-defined.

If at some point in the second phase, a state that does not occur in an even
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segment is read in a memory state (Pi, 2), the memory is updated to a punishing
state Pi, such that players attempt to punish Pi with a memoryless strategy
(Theorem 6.2). We proceed similarly for the odd case. The resulting finite-
memory strategy profile is an NE from s0. On the one hand, any deviation such
that the memory never updates to a punishing state must only have vertices
that occur in segment sgj with j ̸= 0 in the limit. By choice of S, this deviation
cannot be profitable. Otherwise, it can be argued that the punishing strategy
does in fact sabotage the deviating player, so long as their objective is not
satisfied in π, by Theorem 6.8. We formally describe the construction above
and establish its correctness below.

Lemma 7.15. Let σ′ be a pure NE from a state s0 such that no state occurs
infinitely often in OutA(σ

′, s0). There exists a finite-memory pure NE σ from s0

such that all strategies of σ are induced by move-independent Mealy machines
and for all i ∈ J1, nK, π ∈ Büchi(Ti) if and only if OutA(σ′, s0) ∈ Büchi(Ti).

Proof. Let π be an NE outcome obtained via Lemma 7.12 from OutA(σ
′, s0).

We let (sg0, sg1, . . .) be the decomposition provided by the lemma such that all
sets of states traversed by segments with an even (resp. odd) index are pairwise
disjoint. We prove that π is the outcome of a finite-memory move-independent
NE. The construction below can be seen as an adaptation of the proof of
Theorem 7.14.

We introduce some notation. Let I ⊆ J1, nK be {i ∈ J1, nK | π /∈ Büchi(Ti)}
if this set is not empty, or {1} otherwise. For all i ∈ I, we let τ−i be a
memoryless uniformly winning strategy for the second player of the coalition
game Gi = (Ai,Büchi(Ti)) (it exists by Theorem 6.2) and let W−i(coBüchi(Ti))

denote the winning region of this player in Gi. We write sg0 = s0a0 . . . sr.
Finally, we define SI =

⋃
i∈I Si, E1 (resp. E2) to be the states occurring in

segments sgj with odd j (resp. even j ≥ 2), L1 = {last(sgj) | j ∈ 2N+ 1} and
L2 = {last(sgj) | j ∈ 2N+ 2} be the set of last states of odd and positive even
segments respectively.

For each i ∈ J1, nK, we define a Mealy machine Mi = (M,minit, upM, nxtMi)
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as follows. We define M as the union

{sℓ ∈ S | 0 ≤ ℓ ≤ r} ∪ ({Pi | i ∈ I} × J1, 2K) ∪ {Pi | i ∈ I}

and minit = s0.
The update function upM is defined as follows. For all ℓ < r, we let

upM(sℓ, sℓ) = sℓ+1. We postpone the definition of upM(sr, sr). For all ℓ ≤ r and
s ≠ sℓ, if ℓ ≥ 1 and there exists i ∈ I such that sℓ−1 ∈ Si (i.e., s ∈ SI), we let
upM(sℓ, s) = Pi, and otherwise the update is arbitrary. Let p ∈ J1, 2K. For all
states of the form (Pi, p) ∈M and all s ∈ Ep, we let upM((Pi, p), s) = (Pi′ , p′)
where (a) Pi′ is the player controlling s if s ∈ SI and otherwise, i′ = i, and (b)
p′ = p if s /∈ Lp, and otherwise we set p′ = 3 − p (i.e., if p = 1, it becomes 2

and vice-versa). For all states of the form (Pi, p) ∈ M and all s ∈ S \ Ep, we
let upM((Pi, p), s) = Pi. We let upM(sr, sr) = upM((Pi, 1), sr) where i ∈ I is
arbitrary (the definition does not depend on i because sr ∈ E1). Finally, for all
i ∈ I and s ∈ S, we let upM(Pi, s) = Pi.

Let i ∈ I. We now define nxtMi . Let s ∈ Si. We first consider memory
states of the form sℓ. Fix ℓ ≤ r. If s = sℓ, we let nxtMi(sℓ, s) = aℓ if ℓ ̸= r and
let nxtMi(sr, sr) be the first action of sg1. Assume that s ̸= sℓ. If ℓ ≥ 1 and
sℓ−1 ∈ SI , we let i′ ∈ I such that s ∈ Si′ and set nxtMi(sℓ, s) = τ−i′(s) if i′ ̸= i.
We let nxtMi(sℓ, s) be arbitrary in all other cases.

We now deal with memory states of the form (Pi′ , p). Fix i′ ∈ I and
p ∈ J1, 2K. Assume first that s ∈ Ep \ Lp. There is a unique j ∈ 2N+ p such
that s occurs in sgj (it is unique because all segments with an index with
the same parity traverse disjoint sets of vertices). We set nxtMi((Pi′ , p), s) to
the action following s in sgj . Next, assume that s ∈ Lp. There is a unique
j ∈ 2N+ (3− p) such that s = first(sgj). We let nxtMi((Pi′ , p), s) be the first
action of sgj . Finally, if s /∈ Ep and i′ ̸= i, we let nxtMi((Pi′ , p), s) = τ−i′(s),
and let it be arbitrary if i′ = i. Finally, we let nxtMi(Pi′ , s) = τ−i′(s) if i′ ̸= i,
and it is arbitrary otherwise.

We let σi be the strategy induced by Mi. It can be shown by induction that
the outcome of σ = (σi)i∈J1,nK is π. We omit the proof here; it is very close to
the argument for coherence appearing in the proof of Lemma 7.6.

It remains to show that σ is an NE from s0. It suffices to show that for all
i ∈ J1, nK, if π /∈ Büchi(Ti), then Pi does not have a profitable deviation. We fix
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one such i. By the characterisation of NE outcomes in Theorem 6.8, all states
in π are elements of W−i(coBüchi(Ti)).

Let π′ = s′0a
′
0s

′
1 . . . be a play starting in s0 that is consistent with the

strategy profile σ−i. We consider three cases. First, assume that the sequence
of states of π′ does not have the sequence of states of sg0 as a prefix. We can
prove the absence of a profitable deviation of Pi as in the same way as in the
proof of Theorem 7.14: π′ has a suffix consistent with τ−i starting in a state
occurring in sg0 that is therefore in W−i(coBüchi(Ti)).

For the other two cases, we assume that the sequence of states of π′
≤r

matches the sequence of states of sg0. Second, we assume that all states s

occurring in π′
≥r are elements of E1 ∪ E2. Because E1 and E2 do not intersect

Ti by construction of π (see Lemma 7.12), it follows that π′ ∈ coBüchi(Ti).
Finally, assume that some state appearing in π′

≥r is not an element of E1∪E2.
It follows that the memory state of the players relying on Mi eventually becomes
of the form Pi′ . Let ℓ ∈ N be the largest number such that ûpM(π′

≤ℓ) is of the
form (Pi′ , p). It holds that s′ℓ ∈ Ep and s′ℓ+1 /∈ Ep by choice of ℓ. It follows
that s′ℓ ∈ Si by definition of σ (otherwise, s′ℓ+1 would have to be an element of
Ep). We obtain that i′ = i and that π′

≥ℓ is a play consistent with τ−i starting
in s′ℓ. Because s′ℓ ∈ Ep, we have s′ℓ ∈ W−i(coBüchi(Ti)). We conclude that
π′ ∈ coBüchi(Ti). This ends the proof.
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Chapter 8

Introduction

In this part, we present the results described in Chapter 3.2, originating from
joint work with Mickaël Randour [MR22, MR24]. We study variations of
stochastic Mealy machines and the classes of finite-memory strategies they
induce. We provide a full description of the relationships between these classes
of in terms of expressive power.

We refer the reader to Chapter 3.2 for an extended presentation of the
context, and in particular for a description of our naming scheme for classes of
finite-memory strategies via three-letter acronyms. This part contains three
chapters. In the following, we summarise the contents of Chapter 9, in which
we discuss the definition of outcome-equivalence and provide a proof of Kuhn’s
theorem. We then provide the lattices for the settings that were omitted from
Chapter 3.2. These lattices are derived from the inclusion and separation
results that are proven in Chapter 10 and Chapter 11 respectively. We close
the chapter by discussing some related work.

Outcome-equivalence and Kuhn’s theorem. We define two strategies
of a player to be outcome-equivalent if they induce the same distributions
over plays from all initial states and for all pure strategy profiles of the other
players (Definition 2.46). In particular, a natural question is whether the
quantification over pure strategy profiles is coherent with the intuitive notion
of outcome-equivalence, which is to induce the same behaviour regardless of
the behaviour of the other players.

To answer this question, we provide three outcome-equivalence criteria
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depending on the nature of the compared strategies. We show that two
behavioural strategies are outcome-equivalent if and only if they agree over
histories consistent with either strategy (Lemma 9.1). We provide similar
criteria for the outcome-equivalence of two mixed strategies (Lemma 9.3) and
for the outcome-equivalence of a mixed and a behavioural strategy (Lemma 9.5).
All of these results essentially state that two strategy are outcome-equivalent if
and only if they make the same decisions in consistent histories. Through these
characterisations of outcome-equivalence, we can conclude that two outcome-
equivalent strategies do indeed share the same behaviour (see the related
Corollaries 9.2 and 9.4).

We then prove Kuhn’s theorem in Chapter 9.2. We do not follow the proof
of [Aum64], which considers a more general setting. We take inspiration from
the proof of [OR94] in finite extensive form games and adapt their argument
to the countably-branching infinite-horizon setting. Our outcome-equivalence
criterion for mixed and behavioural strategies (Lemma 9.5) provides some
intuition on how to construct outcome-equivalent strategies. We also provide a
simple example illustrating that without perfect recall, mixed strategies need
not admit outcome-equivalent behavioural strategies (Example 9.1).

We close this chapter by shifting our focus back to finite-memory strategies.
We provide sufficient conditions under which an observation-based stochastic
Mealy machine induces a behavioural strategy in games with imperfect infor-
mation. We prove that, in a context with perfect recall, all observation-based
Mealy machines induce behavioural observation-based strategies (Lemma 9.8),
and that, regardless of perfect recall, DRD stochastic Mealy machines always
induce behavioural strategies (Lemma 9.9).

Taxonomy of finite-memory strategies. Our results yield a full taxonomy
of randomised finite-memory strategies in four settings:

• finite arenas with perfect recall;

• finite arenas with no assumption on recall;

• countable arenas with perfect recall;

• countable arenas with no assumption on recall.



165

In Chapter 3.2, we presented lattices that describe the relationships in terms
of expressiveness between classes of randomised finite-memory strategies for
the most general and least general setting among these four. In the following,
we restate the lattice in the least general setting, and use it to derive the
lattices for the two previously disregarded settings. While we do not repeat the
lattice for the most general setting, we recall that, in that setting, all classes of
strategies are pairwise distinct and the only inclusions that hold follow from
one class of Mealy machines having more randomisation power than another
(see Figure 3.3).

Figure 8.1 depicts the expressiveness relationships between classes of ran-
domised finite-memory strategies in finite arenas with perfect recall. In this
setting, three inclusions require a proof: RDD ⊆ DRD, RRR ⊆ DRR and
RRR ⊆ RDR. The proofs of these inclusions only use one of the two assump-
tions made in our least general setting: for RDD ⊆ DRD and RRR ⊆ DRR

we only use perfect recall and for RRR ⊆ RDR, we only require the arena to
be finite. Without their required assumption, these inclusions fail, even if the
other assumption holds.

In Figure 8.2, we depict the relevant lattices for countable arenas with
perfect recall and for finite arenas with no assumption on perfect recall. First,
we discuss the former, i.e., the lattice of Figure 8.2a. The differences with
the lattice of Figure 8.1 are induced by the inclusion DRD ⊆ RDR no longer
holding in countable arenas: RDR strategies can only provide distributions
over finite sets of actions, while DRD strategies do not have this restriction
(see Lemma 11.10).

We now consider the latter setting, i.e., finite arenas with no assumption
on recall, for which we obtain the lattice of Figure 8.2b. In this case, the
differences with the lattice of Figure 8.1 follow from the failure of the inclusion
RDD in DRR (Lemma 11.12): if actions are not observable, a DRR strategy
cannot be used to emulate an RDD strategy that mixes two different constant
strategies. In particular, the inclusion of RDD in DRD fails in this setting.

Chapters 10 and 11 contain all of the statements required to obtain all of
our lattices.
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DRR = RRR = RDR
(Thm. 10.4, 10.5)
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Figure 8.1: Lattice of finite-memory strategy classes in terms of expressive
power in finite multi-player arenas with perfect recall.

RRR = DRR

RDR RRD

DDR DRD

RDD

DDD (pure)

(a) Lattice for countable multi-player
arenas with perfect recall.

RRR = RDR

DRR RRD

DDR DRD RDD

DDD

(b) Lattice for finite multi-player arenas
with no assumption on perfect recall.

Figure 8.2: Lattices of finite-memory strategy classes in terms of expressive
power.
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Related work. We discuss two lines of work related to this work. The
first one deals with the various types of randomness one can inject in strate-
gies and their consequences. Obviously, Kuhn’s theorem [Aum64] is a major
inspiration, as well as the examples of differences between strategy models
presented in [CDH10]. On a different but related note, [CDGH15] studies when
randomness is not helpful in games nor strategies (as it can be simulated by
other means or does not intervene).

The second axis concentrates on the use of randomness as a means to simplify
strategies or to reduce their memory requirements. On the one hand, [CdH04,
CHP08, CRR14, MPR20] study settings in which the performance of optimal
strategies with memory can (almost) be matched by memoryless randomised
strategies. On the other hand, [Cha07] and [Hor09] provide finer (upper and
lower) memory bounds for almost-surely winning strategies in zero-sum turn-
based stochastic Muller games by using DRD and RRR strategies respectively.

These are further motivations to understand randomised strategies even in
contexts where randomness is not needed a priori to play optimally.





Chapter 9

Outcome-equivalence and Kuhn’s
theorem

We discuss the definition of outcome-equivalence: we provide equivalent def-
inition that show that comparing two strategies only with respect to pure
strategies of the other players implies that they induce the same behaviour even
when the other players follow randomised strategies. We then provide a proof
of Kuhn’s theorem. The proof of one of its implications is inspired by our equiv-
alent reformulation of outcome-equivalence of mixed and behavioural strategies.
We close this chapter by providing sufficient conditions that ensure that the
strategies induced by observation-based Mealy machines are observation-based
behavioural strategies.

We fix an n-player arenaA = (S, (A(i))i∈J1,nK, δ) and an arena with imperfect
information P = (A, (Zi,Obsi)i∈J1,nK) built on A for the whole chapter.
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9.1 Outcome-equivalence

Two strategies are outcome-equivalent if and only if they induce the same
distribution over plays from any state for all pure strategies of the other players.
We restrict the strategies of the other players to pure strategies for a syntactic
reason, as we have defined distributions over plays only for mixed strategy
profiles and for behavioural strategy profiles.

We provide reformulations of outcome-equivalence for the comparison of two
behavioural strategies (Section 9.1.1), of two mixed strategies (Section 9.1.2)
and of a behavioural and a mixed strategy (Section 9.1.3). These reformulations
provide conditions in which the strategies of the other players do not intervene.
Intuitively, it is necessary and sufficient to check some condition over all histories
consistent with one of the strategies to establish the outcome-equivalence of
two randomised strategies.

9.1.1 Behavioural strategies

We first provide an equivalent formulation for the outcome-equivalence of
behavioural strategies. We use this reformulation in Chapter 10 to establish
inclusions between classes of finite-memory randomised strategies.

When comparing two behavioural strategies of a player, the distributions
they induce depend only on the suggestions these strategies provide in histories
that are consistent with them. Therefore, if these two strategies disagree only
in inconsistent histories, then they yield the same distributions regardless of
the strategy profile of the other players. Thus, the outcome-equivalence of
two behavioural strategies can be restated as them having to agree over the
histories that are consistent with (one of) the strategies.

Lemma 9.1. Let i ∈ J1, nK. Let σi and τi be behavioural strategies of Pi in A.
Then σi and τi are outcome-equivalent if and only if for all h ∈ Hist(A), if h
consistent with σi, then σi(h) = τi(h).

Proof. To simplify notation, we assume that i = 1; the general argument is
recovered by renaming the players and adapting the notation in the proof below.
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First, we assume that σ1 and τ1 are outcome-equivalent. Let h ∈ Hist(A)
be a history that is consistent with σ1. Let sinit = first(h) and let σ−1 be a
pure strategy profile of the players other than P1 with which h is consistent.
Let ā = (a(1), σ−1(h)) ∈ Ā(s). Let s ∈ supp(δ(last(h)), ā)). By definition of the
probability of a cylinder set and consistency of h with both σ1 and σ−1, we have

σ1(h)(a
(1)) =

Pσ1,σ−1
sinit (Cyl (hās))

Pσ1,σ−1
sinit (Cyl (h)) · δ(last(h), ā)(s)

.

Furthermore, Pτ1,σ−1
sinit (Cyl (h)) = Pσ1,σ−1

sinit (Cyl (h)) > 0 holds by outcome-
equivalence of σ1 and τ1. Therefore, we have

τ1(h)(a
(1)) =

Pτ1,σ−1
sinit (Cyl (hās))

Pτ1,σ−1
sinit (Cyl (h)) · δ(last(h), ā)(s)

.

It follows from the equations above and the outcome-equivalence of σ1 and τ1

that σ1(h)(a
(1)) = τ1(h)(a

(1)). We have shown that σ1(h) = τ1(h), which ends
the proof of the first direction.

Let us now assume that σ1 and τ1 coincide over histories consistent with
σ1. Let σ−1 be a pure strategy profile of the players other than P1 and let
sinit ∈ S be an initial state. It suffices to study the probability of cylinder
sets. Let h ∈ Hist(A, sinit) be a history starting in sinit. If h is consistent with
σ1, then all prefixes of h also are, therefore the definition of the probability
of a cylinder ensures that Pσ1,σ−1

sinit (Cyl (h)) = Pτ1,σ−1
sinit (Cyl (h)). Otherwise, if

h is not consistent with σ1, then h is necessarily of the form h′āh′′ with h′

consistent with σ1 and σ1(h
′)(a(1)) = 0. It follows that τ1(h

′)(a(1)) = 0, thus
Pσ1,σ−1
sinit (h) = Pτ1,σ−1

sinit (h) = 0. This shows that σ1 and τ1 are outcome-equivalent,
ending the proof.

A corollary of Lemma 9.1 is that two behavioural strategies are outcome-
equivalent if and only if they induce the same distribution over plays from any
state for all behavioural strategies of the other players. This follows directly from
the above and the definition of distributions over plays induced by behavioural
strategies.
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Corollary 9.2. Let i ∈ J1, nK, and let σi and τi be behavioural strategies of Pi
in A. Then σi and τi are outcome-equivalent if and only if for all behavioural
strategy profiles σ−i of players other than Pi and all s ∈ S, Pσi,σ−i

s = Pτi,σ−i
s .

9.1.2 Mixed strategies

We now state the counterpart of Lemma 9.1 for the outcome-equivalence of
two mixed strategies. Similarly to the case of behavioural strategies, we need
only check a property ranging over the set of histories consistent with the
considered strategies. We must thus formalise the notion of consistency with
a mixed strategy. Intuitively, a history is consistent with a mixed strategy if
it may occur with positive probability under the strategy and some pure (or
mixed) strategy profile of the other players. Formally, a history h ∈ Hist(A) is
consistent with a mixed strategy µi of Pi if and only if the set of pure strategies
of Pi with which h is consistent has a non-zero probability under µi.

Let h ∈ Hist(A). The contribution of a mixed strategy in the probability of
the cylinder of h from its first state is the probability under the mixed strategy
of the set of pure strategies with which h is consistent. It follows that two
mixed strategies are outcome-equivalent if and only if these probabilities are
the same for all histories that are consistent with the mixed strategies. This is
formalised as follows.

Lemma 9.3. Let i ∈ J1, nK. For all h ∈ Hist(A), let Σi
h ⊆ Σi

pure(A) denote the
set of pure strategies of Pi with which h is consistent. Let µi and νi be mixed
strategies of Pi in A. Then µi and νi are outcome-equivalent if and only if, for
all histories h ∈ Hist(A) consistent with µi, we have µi(Σ

i
h) = νi(Σ

i
h)

Proof. First, assume that µi and νi are outcome-equivalent. Let h =

s0ā0s1ā1 . . . ār−1sr ∈ Hist(A) be a history that is consistent with µi. Let
σ−i be a pure strategy profile of the players other than Pi with which h is con-
sistent. By outcome-equivalence of µ and νi, we obtain that Pµi,σ−i

s0 (Cyl (h)) =

Pνi,σ−i
s0 (Cyl (h)). By definition of probability distributions induced by mixed
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strategies this is equivalent to

µ(Σi
h) ·

r−1∏
ℓ=0

δ(sℓ, āℓ)(sℓ+1) = νi(Σ
i
h) ·

r−1∏
ℓ=0

δ(sℓ, āℓ)(sℓ+1).

In particular, since the product of transition probabilities appearing in the
above expressions is non-zero, we obtain that µi(Σ

i
h) = νi(Σ

i
h). This ends the

proof of the first implication.
For the other implication, we prove its contrapositive. We now assume that

µi and νi are not outcome-equivalent. We let s ∈ S and σ−i be a pure strategy
profile of the players other than Pi such that Pµi,σ−i

s ̸= Pνi,σ−i
s . There exists

h ∈ Hist(A, s) such that Pµi,σ−i
s (Cyl (h)) ̸= Pνi,σ−i

s (Cyl (h)) (as otherwise the
two distributions would coincide).

We may assume that Pµi,σ−i
s (Cyl (h)) > Pνi,σ−i

s (Cyl (h)): the set of cylinders
of histories with the same length as h is a countable partition of the set of plays
starting in s, and therefore we cannot have Pµi,σ−i

s (Cyl (h′)) ≤ Pνi,σ−i
s (Cyl (h′))

for all histories h′ starting in s with the same length as h. It follows from
this assumption that h is consistent with µi. Furthermore, Pµi,σ−i

s (Cyl (h)) >

Pνi,σ−i
s (Cyl (h)) implies that µi(Σ

i
h) > νi(Σ

i
h). This ends the proof of the second

implication.

Lemma 9.3 implies that two mixed strategies induce the same distributions
over plays for all mixed strategies of the other players.

Corollary 9.4. Let i ∈ J1, nK, and let µi and νi be mixed strategies of Pi in
A. Then µi and νi are outcome-equivalent if and only if for all mixed strategy
profiles µ−i of players other than Pi and all s ∈ S, Pµi,µ−i

s = Pνi,µ−i
s .

9.1.3 Mixed and behavioural strategies

We now consider the case in which we compare a mixed strategy to a behavioural
strategy. On the one hand, for a mixed strategy µ, its contribution to the
probability of a history cylinder is the probability under µ of the set of pure
strategies with which the history is consistent. On the other hand, the contri-
bution to the probability of a history cylinder of a behavioural strategy is the
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product of the probability of choosing the actions that appear along the history.
Therefore, a mixed strategy and a behavioural strategy are outcome-equivalent
if and only if these two contributions coincide over the set of histories that are
consistent with one of the two strategies. Formally, we obtain the following
result.

Lemma 9.5. Let i ∈ J1, nK. For all h ∈ Hist(A), let Σi
h ⊆ Σi

pure(A) denote the
set of pure strategies of Pi with which h is consistent. Let µi be a mixed strategy
of Pi in A and let σi be a behavioural strategy of Pi in A. The three following
assertions are equivalent:

(i) µi and σi are outcome-equivalent;

(ii) for all histories h = s0ā0s1 . . . ār−1sr ∈ Hist(A) consistent with µi, we
have µi(Σ

i
h) =

∏r−1
ℓ=0 σi(h≤ℓ)(a

(i)
ℓ );

(iii) for all histories h = s0ā0s1 . . . ār−1sr ∈ Hist(A) consistent with σi, we
have µi(Σ

i
h) =

∏r−1
ℓ=0 σi(h≤ℓ)(a

(i)
ℓ ).

Proof. We first prove that (i) implies (ii) and (iii), and then prove that the
negation of (i) implies the negations of (ii) and (iii).

Assume that µi and σi are outcome-equivalent. It follows from the definition
of consistency and of probability distributions induced by randomised strategies
that a history is consistent with a mixed or behavioural strategy τi of Pi if and
only it can occur with positive probability under τi with some pure strategy
profile of the other players. Therefore, the set of histories consistent with µi

and σi coincide due to their outcome-equivalence.
We let h = s0ā0s1 . . . ār−1sr ∈ Hist(A) be consistent with µi and σi. We

let σ−i be a pure strategy profile of the player other than Pi with which h is
consistent. On the one hand, we have

Pµi,σ−i
s0 (Cyl (h)) = µi(Σ

i
h) ·

r−1∏
ℓ=0

δ(sℓ, āℓ)(sℓ+1),
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and on the other hand, we have

Pµi,σ−i
s0 (Cyl (h)) =

r−1∏
ℓ=0

σi(h≤ℓ)(a
(i)
ℓ ) · δ(sℓ, āℓ)(sℓ+1).

It follows from
∏r−1

ℓ=0 δ(sℓ, āℓ)(sℓ+1) > 0 and the outcome-equivalence of µi and
σi that µi(Σ

i
h) =

∏r−1
ℓ=0 σi(h≤ℓ)(a

(i)
ℓ ). This ends the proof that (i) implies (ii)

and (iii).
We now assume that µi and σi are not outcome-equivalent and show that (ii)

and (iii) do not hold. Let s ∈ S and σ−i be a pure strategy profile of the
players other than Pi such that Pµi,σ−i

s ̸= Pσi,σ−i
s . There exists a history

h ∈ Hist(A, s) such that Pµi,σ−i
s (Cyl (h)) ̸= Pσi,σ−i

s (Cyl (h)). It follows that there
exist histories h(1) and h(2) of the same length as h such that Pµi,σ−i

s (Cyl
(
h(1)

)
) >

Pσi,σ−i
s (Cyl

(
h(1)

)
) and Pµi,σ−i

s (Cyl
(
h(2)

)
) < Pσi,σ−i

s (Cyl
(
h(2)

)
) (as the set of

cylinders of histories with the same length as h is a countable partition of the
set of plays). It follows that h(1) is consistent with µi and h(2) is consistent
with σi. By following a reasoning similar to the first part of the proof, we can
conclude h(1) and h(2) respectively witness that (ii) and (iii) do not hold.

Through Lemma 9.5, we obtain that the outcome-equivalence of a mixed
and behavioural strategy does not depend on the strategies of the other players.
All that matters is that the two compared strategies contribute in the same way
to the probability of cylinders of consistent histories. In particular, if we were to
extend the definition of probabilities over plays to strategy profiles that contain
both mixed and behavioural strategies, we would obtain that two strategies are
outcome-equivalent if and only if the same distributions over plays are induced
no matter the randomised strategies of the other players. This property can be
seen as a generalisation of Corollary 9.2 and Corollary 9.4.

9.2 Kuhn’s theorem

In this section, we prove Kuhn’s theorem stating the equivalence of mixed
and behavioural strategies. Our proof is based on that of [OR94] for finite
extensive-form games (i.e., games played on finite trees); we adapt the argument
they present to infinite-duration games on graphs. We compare the classes of
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randomised observation-based strategies in P to state the theorem in its most
general form. The result for the strategies of A follows by consider an arena
with imperfect information built on A where the observation functions are the
identify function.

Theorem 2.47 (Kuhn’s theorem [Kuh53, Aum64]). Let i ∈ J1, nK. For every
behavioural observation-based strategy σi of Pi in P, there exists an outcome-
equivalent mixed strategy µi. If Pi has perfect recall, then for every mixed
observation-based strategy µi of Pi in P, there exists an outcome-equivalent
behavioural strategy σi.

Lemma 9.5 provides some intuition on how to define mixed strategies from
behavioural strategies and vice-versa. We show at the end of the section that
without perfect recall, some mixed strategies need not admit an outcome-
equivalent behavioural strategy.

We first prove that for all behavioural strategies, there is an equivalent
mixed strategy.

Lemma 9.6. Let i ∈ J1, nK and σi be a behavioural observation-based strategy
of Pi in P. There exists a mixed observation-based strategy that is outcome-
equivalent to σi.

Proof. To simplify notation, we assume that i = 1. We define P =∏
h̄∈Obs1(Hist(A))A

(1)(last(h̄)), which can be seen as the set of pure observation-
based strategies.

We derive a mixed observation-based strategy from a product measure over
P . For all h ∈ Hist(A), we let µObs1(h) : a

(1) 7→ σi(h)(a
(1)). This distribution

is well-defined because σi is observation-based. We let µ′
1 be the (unique)

product measure over P induced by the taking the distributions µObs1(h) on
each component.

We let F : P → Σ1
pure(A) be the function that maps a pure observation-

based strategy seen as a function over Obs1(Hist(A)) to the same strategy
seen as a function over Hist(A). For all measurable Σ ⊆ Σ1

pure(A), we define
µ1(Σ) = µ′

1(F−1(Σ)). The mixed strategy µ1 is observation-based: the set of
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pure observation-based strategies has µ1-probability 1 because its inverse image
by F is P .

We now use the criterion of Lemma 9.5 to check the outcome-equivalence
of σ1 and µ1. Let h = s0ā0s1 . . . ār−1sr ∈ Hist(A) be consistent with σ1. Let
Σ1
h denote the set of pure strategies of P1 in A with which h is consistent. By

definition of µ1, we obtain that

µ1(Σ
1
h) =

r−1∏
ℓ=0

σ1(h≤ℓ)(a
(1)
ℓ ).

Indeed, we have that F−1(Σ1
h) is the set of elements of P such its component

for h≤ℓ is a
(1)
ℓ for all ℓ ∈ Jr − 1K. This ends the proof of the lemma.

We now show that all mixed strategies of a player with perfect recall admit
an outcome-equivalent behavioural strategy.

Lemma 9.7. Let i ∈ J1, nK and σi be a behavioural observation-based strategy
of Pi in P. Assume that Pi has perfect recall in P. Then there exists a mixed
observation-based strategy that is outcome-equivalent to σi.

Proof. We assume that i = 1 for convenience of notation.
Let µ1 be a mixed observation-based strategy of P1. For all histories

h ∈ Hist(P), we let Σ1
h ⊆ Σ1

pure(P) denote the set of pure strategies of P1 with
which h is consistent. We consider the partially defined behavioural strategy σ1

given by, for all h ∈ Hist(P) consistent with µ1, all actions ā ∈ Ā(last(h)) and
all states s ∈ supp(δ(last(h), ā)),

σ1(h)(a
(1)) =

µ1(Σ
1
hās)

µ1(Σ1
h)

.

We claim that the above behavioural strategy is well-defined (over its domain)
and is observation-based, and that any of its observation-based extensions are
outcome-equivalent to µ1. The claim regarding outcome-equivalence can be
shown directly through the equivalent property (ii) of Lemma 9.5.

We observe that for any history h ∈ Hist(P), ā ∈ Ā(last(h)) and s ∈
supp(δ(last(h), ā)), the set Σ1

hās of pure strategies that are consistent hās can be
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written as {τ1 ∈ Σ1
h | τ1(h) = a(1)}, i.e., this set does not depend on the actions

of the players other than P1 in ā and does not depend on s. Furthermore,
h ∈ Hist(P) is consistent with µ1 if and only if µi(Σ

1
h) > 0. It follows that σ1 is

well-defined over its domain.
It remains to show that σ1 is observation-based. Let h and h′ be histories

that are indistinguishable for P1. Because µ1 assigns a probability of zero to the
set of pure strategies that are not observation-based, it is sufficient to show that
for all pure observation-based strategies τ1 of P1, h is consistent with τ1 if and
only if h′ is to obtain that σ1(h) = σ1(h

′). Let τ1 be a pure observation-based
strategy of P1. All prefixes of h and h′ of the same length are indistinguishable,
and thus share their image by τ1. It follows that h is consistent with τ1 if and
only if h′ is.

We now provide a simple example illustrating that without perfect recall,
mixed strategies need not admit outcome-equivalent behavioural strategies.

Example 9.1. We consider a one-state POMDP with two actions Pa,b built
from the MDPMa,b = ({s, {a, b}, δ) – transitions in this MDP are self-loops.
This MDP is used to witness the separations of classes of finite-memory strategies
in Chapter 11; we depict it in said chapter, in Figure 11.1, Page 202. In P, we
assign to s, a and b a shared observation o.

Let µ denote the finite-support mixed strategy that uniformly mixed the
constant strategies a and b. No observation-based behavioural strategy is
outcome-equivalent to µ. Let σ : {o}({o}2)∗ → D({a, b}) be an observation-
based behavioural strategy of Pa,b. To obtain the outcome-equivalence of σ
and µ, σ must be able to distinguish the histories sas and sbs and play action
a and b respectively following these histories. However, because both histories
are indistinguishable, this cannot be the case. ◁

The mixed strategy of Example 9.1 is a finite-memory strategy: it can be
induced by a RDD Mealy machine whose randomised initialisation select a
memory state that cannot be left that selects one of the actions. It follows
that observation-based Mealy machines need not induced observation-based
behavioural strategies. We provide sufficient conditions to ensure that Mealy
machines induce observation-based strategies in the following section.
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9.3 Observation-based Mealy machines

As illustrated in Example 9.1, the strategy induced by an observation-based
Mealy machine need not be a behavioural strategy of P. We provide two
sufficient conditions that ensure that observation-based Mealy machine induce
an observation-based behavioural strategy. The first one we present introduces
a restriction on the games. The second one involves no assumptions on games,
but instead considers a restricted class of Mealy machines.

First, we show that all finite-memory strategies are behavioural in games
with perfect recall. Intuitively, the distribution over memory states depends
on the sequence of actions used by the considered player; the choice of actions
conditions the distribution over memory states at each time it is updated. The
visibility of actions makes it so the distribution over memory states depends
only on the observations fed to the Mealy machine.

Lemma 9.8. Let i ∈ J1, nK. Let M = (M,µinit, nxtM, upM) be an observation-
based Mealy machine of Pi. Assume that Pi has perfect recall in P. Then the
strategy induced by M is an observation-based behavioural strategy.

Proof. Let µw denote the distribution over memory states of M after w has taken
place for w ∈ (SĀ)∗ consistent with M. By definition of the strategy induced
by a Mealy machine, it suffices to show the following: for all w, v ∈ (SĀ)∗ that
are indistinguishable and consistent with M, we have µw = µv. This can be
shown by induction on the length of words in (SĀ)∗. On the one hand, for the
base case (the empty word), there is nothing to show.

Let w = w′sā and v = v′tb̄ ∈ (SĀ)∗ be indistinguishable and consistent
with M, and assume by induction that µw′ = µv′ . We show that µw = µv.
Because Pi has perfect recall in P, a(i) = b(i). For all m ∈M , we have (from
the inductive relationship of Equation (2.1)), that

µw(m) =

∑
m′∈M µw′(m′) · upM(m′, s, ā)(m) · nxtM(m′, s)(a(i))∑

m′∈M µw′(m′) · nxtM(m′, s)(a(i))
,
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and (since a(i) = b(i))

µv(m) =

∑
m′∈M µv′(m

′) · upM(m′, t, b̄)(m) · nxtM(m′, t)(a(i))∑
m′∈M µv′(m′) · nxtM(m′, t)(a(i))

.

Because M is observation-based and w and v are indistinguishable, it follows
from the previous equations that µw = µv.

We now try to identify a subclass of Mealy machines that induce behavioural
observation-based strategies regardless of whether the owner of the machine has
perfect recall. Example 9.1 shows that this is not the case for Mealy machines
with randomised initialisation. By adapting this example so the randomised
initialisation is emulated by a stochastic memory update after the first round
of the game, we can show that Mealy machines with randomised updates need
not induce behavioural observation-based strategies either. In contrast to these
types of Mealy machines, we can show that observation-based DRD Mealy
machines always induce behavioural observation-based strategies.

Lemma 9.9. Let i ∈ J1, nK. Let M = (M,minit, nxtM, upM) be a DRD Mealy
machine of Pi in P. Then the strategy induced by M is a behavioural strategy.

Proof. For a DRD strategy, the distribution over memory states at any point is
a Dirac distribution. As explained by Definition 2.20, the memory state mw

reached after w ∈ (SĀ)∗ is defined by induction. We have mε = minit and for
wsā ∈ (SĀ)+, we have mwsā = upM(mw, s, ā). Since M is observation-based, it
follows that mw depends only on the observations assigned to w ∈ (SĀ)∗. This
implies the claim of the lemma.



Chapter 10

Inclusions between finite-memory
strategy classes

Mealy machines, and therefore finite-memory strategies, can be differentiated
depending on which components of the Mealy machine are randomised. This
chapter presents the non-trivial inclusions between the different classes of
finite-memory strategies arising from these variations.

We first establish, in Section 10.1, that if a class of finite-memory strategies
is no more expressive than another in two-player arenas, then the same relation
holds in multi-player arenas. Section 10.2 and Section 10.3 present the proofs
that all RDD and RRR respectively admit outcome-equivalent DRD and DRR
strategies whenever we have perfect recall. Finally, we show that RRR strategies
admit outcome-equivalent RDR strategies in finite arenas in Section 10.4.

Contents
10.1 From two-player to multi-player arenas . . . . . . . 182

10.2 From mixed to behavioural strategies with finite
memory . . . . . . . . . . . . . . . . . . . . . . . . . . 184

10.3 From randomised to deterministic initialisation . . 191

10.4 From randomised to deterministic outputs in finite
arenas . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

181



182 Chapter 10 – Inclusions between finite-memory strategy classes

10.1 From two-player to multi-player arenas

To lighten notation, it is convenient to prove inclusions between different
classes of finite-memory strategies in the two-player setting. In this section, we
formally establish that if an inclusion holds between two classes of finite-memory
strategies in two-player arenas of from a certain class, then this inclusion extends
to all multi-player arenas of the same class.

Let n ∈ N>0 and let i ∈ J1, nK. We consider four classes of n-player arenas
with imperfect information with respect to Pi:

(i) CFP
n,i , the class of finite arenas where Pi has perfect recall;

(ii) CIPn,i , the class of countable arenas where Pi has perfect recall;

(iii) CFI
n,i , the class of finite arenas where Pi need not have perfect recall;

(iv) CIIn,i, the class of countable arenas where Pi need not have perfect recall.

We now fix a class Cn,i among the four above and the corresponding class C2,1
of two-player arenas.

Let X,Y,Z,A,B,C ∈ {D,R}. Assume that, in all arenas in C2,1, all
observation-based XYZ Mealy machines of P1 admit an outcome-equivalent
observation-based ABC Mealy machine. We claim that the same property holds
for observation-based XYZ Mealy machines of Pi in arenas in Cn,i. Given an
arena in Cn,i and an XYZ Mealy machine of Pi in this arena, we group the
players other than Pi into a coalition, and obtain a two-player arena in C2,1. In
this arena, we can apply our assumption on C2,1 to obtain an outcome-equivalent
ABC Mealy machine from our XYZ one. In the two-player arena, the coalition
player has access to the same pure strategies as the coalition in the original
arena. Therefore, it follows that the ABC Mealy machine obtained by the
assumption on two-player arenas is outcome-equivalent to the original XYZ
Mealy machine in the multi-player arena. We formalise this argument in the
proof below.

Theorem 10.1. Let X,Y,Z,A,B,C ∈ {D,R}. Let n ∈ N>0 and i ∈ J1, nK. Let
(Cn,i, C2,1) ∈ {(CFP

n,i , CFP
2,1 ), (CIPn,i , CIP2,1), (CFI

n,i , CFI
2,1), (CIIn,i, CII2,1)}. Assume that, in

all arenas of C2,1, all XYZ observation-based Mealy machines of P1 admit an
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outcome-equivalent ABC observation-based Mealy machine. Then, for all arenas
in Cn,i, all XYZ observation-based Mealy machines of Pi admit an outcome-
equivalent ABC observation-based Mealy machine.

Proof. We assume that i = 1 to simplify notation; the general case can be
obtained by renaming the players in the following argument. Let P ∈ Cn,1
where P = (A, (Zi,Obsi)i∈J1,nK) and A = (S, (A(i))i∈J1,nK, δ).

We consider the two-player arena A1 = (S,A(1),
∏

2≤i≤nA
(i), δ) obtained by

grouping the players other than P1 into a coalition. We let P1 be the arena
of imperfect observation on A1 in which the observations of P1 match their
observations in P and the other player is fully informed. We have P1 ∈ C2,1.

We identify histories and plays of A and A1. Therefore, strategies of P1 in
A are strategies of P1 in A1 and vice-versa. Similarly, observation-based Mealy
machines of P1 in P are observation-based Mealy machines of P1 in P1 and
vice-versa.

Let M be an XYZ observation-based Mealy machine of P1 in P. It is also
an XYZ observation-based Mealy machine of P1 in P1. By our assumption on
arenas in C2,1, there exists an ABC observation-based Mealy machine N of P1
such that M and N are outcome-equivalent in A1.

We claim that M and N are outcome-equivalent in A. Let σ1 and τ1

respectively denote the strategies induced by M and N. Let σ2, . . . , σn be
pure strategies of P2, . . . , Pn respectively in A, and let s ∈ S be an initial
state. Let τ2 be the pure strategy of the second player of A1 defined by
τ2(h) = (σ2(h), . . . , σn(h)) for all h ∈ Hist(A). By definition of distributions
induced by plays and outcome-equivalence of σ1 and τ1 in A1, we obtain
Pσ1,σ2,...,σn

A,s = Pσ1,τ2
A1,s

= Pτ1,τ2
A1,s

= Pτ1,σ2,...,σn

A,s . This shows the outcome-equivalence
of σ1 and τ1 in P.

Theorem 10.1 implies that we need only prove inclusions between classes of
finite-memory strategies in two-player arenas to obtain a result for all multi-
player arenas.
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10.2 From mixed to behavioural strategies with finite
memory

We prove that we can find an outcome-equivalent DRD strategy from any RDD
strategy, i.e., a strategy that mixes finitely many pure finite-memory strategies
can be emulated by using a Mealy machine with a deterministic initialisation,
deterministic updates and randomised outputs. The converse inclusion is not
true; we show this in Section 11.3. The construction use to establish our
inclusion yields a DRD strategy that has a state space of size exponential in
the size of the state space of the original RDD strategy. We complement our
inclusion result with a family of examples illustrating that some RDD strategies
for which this exponential blow-up in the number of states is necessary for any
outcome-equivalent DRD strategy. We show that this blow-up is unavoidable
in both deterministic turn-based two-player arenas and MDPs.

Let A = (S,A(1), A(2), δ) be a two-player arena. Fix an RDD strategy
M = (M,µinit, nxtM, upM) of Pi. Let us sketch how to emulate M with a DRD
strategy N = (N,ninit, nxtN, upN) built with a subset construction-like approach.
The memory states of N are functions f : supp(µinit)→M ∪ {⊥}. A memory
state f is interpreted as follows. Let m0 ∈ supp(µinit) be an initial memory
state. We let f(m0) = ⊥ if the history seen up to now is not consistent with the
pure finite-memory strategy (M,m0, nxtM, upM) obtained from M by fixing its
initial state to m0. Otherwise f(m0) is the memory state reached in the same
pure finite-memory strategy after processing the current history by iterating
memory updates from m0. Memory updates of N are naturally derived from
these semantics.

Using this state space and update scheme, we can compute the probability of
each memory state of the mixed finite-memory strategy M after some sequence
w ∈ (SĀ)∗ has taken place. Indeed, we keep track of each initial memory state
from which it was possible to be consistent with w, and, for each such initial
memory state m0, the memory state reached after w was processed starting
in m0. Therefore, this likelihood can be inferred from µinit; the probability of
M being in m ∈ M after w has been processed is given by the (normalised)
sum of the probability of each initial memory state m0 ∈ supp(µinit) such that
f(m0) = m.
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The definition of the next-move function of N is directly based on the
distribution over states of M described in the previous paragraph, and ensures
that M and N select actions with the same probabilities after any history. For
any action a(i) ∈ A(i)(s), the probability of a(i) being chosen in arena state s

and in memory state f is determined by the probability of M being in some
memory state m such that nxtM(m, s) = a(i), where this probability is inferred
from f .

Intuitively, we postpone the initial randomisation and instead randomise at
each step in an attempt of replicating the initial distribution in the long run.
The following proof formalises the DRD strategy outlined above and establishes
its outcome-equivalence with the RDD strategy it is based on. We also show
that this construction extends to the imperfect information setting, as long as
Pi has perfect recall.

Theorem 10.2. Let n ∈ N>0, A = (S, (A(i))i∈J1,nK, δ) be an n-player arena,
P = (A, (Zi,Obsi)i∈J1,nK) be an arena with imperfect information and i ∈ J1, nK.
Let M = (M,µinit, nxtM, upM) be an RDD strategy of Pi in A. There exists
a DRD strategy N = (N,ninit, nxtN, upN) such that N and M are outcome-
equivalent. Furthermore, if M is observation-based in P and Pi has perfect
recall in P, then this outcome-equivalent DRD strategy N is also observation-
based.

Proof. Theorem 10.1 implies that proving the theorem for two-player arenas
implies it for arenas with any number of players. Thus, we assume that n = 2

and write A = (S,A(1), A(2), δ).
We formalise the strategy described above. Let us write M0 for the support

of the initial distribution µinit of M. We define the set of memory states N to
be the set of functions M0 →M ∪ {⊥}. The initial memory state of N is given
by the identity function ninit : m0 7→ m0 over M0. The update function upN is
as follows. For any f ∈ N , any s ∈ S and ā ∈ Ā(s), we let upN(f, s, ā) be the
function f ′ such that for all m0 ∈M0, we have

f ′(m0) =

upM(f(m0), s, ā) if f(m0) ∈M and nxtM(f(m0), s) = a(i)

⊥ otherwise.
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Whenever we perform an update of the memory, we refine our knowledge on
what the initial memory state could have been according to the actions selected
by Pi prior to the update. We map to ⊥ any initial memory states m0 such that
the played action would not have been selected in the memory state f(m0) ∈M ,
effectively removing m0 from the set of initial memory states from which we
could have started.

The next-move function nxtN is defined as follows: for any memory state
f ∈ N and s ∈ S, we let nxtN(f, s) be arbitrary if f maps ⊥ to all memory
states, and otherwise nxtN(f, s) is the distribution over A(i) such that, for all
a(i) ∈ A(i)(s), we have

nxtN(f, s)(a
(i)) =

∑
m0∈M0

nxtM(f(m0),s)=a(i)

µinit(m0)∑
m′

0∈f−1(M) µinit(m
′
0)
.

The memory state f ∈ N mapping ⊥ to all initial memory states is only
reached whenever a history inconsistent with M has taken place under M.
Thanks to Lemma 9.1, we need not take in account histories inconsistent with
M to establish the outcome-equivalence of M and N. This explains why the
next-move function is left arbitrary in that case.

By construction, if M is an observation-based Mealy machine of Pi in P,
then N can be made observation-based by adequately choosing actions in the
memory state f mapping ⊥ to all initial memory states.

We now show that M and N are outcome-equivalent via Lemma 9.1. To this
end, we first show a relation, for each w ∈ (SĀ)∗ consistent with M, between
the distribution µw ∈ D(M) over the memory states of M after processing w

and the function fw = ûpN(w) (see Definition 2.20 for the definition of the
iterated memory update function ûpN(w)) reached after N reads w. Formally,
this relation is as follows: for any w ∈ (SĀ)∗ consistent with M and any memory
state m ∈M , we have

µw(m) =

∑
m0∈f−1

w (m) µinit(m0)∑
m0∈f−1

w (M) µinit(m0)
. (10.1)

In the above, f−1
w (M) is the set of initial memory states m0 ∈ M0 of M that

are compatible with w taking place. This equation intuitively expresses that
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N accurately keeps track of the current distribution over memory states of M
along a play. A corollary of the above is that whenever we follow histories
consistent with M, we are assured to never reach the memory state of N that
assigns ⊥ to all states in M0.

We prove Equation (10.1) with an inductive argument. The case of w = ε

is trivial: by definition µε = µinit and fε is the identity function over M0. Now,
let us assume that Equation (10.1) holds for w′ ∈ (SĀ)∗ consistent with M,
and let us prove it for w = w′sā consistent with M.

To write the inductive relation between µw′ and µw, we use an adapted
(albeit equivalent in this context) form of Equation (2.1) of Section 2.4.4. In
this case, the update function upM and next-move nxtM of M are deterministic.
Thus, instead considering sums weighted by Dirac distributions, we only sum
over relevant states for clarity.

First, we remark that it may be the case that f−1
w (M) ̸= f−1

w′ (M). In light of
this, we must take care not to have f−1

w (M) = ∅, in which case the denominator
of the right-hand side of Equation (10.1) evaluates to zero. From the definition
of upN, it follows that f−1

w (M) is formed of the memory elements m0 ∈ f−1
w′ (M)

such that nxtM(fw′(m0), s) = a(i). We know that w = w′sā is consistent with M.
This implies there is some m ∈M such that nxtM(m, s) = a(i) and µw′(m) > 0.
From the inductive hypothesis (Equation (10.1) with w′), we obtain that there
is some m0 ∈ f−1

w′ (M) such that fw′(m0) = m, otherwise the right-hand side
of the equation would evaluate to zero. The equality fw′(m0) = m implies
m0 ∈ f−1

w (M), thus we have shown that f−1
w (M) is non-empty.

Now that we have shown that both sides of Equation (10.1) are well-defined
for w, we move on to its proof. Let us write nxtM(·, s)−1(a(i)) for the set
{m ∈M | nxtM(m, s) = a(i)}. From the inductive relation between µw and µw′ ,
we obtain that

µw(m) =

∑
m′∈nxtM(·,s)−1(a(i))

upM(m′,s,ā)=m

µw′(m′)∑
m′∈nxtM(·,s)−1(a(i)) µw′(m′)

.
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For the numerator, we obtain from the inductive hypothesis that∑
m′∈nxtM(·,s)−1(a(i))

upM(m′,s,ā)=m

µw′(m′) =
∑

m′∈nxtM(·,s)−1(a(i))
upM(m′,s,ā)=m

∑
m0∈f−1

w′ (m
′)

µinit(m0)∑
m′

0∈f
−1
w′ (M) µinit(m

′
0)

=
∑

m0∈f−1
w (m)

µinit(m0)∑
m′

0∈f
−1
w′ (M) µinit(m

′
0)
.

To derive the simple sum from the double sum, we rely on the fact that fw(m0) =

m holds if and only if upM(fw′(m0), s, ā) = m and nxtM(fw′(m0), s) = a(i), by
definition of upN.

For the denominator, from the inductive hypothesis, we obtain that∑
m′∈nxtM(·,s)−1(a(i))

µw′(m′) =
∑

m′∈nxtM(·,s)−1(a(i))

∑
m0∈f−1

w′ (m
′)

µinit(m0)∑
m′

0∈f
−1
w′ (M) µinit(m

′
0)

=
∑

m0∈f−1
w (M)

µinit(m0)∑
m′

0∈f
−1
w′ (M) µinit(m

′
0)
.

The last equality is a consequence of the definition of upN: recall that f−1
w (M)

consists of the elements m0 ∈ f−1
w′ (M) such that nxtM(fw′(m0), s) = a(i). By

combining the two equations above, we immediately obtain Equation (10.1),
ending the inductive argument.

We now establish the outcome-equivalence of M and N. Let h = ws ∈
Hist(A) be a history of A consistent with M. Let a(i) ∈ A(i)(s) be an action
enabled in s. The probability of a(i) being played after h under M is given by
the weighted sum ∑

m∈nxtM(·,s)−1(a(i))

µw(m).

Under N, the probability of a(i) being played is nxtN(fw, s)(a
(i)). It follows

from Equation (10.1) that these two probabilities coincide. We have shown the
outcome-equivalence of strategies M and N, ending the proof.

The construction of a DRD strategy provided in the proof of Theorem 10.2
leads to an exponential blow-up of the memory state space. For an RDD
strategy M = (M,µinit, nxtM, upM), we have constructed an outcome-equivalent
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Figure 10.1: The arena A3 from the proof of Lemma 10.3. Circles and squares
respectively represent states controlled by P1 and P2.

DRD strategy with a state space consisting of functions supp(µinit)→M ∪{⊥},
therefore with a state space of size (|M | + 1)|supp(µinit)|. We show that an
exponential blow-up in the number of initial memory states cannot be avoided
in general, already in the turn-based setting.

Lemma 10.3. Let k ∈ N>0. There exists a two-player turn-based deterministic
arena (respectively an MDP) Ak with k + 2 states and k + 1 actions, and an
RDD strategy Mk of P1 with k states such that any outcome-equivalent DRD
strategy must have at least 2k − 1 states.

Proof. We construct a two-player turn-based deterministic arena Ak =

(S
(k)
1 , S

(k)
2 , A(k), δ(k)) as follows. We let S

(k)
1 = {sj | 1 ≤ j ≤ k} ∪ {s⋆}, S(k)

2 =

{t} and A(k) = {ai | 1 ≤ i ≤ k}∪{b}. As usual, we write S(k) = S
(k)
1 ∪S

(k)
2 . We

define the deterministic transition function δ(k) : S(k) ×A(k) → S(k) as follows.
For each j ∈ J1, kK, only actions aj and b are enabled in sj , and all transitions
from sj move to t, i.e., δ(k)(sj , aj) = δ(k)(sj , b) = t. All states besides t are
reachable from t: we let, for all j ∈ J1, kK, δ(k)(t, aj) = sj and δk(t, b) = s⋆.
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In state s⋆, for all j ∈ J1, kK, the action aj labels a self-loop, i.e., we have
δ(k)(s⋆, aj) = s⋆. We illustrate the arena A3 in Figure 10.1.

We define an RDD strategy Mk = (M,µinit, nxtM, upM) of P1 as follows. We
let M = {1, . . . , k}, and µinit is the uniform distribution over M . The memory
update function is trivial: we set upM(m, s, a) = m for all m ∈M , s ∈ S(k) and
a ∈ A(k). For each memory state m ∈M , we let nxtM(m, sm) = nxtM(m, s⋆) =

am and, for all j ̸= m, we let nxtM(m, sj) = b. In M, once the initial state
is decided, it no longer changes. In the memory state m ∈ M , the strategy
prescribes action am in the states sm and s⋆, and in states sj with j ̸= m, the
strategy prescribes action b.

We now establish that all DRD strategies that are outcome-equivalent to M

must have at least 2k − 1 memory states. Let N = (N,ninit, nxtN, upN) be one
such DRD strategy. We give a lower bound on |N | by showing that there must
be at least 2k − 1 distinct distributions of the form nxtN(·, s⋆).

Let E = {j1, . . . , jℓ} ⊊ M be a proper subset of M . Con-
sider the history (parentheses are provided to improve readability) hE =

(t aj1 sj1 b)(t aj2 sj2 b) . . . (t ajℓ sjℓ b)t b s
⋆. Let m ∈ E. We see that along the

history hE , the action b is used in state sm. Therefore, hE is not consis-
tent with the pure finite-memory strategy (M,m, nxtM, upM) derived from M

by setting its initial state to m. Similarly, we see that for m /∈ E, the his-
tory hE is consistent with the pure finite-memory strategy (M,m, nxtM, upM).
Thus, the set of actions that can be played after hE when following Mk is
exactly the set {am | m ∈ M \ E} ≠ ∅. Due to the deterministic initial-
isation and updates of DRD strategies, there must be some nE ∈ N such
that supp(nxtN(nE , s

⋆)) = {am | m ∈ M \ E}. Necessarily, we must have
supp(nxtN(nE , s

⋆)) ̸= supp(nxtN(nE′ , s⋆)) whenever E ̸= E′, hence nE ̸= nE′ .
Consequently, we must have at least one memory state in N per proper subset
of M , i.e., |N | ≥ 2k − 1.

It remains to show the existence of a suitable MDP and RDD strategy of
this MDP. We explain how to adapt the deterministic arena Ak to a suitable
MDP Mk. Intuitively, we give replace the choices of P2 in Ak with random
transitions. More precisely, we letMk = (S(k), A(k), δ

(k)
M ) where δ

(k)
M agrees with

δ(k) for any state-action pair (s, a) ∈ S(k)×A(k) such that s ̸= t, and only action
b is enabled in t in Mk and δ

(k)
M (t, b) is a uniform distribution over S(k) \ {t}.
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We let M′
k be the Mealy machine ofMk defined in the same way as Mk, with

the additional output b in t. We can adapt the argument for Ak and Mk to
Mk and M′

k to conclude that any DRD strategy that is outcome-equivalent to
M′

k inMk requires at least 2k − 1 memory states.

10.3 From randomised to deterministic initialisation

We now establish that DRR strategies are as expressive as RRR strategies, i.e.,
randomness in the initialisation can be removed. The general idea to remove
randomisation in the initialisation is to simulate the behaviour of the RRR
strategy at the start of the play using a new initial memory state and then
move back into the RRR strategy we simulate.

We substitute the random selection of an initial memory element in two
stages. To ensure the first action is selected in the same way under both the
supplied strategy and the strategy we construct, we rely on randomised outputs.
The probability of selecting an action a(i) in a given state s of the arena in our
new initial memory state is given as the sum of selecting action a(i) in state s

in each memory state m weighed by the initial probability of m.
We then leverage the stochastic updates to behave as though we had been

using the original RRR strategy from the start. To achieve this, we base the
update function of the constructed Mealy machine on the inductive relationship
for the changes to the distribution over memory states after some sequence in
w ∈ (SĀ)∗ takes place (Equation (2.1) of Chapter 2.4.4).

We now formalise this construction. It also applies in arenas with imperfect
information where Pi has perfect recall. Perfect recall is useful to perform the
first memory update described above. We thus obtain the following result.

Theorem 10.4. Let n ∈ N>0, A = (S, (A(i))i∈J1,nK, δ) be an n-player arena,
P = (A, (Zi,Obsi)i∈J1,nK) be an arena with imperfect information and i ∈ J1, nK.
Let M = (M,µinit, nxtM, upM) be an RRR strategy of Pi in A. There exists
a DRR strategy N = (N,ninit, nxtN, upN) such that N and M are outcome-
equivalent, and such that |N | = |M |+1. Furthermore, if M is observation-based
in P and Pi has perfect recall in P, then this outcome equivalent DRD strategy
N is also observation-based.



192 Chapter 10 – Inclusions between finite-memory strategy classes

Proof. By Theorem 10.1, it suffices to consider the case n = 2 to obtain the
general case n ∈ N>0. Therefore, we assume that n = 2 and write A =

(S,A(1), A(2), δ).
We define a DRR strategy N = (N,ninit, nxtN, upN) as follows. Let ninit be

such that ninit /∈M . We set N = M∪{ninit}. We let upN and nxtN coincide with
upM and nxtM over M ×S× Ā and M ×S respectively (for the update function,
we identify distributions over M to distributions over N that assign probability
zero to ninit). It remains to define these two functions over {ninit} × S × Ā and
{ninit} × S respectively.

First, we complete the definition of the memory update function upN. Let
s ∈ S and ā ∈ Ā. We let upN(ninit, s, ā)(ninit) = 0. We assume that there
exists some m0 ∈ M such that µinit(m0) > 0 and nxtM(m0, s)(a

(i)) > 0 (i.e.,
the action a(i) has a positive probability of being played in s at the start of a
play under the strategy M). We set, for all m ∈M ,

upN(ninit, s, ā)(m) =

∑
m′∈M µinit(m

′) · upM(m′, s, ā)(m) · nxtM(m′, s)(a(i))∑
m′∈M µinit(m′) · nxtM(m′, s)(a(i))

.

Whenever we have nxtM(m0, s)(a
(i)) = 0 for all m0 ∈M0, we let upN(ninit, s, ā)

be a Dirac distribution over m for some arbitrary (but fixed independently of
a(i)) memory state m ∈M .

For the next-move function nxtN, we define, for all states s ∈ S and actions
a(i) ∈ A(i)(s),

nxtN(ninit, s)(a
(i)) =

∑
m∈M

µinit(m) · nxtM(m, s)(a(i)).

By construction, N is an observation-based Mealy machine in P whenever M

is.
It remains to prove that M and N are outcome-equivalent. By Lemma 9.1, it

suffices to show that both strategies suggest the same distributions over actions
along histories consistent with M. We provide a proof in two steps. First, we
consider histories with a single state. Second, we show that the distributions
over memory states coincide in both Mealy machines after any w ∈ SĀ that is
consistent with M takes place. We conclude from this and the construction of
N that the strategies induced by M and N map all histories that are consistent
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with M and have more than one state to the same distribution over actions of
Pi, ending the proof.

We show the first claim above. Let s ∈ S and a(i) ∈ A(i)(s). On the one
hand, the probability of the action a(i) being played after the history s under
M is given by ∑

m∈M
µinit(m) · nxtM(m, s)(a(i)).

On the other hand, the probability of this same action a(i) being played after
the history s under N is given by nxtN(ninit, s)(a

(i)). These two probabilities
coincide by construction.

Second, let w = sā ∈ SĀ be consistent with M. Let µw and νw denote the
distribution over memory states after w takes place under M and N respectively
(νw is well-defined because the first claim implies that sā is consistent with N).
Fix some m ∈M , and let us prove that µw(m) = νw(m). On the one hand, the
relation between µinit and µw given by Equation (2.1) (Section 2.4.4) states that

µw(m) =

∑
m′∈M µinit(m

′) · upM(m′, s, ā)(m) · nxtM(m′, s)(a(i))∑
m′∈M µinit(m′) · nxtM(m′, s)(a(i))

= upN(ninit, s, a
(i))(m),

and on the other hand, we have (because ninit is the sole initial state of N),

νw(m) =
upN(ninit, s, ā)(m) · nxtN(ninit, s)(a

(i))

nxtN(ninit, s)(a(i))
= upN(ninit, s, ā)(m).

We have shown that µw = νw. Furthermore, because nxtM and nxtN agree
over M × S, and that upM and upN agree over M × S × Ā, this equality
generalises to all w ∈ (SĀ)+ that are consistent with M. It follows that for
any history h ∈ (SĀ)+S that is consistent with M, the images of h by the
strategies induced by M and N match. We have shown that M and N are
outcome-equivalent.
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10.4 From randomised to deterministic outputs in
finite arenas

We are now concerned with the simulation of RRR strategies by RDR strategies,
i.e., with substituting randomised outputs with deterministic outputs. The idea
behind the removal of randomisation in outputs is to simulate said randomisation
by means of both stochastic initialisation and updates. These are used to
preemptively perform the random selection of an action, simultaneously with
the selection of an initial or successor memory state. This construction assumes
a finite arena. We can show that, in infinite arenas, some RRR strategies may
not admit any outcome-equivalent RDR strategy. This discussion is postponed
to Section 11.6.

Let A = (S, (A(i))i∈J1,nK, δ) be a finite n-player arena, i ∈ J1, nK and M =

(M,µinit, nxtM, upM) be an RRR strategy of Pi. We construct an RDR strategy
N = (N, νinit, nxtN, upN) that is outcome-equivalent to M and such that |N | ≤
|M | · |S| · |A(i)|. The state space of N consists of pairs (m,σi) where m ∈ M

and σi : S → A(i) is a pure memoryless strategy of Pi. To achieve our bound
on the size of N , we cannot consider all pure memoryless strategies of Pi, as
there are exponentially many. We illustrate how we select pure memoryless
strategies to achieve this bound through the following example. We apply the
upcoming construction on a DRD strategy (which is a special case of RRR
strategies) with a single memory state, i.e., a memoryless randomised strategy,
in an MDP.

Example 10.1. We consider an MDP M = (S,A, δ) where S = {s1, s2, s3},
A = {a1, a2, a3} and all actions are enabled in all states. The transition function
δ is irrelevant to this example, thus we leave unspecified. For our construction,
we fix an order on the actions of A: a1 < a2 < a3.

Let M = ({m},m, nxtM, upM) be the DRD strategy such that nxtM(m, s1)

and nxtM(m, s2) are uniform distributions over {a1, a2} and A respectively,
and nxtM(m, s3) is defined by nxtM(m, s3)(a1) =

1
3 , nxtM(m, s3)(a2) =

1
6 and

nxtM(m, s3)(a3) =
1
2 .

Figure 10.2 illustrates the probability of each action being chosen in each
state as the length of a segment. Let us write 0 = x1 < x2 < x3 < x4 < x5 = 1

for the endpoints of the segments appearing in the illustration. For each index
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s1 a1 a2

s2 a1 a2 a3

s3 a1 a2 a3

σk σ1 σ2 σ3 σ4

x1 = 0 x2 =
1
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1
2 x4 =

2
3 x5 = 1

Figure 10.2: Representation of cumulative probability of actions under strategy
M and derived memoryless strategies.

j ∈ J1, 4K, we define a pure memoryless strategy σj that assigns to each state
the action lying in the segment above it in the figure. For instance, σ2 is such
that σ2(s1) = a1 and σ2(s2) = σ2(s3) = a2. Furthermore, for all j ∈ J1, 4K, the
length xj+1 − xj of its corresponding interval denotes the probability of the
strategy being chosen during stochastic updates.

We construct an RDR strategy N = (N, νinit, nxtN, upN) that is outcome-
equivalent to M in the following way. We let N = {m} × {σ1, σ2, σ3, σ4}. The
initial distribution is given by νinit(m,σj) = xj+1 − xj , i.e., the probability
of σj in the illustration. We set, for any j, j′ ∈ J1, 4K, s ∈ S and a ∈ A,
upN((m,σj′), s, a)((m,σj)) = xj+1−xj . Finally, we let nxtN((m,σj), s) = σj(s)

for all j ∈ J1, 4K and s ∈ S.

The argument for the outcome-equivalence of N and M is the following: for
any state s ∈ S, the probability of moving into a memory state (m,σj) such
that σj(s) = a is by construction the probability nxtM(m, s)(a). ◁

In the previous example, we had a unique memory state m and we defined
some memoryless strategies from the next-move function partially evaluated in
this state (i.e., from nxtM(m, ·)). In general, each memory state may have a
different partially evaluated next-move function. Therefore we define memory-
less strategies for each individual memory state. For each memory state, we
can bound the number of derived memoryless strategies by |S| · |A(i)|; we look
at cumulative probabilities over actions (of which there are at most |A(i)|) for
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each state. This explains our announced bound on |N |.

Furthermore, in general, the memory update function is not trivial. Gen-
eralising the construction above can be done in a straightforward manner to
handle updates. Intuitively, the probability to move to some memory state of
the form (m,σi) is given by the probability of moving into m in M multiplied
by the probability of σ (in the sense of Figure 10.2).

We now formally state our result in the general setting and provide its
proof. The Mealy machine we construct has updates that do not depend on
the actions of the player who owns it. We use this property to generalise the
construction to finite arenas with imperfect information (perfect recall is not
needed).

Theorem 10.5. Let n ∈ N>0, A = (S, (A(i))i∈J1,nK, δ) be a finite n-player
arena, P = (A, (Zi,Obsi)i∈J1,nK) be an arena with imperfect information and
i ∈ J1, nK. Let M = (M,µinit, nxtM, upM) be an RRR strategy of Pi. There exists
an RDR strategy N = (N, νinit, nxtN, upN) such that N and M are outcome-
equivalent, and such that |N | ≤ |M | · (|S| · (|A(i)| − 1) + 1). Furthermore, if M
is observation-based, then so is N.

Proof. Theorem 10.1 implies that we need only consider the case n = 2 to obtain
the general case n ∈ N>0. We assume that n = 2 and write A = (S,A(1), A(2), δ)

in the remainder of the proof.
Let us fix a linear order on the set of actions A(i), denoted by <. Fix some

m ∈M . We let xm1 < . . . < xmk(m) denote the elements of the set ∑
b(i)<a(i)

nxtM(m, s)(b(i)) | s ∈ S, a(i) ∈ A(i)


that are strictly inferior to 1, and let xmk(m)+1 = 1. These xmj represent the
cumulative probability provided by nxtM(m, ·) over actions of Pi taken in order,
for each state of A. For each j ∈ J1, k(m)K, we define a memoryless strategy
σm
j : S → A(i) as follows: we have σm

j (s) = a(i) if
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xmj ∈

 ∑
b(i)<a(i)

nxtM(m, s)(b(i)),
∑

b(i)≤a(i)

nxtM(m, s)(b(i))

 .

In other words, for any state s ∈ S, we have σm
j (s) = a(i) whenever xmj is at

least the cumulative probability of actions strictly inferior to a(i) in nxtM(m, s)

and at most the cumulative probability of actions up to action a(i) included.
Refer to Figure 10.2 of Example 10.1 for an explicit illustration. We refer to
xmj+1 − xmj as the probability of σm

j in the sequel.
Let m ∈ M , s ∈ S and a(i) ∈ A(i)(s). We show that we can relate

nxtM(m, s)(a(i)) and the sum of the probabilities of each σm
j such that σm

j (s) =

a(i) as follows. First, we introduce some notation. Let I(m, s, a(i)) denote the
set of indices j such that σm

j (s) = a(i), i.e., the indices such that the jth strategy
related to m prescribes action a(i) in s. It holds that∑

j∈I(m,s,a(i))

(xmj+1 − xmj ) = nxtM(m, s)(a(i)). (10.2)

Let s ∈ S and a(i) ∈ A(i)(s). Equation (10.2) can be proven as follows. First,
note that all indices j appearing in the sum are consecutive by construc-
tion. Therefore, the sum above is telescoping and is equal to xmj++1 − xmj− ,
where j+ and j− denote the largest and smallest indices in the sum respec-
tively. By construction, we have xmj− =

∑
b(i)<a(i) nxtM(m, s)(b(i)) and xmj++1 =∑

b(i)≤a(i) nxtM(m, s)(b(i)). We conclude that xmj++1 − xmj− = nxtM(m, s)(a(i)),
proving Equation (10.2). This equation is used to establish the outcome-
equivalence of M with the strategy defined below.

We now define an RDR strategy N = (N, νinit, nxtN, upN). We define

N = {(m,σm
j ) | m ∈M, j ∈ J1, k(m)K}.

The initial distribution and update function of N are derived from those of M
multiplied with the probability of the memoryless strategy that appears in the
second component of the memory state of N into which we move. The initial
distribution νinit is defined as

νinit((m,σm
j )) = µinit(m) · (xmj+1 − xmj )
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for all (m,σm
j ) ∈ N . The update function is defined as

upN((m,σm
j ), s, ā)((m′, σm′

k )) = upM(m, s, b̄)(m′) · (xm′
k+1 − xm

′
k ),

where b̄ = (σm
j (s), a(2)) if i = 1 (respectively b̄ = (a(1), σm

j (s)) if i = 2), for
all (m,σm

j ), (m′, σm′
k ) ∈ N , s ∈ S and ā ∈ Ā. We remark that this update

function does not depend on the action of Pi given as input. Finally, the
deterministic next-move function of N is defined as nxtN((m,σm

j ), s) = σm
j (s)

for all (m,σm
j ) ∈ N and all s ∈ S. By construction, N is observation-based if

M is observation-based.
We now prove the outcome-equivalence of M and N. For any w ∈ (SĀ)∗,

let µw (resp. νw) denote the distribution over M (resp. N) after w has occurred
under strategy M (resp. N). The outcome-equivalence criterion of Lemma 9.1
and the definition of strategies derived from Mealy machines imply that, to
end the proof, it suffices to establish, that the following holds for all histories
h = ws consistent with M:∑

m∈M
µw(m) · nxtM(m, s)(a(i)) =

∑
m∈M

∑
j∈I(m,s,a(i))

νw((m,σm
j )). (10.3)

To prove Equation (10.3), we first show that for any w ∈ (SĀ)∗ consistent
with M, µw(m) is proportional to νw((m,σm

j )). Specifically, for all w ∈ (SĀ)∗

consistent with M, we have

νw((m,σm
j )) = (xmj+1 − xmj ) · µw(m). (10.4)

To show Equation (10.4), we proceed by induction. Consider the empty word
w = ε. Because µinit = µε and νinit = νε, Equation (10.4) follows from the
definition of νinit. Let us now assume inductively that for w′ ∈ (SĀ)∗ consistent
with M, we have Equation (10.4) and let us prove it for w = w′sā consistent
with M. Fix (m,σm

j ) ∈ N .
To invoke the inductive relation between νw and νw′ (Equation (2.1),

Section 2.4.4), w must be consistent with N. There exists m′ ∈ supp(µw′)

such that nxtM(m′, s)(a(i)) > 0 and j ∈ I(m′, s, a(i)) (this set is non-empty
due to nxtM(m′, s)(a(i)) > 0). By the induction hypothesis, we obtain
νw′((m′, σm′

j )) > 0, which is sufficient to conclude that w is consistent with N.
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We thus obtain, from the equation relating νw and νw′ , that νw((m,σm
j )) is

equal to∑
m′∈M

∑
j′∈I(m′,s,a(i)) νw′((m′, σm′

j′ )) · upN((m′, σm′
j′ ), s, ā)((m,σm

j ))∑
m′∈M

∑
j′∈I(m′,s,a(i)) νw′((m′, σm′

j′ ))
.

The numerator of the above can be rewritten as follows, by successively using
the definition of upN followed by the inductive hypothesis and Equation (10.2):∑

m′∈M

∑
j′∈I(m′,s,a(i))

νw′((m′, σm′
j′ )) · upM(m′, s, ā)(m) · (xmj+1 − xmj )

=(xmj+1 − xmj ) ·
∑

m′∈M

upM(m′, s, ā)(m) · µw′(m′) ·
∑

j′∈I(m′,s,a(i))

(xm
′

j′+1 − xm
′

j′ )


=(xmj+1 − xmj ) ·

∑
m′∈M

upM(m′, s, ā)(m) · µw′(m′) · nxtM(m′, s)(a(i)).

Following the same reasoning, the denominator can be rewritten as∑
m′∈M

µw′(m′) · nxtM(m′, s)(a(i)).

By combining the equations above and the formula for the update of µw, we
obtain that νw((m,σm

j )) = (xmj+1 − xmj ) · µw(m), ending the proof of Equa-
tion (10.4).

We now show that Equation (10.4) implies Equation (10.3), which will prove
that M and N are outcome-equivalent. Let h = ws ∈ Hist(A) be a history
consistent with M. Let a(i) ∈ A(i)(s). The probability that the action a(i) is
chosen after history h under M is given by

∑
m∈M µw(m) · nxtM(m, s)(a(i)).

The probability that a(i) is selected after h under N, on the other hand, is given
by

∑
m∈M

∑
j∈I(m,s,a(i))

νw((m,σm
j )) =

∑
m∈M

µw(m) ·
∑

j∈I(m,s,a(i))

(xmj+1 − xmj )


=
∑
m∈M

µw(m) · nxtM(m, s)(a(i)).
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In the above, the first equation is obtained from Equation (10.4) and the second
equation follows from Equation (10.2). This concludes the argument for the
outcome-equivalence of our two finite-memory strategies.

To end the proof of this theorem, we prove the upper bound on |N | given in
the statement of the result. For any memory state m ∈M , k(m) is bounded by
|S| · (|A(i)| − 1) + 1: by definition of the numbers xmj , we see that we must have
k(m) ≤ |S| · |A(i)|. To obtain the aforementioned bound, observe that for all
s ∈ S, we have

∑
b(i)<minA(i) nxtM(m, s)(b(i)) = 0, i.e., 0 admits (at least) |S|

different writings in the set of the xmj s, hence k(m) ≤ |S| · |A(i)| − (|S| − 1) =

|S| · (|A(i)| − 1) + 1. Therefore, we have at most |S| · (|A(i)| − 1) + 1 pairs of
the form (m,σm

j ) per memory state m ∈M . It follows that |N | ≤ |M | · (|S| ·
(|A(i)| − 1) + 1).

Remark 10.6. The choice of the order on the set of actions fixed at the start
of the previous proof influences the size of the constructed strategy. It is not
necessary to use the same ordering of actions for all memory states. The order
is used to define all memoryless strategies of the form σm

j , which do not interact
with strategies associated to other memory states. For this reason, it is possible
to use different orderings on actions depending on the memory state m that is
considered. ◁

Remark 10.7. The upper bound on the number of memory states given in the
statement of Theorem 10.5 can be slightly improved in a turn-based setting. In
general, we can replace the term |S| in the bound by the number of states that
Pi controls (more precisely, by the number of Pi-controlled states with at least
two enabled actions). ◁



Chapter 11

Separating classes of finite-memory
randomised strategies

This chapter presents examples witnessing the non-inclusions of classes of
randomised finite-memory strategies. We first present the separation results
that hold in our most restricted setting: finite arenas with perfect information.
These separations can be witnessed in an MDP with one state and two actions;
we present this MDP in Section 11.1. We complement these examples with
problem instances from the literature for which strategies from some class
suffice whereas strategies from the compared class do not.

We first show that DDD is a strict subset of RDD in Section 11.2. Sec-
tion 11.3 illustrates that DRD is not included in RDD. We then prove that
DRD is strictly included in RRD in Section 11.4. Finally, we show that RRD
and DDR strategies are incomparable in Section 11.5.

We then provide examples illustrating the non-inclusions of classes of strate-
gies in more general settings. We first show that DRD is not included in RDR
in infinite arenas 11.6. We then conclude by showing that RDD is not included
in DRR in arenas without perfect recall in Section 11.7.
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11.1 Separating classes of finite-memory strategies

We first formalise the MDP used throughout this chapter and explain the
interpretation of the Mealy machine illustrations appearing in the chapter.

sa b

Figure 11.1: The MDPMa,b with a single state and two actions.

We let Ma,b denote the MDP depicted in Figure 11.1. To prove the
separation of two distinct classes of strategies, we provide witness strategies
inMa,b whenever possible. This is one of the simplest settings that allows us
to distinguish classes of strategies. We accompany the separating examples of
Ma,b with examples derived from problems from the literature.

m0µinit(m0)

m1

m2

s ∈ S a(1) | pa(1)

b(1) | pb(1)

q1

q2

Figure 11.2: A fragment of a stochastic Mealy machine of P1 the up-
dates of which do not depend on the choices of other players. We have
pa(1) = nxtM(s)(a(1)), pb(1) = nxtM(s)(b(1)), q1 = upM(m0, s, ā)(m1) and
q2 = upM(m0, s, ā)(m2) (where ā is an action profile where the action of
P1 is a(1)).
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m1

1
2

m2

1
2

a | 1 b | 1

Figure 11.3: An RDD strategy ofMa,b that has no outcome-equivalent DDR
counterpart.

We describe Mealy machines through illustrations. Figure 11.2 illustrates a
fragment of a Mealy machine. Edges from a memory state are labelled by the
current arena state, then split for randomised action choices, and finally, split
again to represent stochastic memory updates. To lighten figures, we omit the
first segment of an edge (labelled by arena states) when presenting examples for
Ma,b, as there is a single state in that MDP. When depicting a Mealy machine
with deterministic updates, we omit the last edge subdivision.

11.2 DDD strategies are weaker than RDD ones

Pure finite-memory strategies are less powerful than RDD strategies. The
latter class of strategies can induce non-Dirac distributions over the plays
of Ma,b whereas the former cannot. We illustrate a strategy that has no
outcome-equivalent DDD strategy in Figure 11.3. Furthermore, there is no
DDR strategy that is outcome-equivalent to the strategy depicted in Figure 11.3:
DDR strategies lack the ability to provide a randomised action at the first step
of a game. We obtain the following result.

Lemma 11.1. There exists an RDD strategy in Ma,b such that there is no
outcome-equivalent DDR strategy. In particular, there is no outcome-equivalent
DDD strategy.

We now describe a setting in which RDD strategies suffice but DDD
strategies do not. We consider multi-objective MDPs, i.e., MDPs with mul-
tiple objectives or payoff functions. Let M = (S,A, δ) be an MDP and let
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st1 t2
a b

a a

Figure 11.4: An MDP. The highlighted states are targets for the reachability
objectives Reach(t1) and Reach(t2).

f̄ : Plays(M)→ Rd be a multi-dimensional payoff function We say that q ∈ R̄d

is achievable from s ∈ S if there exists a strategy σ such that Eσ
s (f̄) ≥ q.

Randomisation may be necessary to achieve vectors in multi-objective MDPs
(see, e.g., the example in Chapter 3.3). In Chapter 14, we prove that when
considering universally integrable payoffs, any achievable vector can be achieved
by using a mixed strategy with finite support. For certain classes of payoffs,
this result can be strengthened to show that it suffices to mix finitely many pure
finite-memory strategies to achieve any vector. We illustrate this property on
MDPs with multiple reachability objectives (see, e.g., [EKVY08, RRS17]). We
first provide an example where randomisation is necessary to achieve a vector.

Example 11.1. Consider the MDP depicted in Figure 11.4 and let s be the
initial state. We consider the two targets T1 = {t1} and T2 = {t2} and the
vector q = (12 ,

1
2). It is clear that no pure strategy witnesses the achievability

of q from s; a pure strategy yields the vector (1, 0) or (0, 1) if it chooses action
a or b in s respectively. However, there is an RDD strategy that witnesses the
achievability of q; any extension of the strategy depicted in Figure 11.3 that
accounts for the new game states t1 and t2 achieves q. ◁

As claimed above, RDD strategies suffice to achieve any vector in an MDP
with multiple reachability objectives. This follows from the results of [EKVY08]:
they show that the set of achievable vectors in this setting is a polyhedral set.
Their arguments imply that the vertices of the achievable set can be attained
via pure finite-memory strategies. This implies that any vector can be achieved
by a RDD strategy in this setting.

Lemma 11.2. Let M = (S,A, δ) be an MDP, s ∈ S, T1, . . . , Td ⊆ S be target
sets. For all vectors q that are achievable from s, there exists an RDD strategy
σ such that q ≤ (Pσ

s (Reach(Tj))j∈J1,dK.
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m

a | 12b | 12

Figure 11.5: A DRD Mealy machine for the memoryless strategy playing
uniformly at random at each step of a play. Witnesses that RDD ⊊ DRD.

11.3 DRD strategies are not included in RDD

We now show that there exists an DRD strategy that cannot be emulated by any
RDD strategy inMa,b. Intuitively, an RDD strategy can only randomise once
at the start between a finite number of pure finite-memory (DDD) strategies.
After this initial randomisation, the sequence of actions prescribed by the RDD
strategy is fixed relative to the play in progress. Any DRD strategy that chooses
an action randomly at each step, such as the strategy depicted in Figure 11.5,
i.e., the strategy playing actions a and b with uniform probability at each step
inMa,b, cannot be reproduced by an RDD strategy. Indeed, this randomisation
generates an infinite number of patterns of actions. These patterns cannot all
be captured by an RDD strategy due to the fact that its initial randomisation
is over a finite set.

Lemma 11.3. There exists a DRD strategy in Ma,b such that there is no
outcome-equivalent RDD strategy.

Proof. Let σ1 : {s} → D({a, b}) be the memoryless strategy inMa,b induced by
the Mealy machine depicted in Figure 11.5. The distribution σ1(s) is the uniform
distribution over {a, b}. The strategy σ1 induces a probability distribution over
plays of Ma,b such that all plays have a probability of zero. Indeed, let π be
a play ofMa,b. One can view the singleton {π} as the decreasing intersection⋂

ℓ∈N Cyl (π≤ℓ). Hence, Pσ1
s ({π}) = limℓ→∞ Pσ1

s (Cyl (π≤ℓ)). For all ℓ ∈ N, we
have Pσ1

s (Cyl (π≤ℓ)) =
1
2ℓ

. It follows that the probability of {π} is zero.
We now establish that there is no outcome-equivalent RDD strategy. First,

let us recall that any RDD strategy can be presented as a distribution over
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s t

(a, a)

(b, b)(a, b)

(b, a)

Figure 11.6: A concurrent arena. There exists a DRD almost-surely winning
strategy of P1 from s in the reachability game with target {t}, but no almost-
surely winning RDD strategy.

a finite number of pure finite-memory strategies. Given that there are no
probabilities on the transitions of Ma,b, for any pure strategy σpure

1 , there is a
single outcome under σpure

1 . We can infer that, for any RDD strategy ofMa,b,
there must be at least one play that has a non-zero probability, and therefore
this strategy cannot be outcome-equivalent to σ1.

We present a setting in which RDD strategies do not suffice, whereas DRD
strategies suffice. We study two-player zero-sum concurrent reachability games.
Let A = (S,A(1), A(2), δ) be a two-player arena, T ⊆ S and G = (A,Reach(T )).
In G, the goal of P1 is to maximise the worst-case probability of Reach(T ).
The following example illustrates that RDD strategies may not suffice to win
almost-surely in G from a given initial state, whereas DRD strategies do suffice.

Example 11.2. Consider the arena depicted in Figure 11.6 and the two-player
zero-sum game G = (A,Reach(t)). We first claim that there are no RDD
strategies of P1 that win almost-surely from s. We fix an RDD Mealy machine
M = (M,µinit, nxtM, upM) of P1 and let σM

1 denote the strategy it induces.
For all minit ∈ supp(µinit), we consider the pure finite-memory strategy σminit

1

induced by (M,minit, nxtM, upM). We fix minit ∈ supp(µinit) and a pure strategy
σ2 of P2 such that for all histories h ending in s, σ2(h) ̸= σminit

1 (h). It follows

that Pσ
minit
1 ,σ2

s (Reach(T )) = 0. This implies that M is not almost-surely winning
from s because, by the law of total probability, we have

PσM
1 ,σ2

s (Reach(T )) =
∑
m∈M

µinit(m) · Pσm
1 ,σ2

s (Reach(T )).

On the other hand, the memoryless randomised strategy depicted in Fig-
ure 11.5 is almost-surely winning: at each round prior to a visit of t, no matter



11.4 – DRD strategies are weaker than RRD ones 207

m1

1
2

m2

1
2

a | 12b | 12 b | 1

Figure 11.7: An RRD strategy ofMa,b with an infinite co-domain. It witnesses
the strictness of the inclusion DRD ⊊ RRD.

the choices of P2, this strategy ensures a probability of 1
2 of matching the action

of P2. ◁

In full generality, there need not exist optimal strategies in concurrent
reachability games (see Example 2.4, Page 48). Nonetheless, memoryless
randomised strategies (which are a restricted class of DRD strategies) can be
used to ensure any possible threshold in these games. In particular, if there
exists an optimal strategy, there always exists one that is memoryless. We
summarise these results in the following theorem.

Theorem 11.4 ([dAHK07, FBB+23]). Let A = (S,A(1), A(2), δ) be a two-player
concurrent arena, T ⊆ S and G = (A,Reach(T )) be a zero-sum reachability game.
If P1 can ensure θ ∈ [0, 1] in G from s ∈ S, then there exists a (randomised)
memoryless strategy ensuring θ from s.

11.4 DRD strategies are weaker than RRD ones

We highlight an RRD strategy inMa,b that has no outcome-equivalent DRD
strategy. On the one hand, a DRD strategy has a finite co-domain. Due to
its deterministic updates and initialisation, a DRD strategy can only output
distributions that are in the co-domain of its next-move function. This is not
necessarily the case for RRD strategies.

We consider the Mealy machine of Figure 11.7. Intuitively, this Mealy
machine attempts the action a at all steps with a positive probability due
to memory state m1. It also has a positive probability of never playing a

due to memory state m2. Therefore, a is played after a history s(bs)k with a
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probability that decreases to zero as k increases, as otherwise a would eventually
occur almost-surely.

This behaviour cannot be achieved with a DRD strategy. The distribution
over memory states of a DRD strategy following a history is a Dirac distribution
due to the deterministic initialisation and deterministic updates. It follows
that DRD strategies suggest actions with probabilities given directly by the
next-move function, i.e., the image of a DRD strategy is finite. It follows that
there is no DRD strategy that is outcome-equivalent to the strategy depicted
in Figure 11.7. We formalise this argument in the proof of the following lemma.

Lemma 11.5. There exists an RRD strategy in Ma,b such that there is no
outcome-equivalent DRD strategy.

Proof. We consider the RRD strategy σ1 induced by the Mealy machine M =

(M,m1, nxtM, upM) depicted in Figure 11.7. For any w ∈ ({s}{a, b})∗, let µw

denote the distribution over M after w as taken place under M. It can be
shown by induction that for any k ∈ N, µ(sb)k(m1) = 1 − µ(sb)k(m2) =

1
2k+1

and for any w ∈ ({s}{a, b})∗ with at least one occurrence of a, µw(m1) = 1. It
follows that for any k ∈ N, σ1((sb)ks)(a) = 1

2(2k+1)
and σ1((sb)

ks)(b) = 2k+1+1
2(2k+1)

,
and for any history h containing an occurrence of a, σ1(h)(a) = σ1(h)(b) =

1
2 .

We obtain that σ1 plays the action a with positive probabilities that can be
arbitrarily small and that all histories ofMa,b are consistent with σ1.

We now show that no DRD strategy is outcome-equivalent to σ1. Let
N = (N,ninit, nxtN, upN) denote a DRD strategy and let τ1 denote its induced
strategy. By Lemma 9.1, τ1 is outcome-equivalent to σ1 if and only if both
strategies are equal, as all histories are consistent with σ1. For all h = ws ∈
Hist(Ma,b), due to the deterministic initialisation and updates of N, we have
τ1(h) = nxtN(n, last(h)) for n = ûpN(w). In particular, τ1 cannot play the
action a with arbitrarily small positive probabilities as it can only assign finitely
many distributions to histories. We conclude that τ1 ≠ σ1, which ends the
proof.

The Mealy machine of Figure 11.7 is based on the finite-memory positively
winning strategies of P2 of [CDH10] for the snowball game. We have presented
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hide

home

wet

(r, k)

(h, t)

(r, t)

(h, k)

Figure 11.8: The arena of the snowball game of [dAHK07].

the snowball game in Example 2.4 (Page 48); we recall its arena A in Figure 11.8.
Let G = (A,Reach(home)).

We have previously seen that P1 does not have an optimal strategy from hide

in G by analysing the memoryless strategies of P1. Another approach to show
this is to show the existence of a positively winning strategy of P2 from hide in G,
i.e., a strategy σ2 such that, for all strategies σ1 of P1, Pσ1,σ2

hide (Reach(home)) > 0.
A positively winning strategy of P2 is shown to exist in [dAHK07] in G, although
it is shown that DRD strategies do not suffice. An RRD positively winning
strategy of P2 is provided in [CDH10]. This Mealy machine can be obtained
by renaming the outputs a and b in the Mealy machine of Figure 11.7 by t

and k respectively. This strategy is positively winning because it has a positive
probability of never throwing the snowball while having a positive probability
of throwing it at every round. Therefore, no matter when P1 chooses to run,
there is a positive probability of them being hit by a snowball.

More generally, in a two-player zero-sum concurrent reachability game, P2
has a positively winning strategy from any state that is not almost-surely
winning for P1. It is argued in [CDH10] that RRR strategies are sufficient for
P2 in this setting. We build on their construction to show that RRD strategies
suffice. We show the equivalent property that RRD strategies suffice to win
positively in games with safety objectives for P1.

We let A = (S,A(1), A(2), δ) be a two-player arena, T ⊆ S and let G =

(A,Safe(T )). The following properties are a consequence of the (correctness
proof of the) algorithm of [dAHK07] to compute states that are almost-surely
winning in concurrent zero-sum reachability games. Each state in G can be
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assigned a rank. States of highest rank are those from which P2 wins almost-
surely for their dual reachability objective Reach(T ). States of minimal rank,
if they are not simultaneously of maximal rank, are those from which P1 can
surely enforce the safety objective no matter the strategy of P2, i.e., P1 has
a (memoryless) strategy such that all plays consistent with this strategy that
start from a state of minimal rank satisfy the safety objective.

Let s ∈ S be a state that is positively winning. There exists an action of
P1, which we will call a sound action, and a set A

(2)
⋆ (s) ⊆ A(2)(s) of actions

of P2 such that the sound action surely prevents moving to states of higher
rank against all actions in A

(2)
⋆ (s). Furthermore, for actions of P2 outside of

A
(2)
⋆ (s), there is an action of P1 that moves to a state of strictly lower rank

with positive probability. For instance, in the snowball game (Figure 11.8),
seen as a safety game from the perspective of P2, the action k is a sound action
for hide with respect to A

(2)
⋆ (s) = {h}.

The property we require on our strategy to win positively is to use a
strategy much like that of Figure 11.7. On the one hand, it must have a positive
probability of only using sound actions from any point: this way, the safety
objective is ensured whenever P2 only uses actions in the sets of the form
A

(2)
⋆ (s) in the remainder of the play. On the other hand, to account for the

possibility of P2 taking an action outside of A(2)
⋆ (s) in state s, all actions should

have a positive probability of occurring in all rounds, so a vertex of lower rank
can be reached with positive probability in this case.

Because the state space is finite, one of two cases occurs. If P2 only
resorts to actions compatible with sound actions from some point on, then the
safety objective is satisfied with positive probability because sound actions are
guaranteed to be always played from some point on with positive probability.
Otherwise, states of minimal ranks are reached with positive probability, from
which P1 can surely avoid T .

The idea of the RRR strategy proposed in [CDH10] to obtain the behaviour
described above is to rely on pairs of memory states. In a pair, one memory
state only proposes sound actions and the other memory state suggests all
actions uniformly at random. When initialising the Mealy machine and each
time there is a change in the rank of states, to ensure the resulting strategy
has the property above, a stochastic memory update is used to give a uniform
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probability over such a pair of states.
We show that it suffices to randomise once at the start, for each rank

(besides the maximum and minimum one), whether only sound actions should
be suggested or whether we should play uniformly at random. This allows us
to avoid stochastic updates and obtain an RRD strategy.

Theorem 11.6. Let A = (S,A(1), A(2), δ) be a two-player arena, T ⊆ S and
G = (A, Safe(T )) be a zero-sum safety game. There exists an RRD strategy M

such that, for all sinit ∈ S, if there exists a positively winning strategy from sinit

for the objective Safe(T ), then M is positively winning from sinit.

Proof. We assume that there exists at least some state from which P1 wins
positively, otherwise the result is immediate. We use properties of [dAHK07,
Algorithm 3], which computes the set of almost-surely winning states in a
concurrent reachability game, i.e., the complement of the set of positively
winning states for the player with a safety objective. Each iteration of this
algorithm computes two sets of states that are positively winning for P1 and
(essentially) removes them from the state space. Therefore, it yields a non-
increasing sequence S = U0 ⊇ U1 . . . ⊇ Uk of sets of states (k + 2 being double
the number of iterations of the algorithm) such that S \Uk is the set of positively
winning states for P1. In particular, note that T ⊆ Uk. Let, for all s ∈ S, rk(s)
be the greatest j such that s ∈ Uj .

The sequence of sets (Uj)1≤j≤k has the following property. For all states
s ∈ S such that rk(s) < k, there exists a sound action a

(1)
sd (s) ∈ A(1)(s) and a

subset A
(2)
⋆ (s) ⊆ A(2)(s) such that

(i) for all a(2) ∈ A
(2)
⋆ (s) and all s′ ∈ supp(δ(s, a

(1)
sd (s), a(2))), rk(s′) ≤ rk(s),

and

(ii) for all a(2) ∈ A(2)(s) \A(2)
⋆ (s), there exists an action a(1) ∈ A(1)(s) and a

state s′ ∈ supp(δ(s, a(1), a(2))) such that rk(s′) < rk(s).

These conditions follow from the structure of the algorithm. In particular, the
pure memoryless strategy of P1 that only plays sound actions, when played
from states of rank 0, is such that all of its outcomes satisfy Safe(T ) (i.e., states
of rank 0 are surely winning for P1).
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We now define an RRD strategy. Let M = (M,µinit, nxtM, upM) such that
M = {sd, un}k−1 (sd and un respectively stand for sound and uniform). We
let µinit be a uniform distribution over M . Let m = (mj)1≤j≤k−1 ∈ M and
s ∈ S. If rk(s) = k, we let nxtM(m, s) be arbitrary. Otherwise, if rk(s) = 0 or
mrk(s) = sd, we let nxtM(m, s) be a Dirac distribution on a

(1)
sd (s). Otherwise (if

0 < rk(s) < k and mrk(s) = un), we let nxtM(m, s) be a uniform distribution
over A(1)(s). The deterministic memory updates are trivial: for all m ∈ M ,
s ∈ S and ā ∈ Ā(s), we let upM(m, s, ā) = m. Given w ∈ (SĀ)∗, we let µw

denote the distribution over memory states of M after w has taken place. For
m ∈M , we let σm

1 be the strategy induced by the Mealy machine obtained by
fixing the initial state of M to m.

We now prove that M induces a positively winning strategy from any state
from which P1 has a positively winning strategy. Let s0 be such a state and let
σ2 be an arbitrary strategy of P2. We use an inductive argument on histories,
starting with the history h0 = s0. At step j of the induction, we assume that
we have some history hj = wjsj consistent with σ2 such that rk(sj) < k − j

and supp(µwj ) = {sd, un}rk(sj) ×Mj for some Mj ⊆ {sd, un}k−rk(sj) (this last
hypothesis implies that hj is consistent with M, otherwise µwj would not be
defined). This induction hypothesis is clearly satisfied at step 0 of the induction
(positively winning states have rank at most k − 1).

We consider two cases. First, we assume that, for all extensions wjh of hj , if
they are consistent with σ2 and only sound actions are used by P1 in the suffix
h, then supp(σ2(wjh)) ⊆ A

(2)
⋆ (last(h)). We remark that if rk(sj) = 0, we are

necessarily in this case. We claim that for all extensions wjh of hj consistent
with σ2 in which only sound P1 actions occur in h, it holds that all states in h

have rank at most rk(sj). This follows by a straightforward induction using the
definition of sound actions and actions in sets A

(2)
⋆ (s′) (informally, the rank of

states cannot increase at each step in this setting).
By the induction hypothesis, there exists some m ∈ supp(µwj ) such that

mℓ = sd for all ℓ ≤ rk(sj). In particular, hj is consistent with σm
1 due to the

definition of updates in M. It follows from the above that all extensions of hj
that are consistent with both σm

1 and σ2 satisfy Safe(T ) (because all targets
have rank k). Therefore, only a subset of Cyl (hj) of Pσm

1 ,σ2
s -measure zero is

not included in Safe(T ). Therefore, Pσm
1 ,σ2

s (Safe(T )) ≥ Pσm
1 ,σ2

s (Cyl (hj)) > 0.
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We conclude that Pσ1,σ2
s (Safe(T )) > 0 as Pσm

1 ,σ2
s (Safe(T )) is the conditional

probability of Safe(T ) with respect to Pσ1,σ2
s assuming that the initial memory

state is m.
Next, assume that there exists a history wjh extending hj that is consistent

with σ2, in which only sound actions are used by P1 in the suffix h and such that
supp(σ2(wjh)) ⊈ A

(2)
⋆ (last(h)). We assume that wjh is the shortest such exten-

sion of hj . We fix a(2) ∈ supp(σ2)(wjh) \A(2)
⋆ (last(h)), and a(1) ∈ A(1)(last(h))

and sj+1 ∈ supp(δ(last(h), a(1), a(2))) such that rk(sj+1) < rk(last(h)). We let
ā = (a(1), a(2)).

We define hj+1 = wjhāsj+1 and show that it satisfies the induction hy-
pothesis above. First, by construction, hj+1 is consistent with σ2. Second, it
holds that rk(last(h)) ≤ rk(sj). This can be shown by the same argument as
in the first case, as only sound actions occur in h and all P2 actions taken in
any state s in h are in A

(2)
⋆ (s). It follows that rk(sj+1) < rk(sj), implying that

rk(sj+1) < k − (j + 1). Third, it can be shown by a straightforward induction
that supp(µw) = supp(µwj ) for w such that wjh = wlast(h). The omitted
inductive argument is based on the fact that all P1 actions are sound in h,
are taken in states of rank at most rk(sj) and supp(µwj ) = {sd, un}rk(sj) ×Mj .
Finally, it holds that supp(µwjhā) = {m ∈ supp(µwj ) | mrk(last(h)) = un} if
a(1) ̸= a

(1)
sd (last(h)) and supp(µwjhā) = supp(µwj ) otherwise. By the inductive

hypothesis, we obtain that

supp(µwjhā) = {sd, un}
rk(last(h))−1 × I × {sd, un}rk(sj)−rk(last(h)) ×Mj ,

where I = {un} in the first case, and I = {sd, un} otherwise. This shows that
we can continue the inductive argument with hj+1.

The second case can occur in the worst case only in the k − 1 first steps
of the induction: at step k, sk has rank 0, which guarantees we find ourselves
in the first case. This concludes the proof that M is positively winning from
s0.

11.5 RRD and DDR strategies are incomparable

We prove in this section that the classes RRD and DDR of finite-memory
strategies are incomparable. We have previously shown Lemma 11.1, which
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(a) A DDR strategy witnessing DDR ⊈ RRD.
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1
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b | 12
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(b) An outcome-equivalent RRR strat-
egy with fewer states.

Figure 11.9: Outcome-equivalent strategies witnessing the non-inclusion DDR ⊈
RRD. For the sake of readability, we do not label transitions by s. We omit
the probability of actions in Figure 11.9a as outputs are deterministic.

states that RDD ⊈ DDR and therefore implies that DRD ⊈ DDR and RRD ⊈
DDR. It remains to show that DDR ⊈ RRD.

We illustrate a DDR strategy ofMa,b that has no outcome-equivalent RRD
strategy in Figure 11.9a. For ease of analysis, we illustrate in Figure 11.9b
a DRR strategy with fewer states that is outcome-equivalent to the Mealy
machine depicted in Figure 11.9a. The DDR strategy of Figure 11.9a can be
obtained by applying the construction of Theorem 10.5 to the Mealy machine
of Figure 11.9b.

Intuitively, these strategies have a non-zero probability of never using action
a after any history, while they have a positive probability of using action a

at any time besides the first round and right after the action a occurs. We
formally prove this property below.

Lemma 11.7. Let σ1 denote the strategy ofMa,b induced by the Mealy machines
of Figure 11.9. For all histories h ∈ Hist(Ma,b) consistent with σ1 in which no
action appears or in which the last used action is a, Pσ1

s ({h(bs)ω}) > 0.

Proof. First, we provide a partial definition of σ1. For any w ∈ ({s}{a, b})∗, let
µw denote the distribution over memory states of M after w has taken place. It
can be shown by induction that for any w ∈ (({s}{b})+{s}{a})∗ and k ≥ 1, we
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have µw(m1) = 1 and µw(sb)k(m2) = 1− µw(sb)k(m3) =
1

2k−1+1
. It follows that

for any history h consistent with σ1 of the form s or h′as and k ≥ 1, we have
σ1(h)(b) = 1 and σ1(h(bs)

k)(a) = 1− σ1(h(bs)
k)(b) = 1

2k+2
.

Now, fix a history h consistent with σ1 such that there are no actions or
such that the last action is a. Next, we show that Pσ1

s ({h(bs)ω}) = Pσ1
s (Cyl (h)) ·

Pσ1
s ({(sb)ω}). We have, for any k ∈ N, σ1(h(bs)

k)(b) = σ1(s(bs)
k)(b) by

definition of σ1. Furthermore, the cylinder sequences (Cyl
(
s(bs)k

)
)k∈N and

(Cyl
(
h(bs)k

)
)k∈N respectively decrease when taking their intersections to the

singletons {(sb)ω} and {h(bs)ω}. We obtain the following equations from the
definition of Pσ1

s :

Pσ1
s ({h(bs)ω}) = lim

k→∞
Pσ1
s

(
Cyl
(
h(bs)k

))
= lim

k→∞
Pσ1
s (Cyl (h)) ·

k−1∏
ℓ=0

σ1(h(bs)
ℓ)(b)

=Pσ1
s (Cyl (h)) · lim

k→∞
·
k−1∏
ℓ=0

σ1(s(bs)
ℓ)(b)

=Pσ1
s (Cyl (h)) · lim

k→∞
Pσ1
s

(
Cyl
(
s(bs)k

))
=Pσ1

s (Cyl (h)) · Pσ1
s ({(sb)ω)}).

In light of the above, to show that Pσ1
s ({h(bs)ω}) > 0, it suffices to establish

that Pσ1
s ({(sb)ω}) > 0 because h is assumed to be consistent with σ1. It can be

shown that Pσ1
s ({(sb)ω}) = 1

2 as follows:

Pσ1
s ({(sb)ω}) = lim

k→∞
Pσ1
s

(
Cyl
(
s(bs)k

))
= lim

k→∞
1 ·

k−1∏
j=1

2j + 1

2j + 2

= lim
k→∞

1

2k−1
·
k−1∏
j=1

2j + 1

2j−1 + 1

= lim
k→∞

1

2k−1
· 2

k−1 + 1

21−1 + 1
=

1

2
;

the product of the probabilities of b being played in each round is simplified
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using the fact that the denominator of a term is double the numerator of the
previous one. This closes the proof of our claimed inequality.

The property stated in Lemma 11.7 cannot be reproduced by an RRD
strategy. There are two reasons to this.

First, along any play consistent with an RRD strategy, the support of the
distribution over memory states cannot increase in size. Because of deterministic
updates, the probability carried by a memory state m can only be transferred
to at most one state, and may be lost if the used action cannot be used while
in m. We formally prove this observation below.

Lemma 11.8. Let n ∈ N>0, A = (S, (A(i))i∈J1,nK, δ) be an n-player arena and
i ∈ J1, nK. Let N = (N, νinit, nxtN, upN) be an RRD strategy of Pi in A. Let
w = w′sā be consistent with N. Let νw and νw′ denote the distributions over N

after w and w′ have taken place under N. Then

(i) |supp(νw)| ≤ |supp(νw′)| and

(ii) if there exists n ∈ supp(νw′) such that nxtN(n, s)(a
(i)) = 0, then the

previous inequality is strict.

Proof. For any memory state n ∈ N , recall that

νw(n) =

∑
n′∈N νw′(n′) · upN(n′, s, ā)(n) · nxtN(n′, s)(a(i))∑

m′∈M νw′(n′) · nxtN(n′, s)(a(i))
.

In particular, n ∈ supp(νw) if and only if there exists n′ ∈ supp(νw) such that
upN(n

′, s, ā)(n) > 0 and nxtN(n
′, s)(a(i)) > 0, i.e., the probability of elements of

supp(νw) comes from elements of supp(νw′) in which a(i) is played with positive
probability in s. Because updates are deterministic, for any given n′ ∈ N , there
is a unique n ∈ N such that upN(n

′, s, a(i))(n) = 1. Therefore, any element
n′ ∈ supp(νw′) transfers its probability to at most one memory state when
deriving νw and this probability is transferred only if nxtN(n

′, s)(a(i)) > 0.
Both (i) and (i) follow.

The property of RRD strategies presented in Lemma 11.8 does not hold for
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strategies that have stochastic updates, such as those of Figure 11.9.

Second, we can engineer situations in which the size of the support of the
distribution over memory states of an RRD strategy must decrease. If after
a given history h, the action a has a positive probability of never being used
despite being assigned a positive probability at each round after h, then at
some point there must be some memory state of the RRD strategy that has
positive probability and that assigns (via the next-move function) probability
zero to action a. For instance, this is the case from the start with the RRD
strategy depicted in Figure 11.7. Intuitively, if at all times, all memory states
in the support of the distribution over memory states after the current history
assign a positive probability to action a, the probability of using a at each
round after h would be bounded from below by the smallest positive probability
assigned to a by the next-move function. Therefore a would eventually be
played almost-surely assuming h has taken place, contradicting the fact that
there was a positive probability of never using action a after h. By using action
a at a point in which some memory state in the support of the distribution
over memory states assigns probability zero to a, the size of the support of the
memory state distribution decreases.

By design of our DDR strategy, if one assumes the existence of an outcome-
equivalent RRD strategy, then it is possible to construct a play along which the
size of the support of the distribution over memory states of the RRD strategy
decreases infinitely often. Because this size cannot increase along a play, this
is not possible, i.e., there is no such RRD strategy. We formalise the sketch
above in the proof of the following lemma.

Lemma 11.9. There exists a DDR strategy in Ma,b such that there is no
outcome-equivalent RRD strategy.

Proof. Consider the Mealy machine M = (M,m1, nxtM, upM) depicted in Fig-
ure 11.9b and let σ1 denote the strategy induced by M. We recall that M is a
DRR Mealy machine that is outcome-equivalent to the DDR strategy illustrated
in Figure 11.9a. It therefore suffices to show that there are no RRD strategies
that are outcome-equivalent to σ1 to end the proof. Let N = (N, νinit, nxtN, upN)

be an RRD Mealy machine and let τ1 be the strategy it induces.
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We assume that σ1 and τ1 are outcome-equivalent towards a contradiction.
By Lemma 11.7, for all histories h ∈ Hist(Ma,b) that are consistent with σ1

such that either there are no actions in h or such that the last action is a, we
have Pσ1

s ({h(bs)ω}) > 0.
For any w ∈ ({s}{a, b})∗, let νw denote the distribution over memory states

in N after w has taken place under N. We show that for any history h consistent
with τ1, if the probability of a never appearing again after h is non-zero, i.e., if
Pτ1
s ({h(bs)ω}) > 0, and for any k ∈ N, we have τ1(h(bs)

k)(a) > 0, then there
exists some k0 ∈ N such that |supp(νh(bs)k0b)| > |supp(νh(bs)k0+1a)|.

Let h be consistent with τ1. Assume that Pτ1
s ({h(bs)ω}) > 0, and for

any k ∈ N, we have τ1(h(bs)
k)(a) > 0. By Lemma 11.8 (on the support of

the distributions νw), we need only show that for some k0 ∈ N, there exists
n ∈ supp(νh(bs)k0b) such that nxtN(n, s)(a) = 0. Assume towards a contradiction
that this is not the case, i.e., for all k ∈ N and all n ∈ supp(νh(bs)kb), we have
nxtN(n, s)(a) > 0. Let k ∈ N. The probability τ1(h(bs)

k+1)(a) is bounded
below by the positive constant

min {nxtN(n, s)(a) | n ∈ N s. t. nxtN(n, s)(a > 0} .

It follows that the action a must be used almost-surely assuming h has taken
place, contradicting the fact that Pτ1

s ({h(bs)ω}) > 0. This ends the proof of the
above claim.

We can repeatedly use the property shown above to construct a sequence
of non-zero natural numbers (kℓ)ℓ∈N such that (|supp(νwℓ

)|)ℓ∈N is an infinite
decreasing sequence, where w0 = ε and for all ℓ ∈ N, wℓ+1 = wℓ(sb)

kℓsa. This
contradicts the well-order of N. This shows that there are no RRD strategies
that are outcome-equivalent to σ1.

As in the previous sections, we provide a game and a specification that
cannot be accomplished using an RRD strategy, but can be accomplished using
a DDR strategy. In the following example, we consider a two-player turn-based
game with several reachability objectives with absorbing targets. The goal is
to construct, if it exists, a strategy that ensures given thresholds for several
reachability objectives at once.

Example 11.3. Let A = (S1, S2, A, δ) be the two-player turn-based arena
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Figure 11.10: A turn-based stochastic game with multiple reachability objec-
tives [CFK+13a]. Circles and squares respectively represent states controlled
by P1 and P2. States t1, t2 and t3 are drawn repeatedly for clarity (duplicates
all represent the same state). Actions p and c stand for proceed and check
respectively.
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Figure 11.11: A Mealy machine update scheme for the arena of Figure 11.10.
Updates depend only on states, not on actions. Updates that do not change
the memory state are not depicted.
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depicted in Figure 11.10, originating from [CFK+13a]. We consider three
targets: Tj = {tj} for j ∈ J1, 3K. In [CFK+13a], it is shown that there is no DRD
strategy σ1 of P1 such that for all strategies σ2 of P2, Pσ1,σ2

s0 (Reach(Tj)) ≥ 1
3

for all j ∈ J1, 3K, despite there existing an infinite-memory one. We prove that

(i) there is no RRD strategy that satisfies this specification and

(ii) there exists a DDR strategy that does.

We let, for k ∈ N, hk = s0(ps1ps2ps0)
k. A description of satisfactory

strategies is provided in the technical report [CFK+13b, App. B]. A strategy
σ1 of P1 ensures that all targets are visited with probability 1

3 if for all k ∈ N,
σ1(hkps3)(ℓ) = 1− 1

3·2k−1 , σ1(hkps1cs4)(ℓ) = 1− 1
2k+2 , σ1(hkps1ps5)(ℓ) = 1− 1

3·2k
and σ1(hkps1cs6)(ℓ) = 1− 1

2k+2 , and for all k ∈ N, the first two equations are
necessary to comply with the specification.

Let M be an RRD strategy and let τM1 be its induced strategy. We show
that τM1 cannot satisfy the multi-objective query by showing that the set of
distributions {τM1 (hkps3) | k ∈ N} must be a finite set, which is incompatible
with the requirements given above.

Let µw denote the distribution over memory states after w ∈ (SA)∗ has
taken place under M. For all k ∈ N and m ∈ M , it holds that µhkp(m) =∑

m′∈M ′ µinit(m
′) for some M ′ ⊆M (which depends on both k and m). This

follows from the equations for the updates of the distributions µw. In all states
along hkp, P1 only has a single action. Furthermore, M has deterministic
updates. Therefore, if w and wsa are prefixes of hkp, for all memory states
m ∈ M , we obtain that µwsa(m) is the sum of µw(m

′) for all memory states
m′ such that upM(m′, s, a) = m. In particular, this implies that the set of
distributions {µhkp | k ∈ N} is finite, which shows that {τM1 (hkps3) | k ∈ N} is
a finite set by definition of the strategy induced by a Mealy machine.

We now describe a Mealy machine N that induces a strategy that coincides
with σ1 over Cyl (s0), i.e., that ensures a probability of 1

3 for all three reachability
objectives. As in the proof of Lemma 11.9, we provide a DRR strategy that can
be transformed into an outcome-equivalent DDR strategy via the construction
underlying Theorem 10.5. We depict the relevant update scheme in Figure 11.11;
updates that do not change the current memory state are omitted from the
figure. Let νw denote the distribution over memory states of N after w ∈ (SA)∗
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has taken place under N. Let k ∈ N. Below, we are interested in the distribution
over memory states only for wk ∈ {hkp, hkps1c, hkps1p, hkps1ps2c}: it can be
shown by a straightforward induction that we have νwk

(m1) = 1−νwk
(m2) =

1
2k

.
We now specify the next-move function of N and describe the strategy σN

1

induced by N. We let nxtM(m0, s) be an arbitrary Dirac distribution for all
states s ∈ {s3, s4, s5, s6} (we require Dirac distributions so our Mealy machine
has an outcome-equivalent DDR strategy). For s3, we let nxtM(m1, s3)(r) =

2
3

and nxtM(m2, s3)(ℓ) = 1. It follows that for all k ∈ N, we have σN
1 (hkps3)(r) =

2
3·2k = 1

3·2k−1 . For s4, we let nxtM(m1, s4)(r) = 1
4 and nxtM(m2, s4)(ℓ) = 1.

We obtain that for all k ∈ N, we have σN
1 (hkps2cs4)(r) =

1
4·2k = 1

2k+2 . For s5,
we let nxtM(m1, s5)(r) =

1
3 and nxtM(m2, s5)(ℓ) = 1. For all k ∈ N, it holds

that σN
1 (hkps2ps5)(r) =

1
3·2k . Finally, for s6, we let nxtM(m1, s6)(r) =

1
4 and

nxtM(m2, s6)(ℓ) = 1. We conclude that for all k ∈ N, σN
1 (hkps2ps2cs6)(r) =

1
4·2k = 1

2k+2 . This shows that σN
1 ensures all reachability objectives are satisfied

with probability at least 1
3 . ◁

Consider a turn-based stochastic arena A = (S,A(1), A(2), δ) and targets
T1, . . . , Td ⊆ S. The general form of the problem from Example 11.3 is to decide,
given an initial state sinit ∈ S and a threshold vector q = (qj)1≤j≤d ∈ ([0, 1]∩Q)d

whether P1 can ensure q from sinit, i.e., whether there exists a strategy σ1 of
P1 such that for all strategies σ2 of P2, we have Pσ1,σ2

sinit (Reach(Tj)) ≥ qj for all
j ∈ J1, dK.

It is not known whether RRR strategies of P1 suffice to provide a positive
answer whenever possible in general. However, finite-memory strategies suffice
to approximate any vector for which the problem has a positive answer. More
precisely, if P1 can ensure q = (qj)1≤j≤d from sinit ∈ S, then for all ε > 0, P1
has an DRD strategy such that for all strategies σ2 of P2 and all j ∈ J1, dK, it
holds that Pσ1,σ2

sinit (Reach(Tj)) ≥ qj − ε [CFK+13a, ACK+20].

11.6 RDR strategies are weaker than DRD ones in
infinite arenas

By Theorem 10.5, any RRR strategy in a finite arena admits an outcome-
equivalent RDR strategy, i.e., randomisation in outputs can be removed without
reducing expressiveness. The construction presented in the proof of Theo-
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rem 10.5 yields a Mealy machine the size of which depends on both the size
of the arena and the size of the action space, and therefore does not work in
arenas with infinitely many states or infinitely many actions. We provide two
examples on deterministic MDPs: one with finitely many states and infinitely
many actions, and another with infinitely many states but only two actions.

For the first example, we consider a one-state MDP, which can be seen
extension of Ma,b with additional actions. Any memoryless strategy that
randomises over a given set of actions of the MDP require a RDR Mealy
machine with as many states as there are actions, due to the deterministic
outputs. It follows that a memoryless strategy that randomises over infinitely
many actions does not admit an equivalent RDR strategy.

Lemma 11.10. Let M = ({s},N, δ) be a deterministic MDP in which all
actions are enabled in all states. There exists a (memoryless) DRD strategy in
M such that there is no outcome-equivalent RDR strategy.

Proof. Let σ1 be the memoryless strategy of M defined by σ1(s)(ℓ) = 1
2ℓ+1 .

We claim that no RDR strategy inM is outcome-equivalent to σ1. Let M =

(M,µinit, nxtM, upM) be an RDR Mealy machine and let τ1 be the strategy
induced by M. By definition, for all ℓ ∈ N, we have

τ1(s)(ℓ) =
∑
m∈M

nxtM(m,s)=ℓ

µinit(m).

Because M is finite, we conclude that there are infinitely many ℓ ∈ N such that
τ1(s)(ℓ) = 0. It follows that τ1 cannot be outcome-equivalent to σ1.

Lemma 11.11. LetM = (N, {a, b}, δ) be a deterministic MDP over N in which
all actions are enabled in s. There exists a (memoryless) DRD strategy in M
such that there is no outcome-equivalent RDR strategy.

Proof. Let σ1 be the memoryless strategy ofM defined by σ1(ℓ)(a) =
1

2ℓ+1 for
all ℓ ∈ N. We claim that no RDR strategy inM is outcome-equivalent to σ1.
Let M = (M,µinit, nxtM, upM) be an RDR Mealy machine and let τ1 be the
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strategy induced by M. By definition, for all ℓ ∈ N, we have

τ1(ℓ)(a) =
∑
m∈M

nxtM(m,ℓ)=a

µinit(m).

Because M is finite, it follows from the above equation that the set {τ1(ℓ) |
ℓ ∈ N} is also finite. By definition of σ1, the set {σ1(ℓ) | ℓ ∈ N} is infinite. It
follows that there exists some ℓ ∈ N such that σ1(ℓ) ̸= τ1(ℓ). This shows that
σ1 and τ1 are not outcome-equivalent.

11.7 RDD and DRR strategies are incomparable with
imperfect recall

Theorem 10.2 and Theorem 10.4 respectively state that, if perfect recall holds,
any RDD strategy has an outcome-equivalent DRD counterpart and any RRR
strategy has an outcome-equivalent DRR counterpart. We illustrate that
without perfect recall, neither of these results hold. Our example is the same
as Example 9.1, which we have used to show that behavioural strategies are
less expressive than mixed strategies without perfect recall. We consider
the POMDP Pa,b built on Ma,b such that s, a and b are assigned the same
observation o. We show below that the RDD strategy that uniformly mixes the
two pure constant strategies ofMa,b has no observation-based DRR outcome-
equivalent counterpart in Pa,b.

Lemma 11.12. There exists an RDD observation-based Mealy machine in Pa,b

such that there is no outcome-equivalent DRR observation-based strategy.

Proof. Let σ1 be a (behavioural) history-based strategy (i.e., a strategy inMa,b)
that is outcome-equivalent to the RDD strategy of Pa,b obtained by uniformly
mixing the constant pure strategies a and b. Let M = (M,minit, nxtM, upM)

be an observation-based DRR strategy of Pa,b and let τ1 be the history-based
strategy it induces. We assume towards a contradiction that τ1 and σ1 are
outcome-equivalent.

We have nxtM(minit, o)(a) = τ1(s)(a) = σ1(s)(a) =
1
2 . It follows that the
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distributions µsa and µsb over M after sa and sb have respectively occurred are,
by definition, for all m ∈M ,

µsa(m) =
upM(minit, o, o)(m) · 12

1
2

= µsb(m).

We conclude that τ1(sas) = τ1(sbs). However, the outcome-equivalence of σ1
and τ1 implies that τ1(sas)(a) = σ1(sas)(a) = 1 and τ1(sbs)(b) = σ1(sbs)(b) = 1,
which constitutes a contradiction.
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Chapter 12

Introduction

In this part, we present the results described in Chapter 3.3, based on joint work
with Mickaël Randour [MR25]. We study Markov decision processes with multi-
dimensional payoff functions, which we call multi-objective Markov decision
processes. On the one hand, we study the structure of sets of expected payoff
vectors in countable multi-objective MDPs and the impact of their structure on
randomisation requirements in this framework. On the other hand, we study
finite multi-objective MDPs with continuous payoff functions and identify a
class of continuous payoffs for which sets of expected payoff vectors are closed.

We refer the reader to Chapter 3.3 for an extended presentation of the
context. We divide this part into three chapters. We summarise their contents
below, and comment on related work at the end of this chapter.

Expected payoffs in MDPs. Chapter 13 introduces our notation for
multi-objective MDPs. We also present general results of universally unambigu-
ously integrable payoffs, some of which are particularly useful in the following
chapter, Chapter 14.

We show that, for a subclass of universally unambiguously integrable payoffs,
their expectation from a state under a mixed strategy is the integral with respect
to the mixed strategy of the expectation of the payoff under all pure strategies
(Lemma 13.4). We exploit this result to prove several properties of universally
unambiguously integrable payoffs.

First, we use the above result to obtain a simple proof of the convexity of
sets of expected payoff vectors from a state (Theorem 13.7). The key to our
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argument is to observe that the expected payoff of a convex combination of
pure strategies is the convex combination of the expectations of the individual
strategies (Lemma 13.6).

Second, we prove a characterisation of universally integrable payoffs: a
one-dimensional payoff is universally integrable if and only if, for all initial
states, its set of expected payoffs from the state is bounded (Lemma 13.8).
We use this result to prove a technical result on universally unambiguously
integrable payoffs (Lemma 13.9) with which we can somewhat broaden the
application range of Lemma 13.4.

Payoff sets in multi-objective MDPs. Chapter 14 presents our general
results on the structure of expected payoff sets in multi-objective MDPs. We
focus on the relationship between sets of expected payoffs of pure strategies
and sets of expected payoffs of general strategies.

For universally integrable payoffs, we show that all expected payoff vectors
are convex combinations of expected payoffs of pure strategies (Theorem 14.4).
Our reasoning relies on lexicographic optimisation: a key observation is that, for
universally integrable payoffs, randomisation does not provide any additional
power for lexicographic optimisation (Theorem 14.1). It follows that finite-
support mixed strategies suffice to obtain any expected payoff vector.

We show that neither of the above properties extend to universally unam-
biguously integrable payoffs (Examples 14.1 and 14.4). Instead, we show that,
for such payoffs, convex combinations of pure payoffs can be used to approxi-
mate any expected payoff vector (Theorem 14.7) in the sense of the topology
of R̄d. In other words, finite-support mixed strategies suffice to approximate
any expected payoff vector.

We close the chapter by providing bounds on the support size of finite-
support mixed strategies. We build on Carathéodory’s theorem for convex hulls
(Theorem 2.1) to show that the expected payoff of any finite-support mixed
strategy can be obtained exactly by mixing no more than d+ 1 strategies in a
d-dimensional setting (Theorem 14.8). Together with our previous results, this
implies that it suffices to mix no more than d+ 1 pure strategies to match or
approximate the expectation of any strategy.
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Continuous payoffs in finite multi-objective MDPs. Chapter 15
focuses on finite multi-objective MDPs with continuous payoffs. We focus on
universally square integrable payoffs, i.e., payoffs whose square is universally
integrable. We show that for multi-dimensional universally square integrable
payoffs, the set of expected payoffs from each state is closed (Theorem 15.8).

We mainly follow a topological approach to establishing this result. First,
we introduce a topology on the set of behavioural strategies (Chapter 15.1).
We then show that, for one-dimensional square integrable payoffs, the function
from the space of strategies to R that maps a strategy to its expectation is
continuous: we first show this for real-valued payoffs (Theorem 15.6) then
extend it to universally square integrable payoffs (Theorem 15.7).

We then show that for continuous payoffs that are not universally integrable,
the function mapping a strategy to its expected payoff need not be continuous
(Example 15.1) and expected payoff sets need not be closed (Example 15.2).

Finally, we show that universally integrable shortest-path costs are univer-
sally square integrable in finite MDPs (Lemma 15.11). This shows that our
results for continuous universally square integrable payoffs applies to universally
integrable shortest-path costs defined with a positive weight function.

Related work. We provide a few references, complementing those cited in
Chapter 3.3. In our proof of Theorem 14.4, we invoke the separating hyperplane
theorem (Theorem 2.3). This theorem also plays a role in approximation
schemes of the set of achievable vectors: see, e.g., [FKP12, QK21]; a unifying
approach is presented in [Qua23].

Specifications with multiple objectives have also been considered in the con-
text of two-player games on finite turn-based deterministic arenas (e.g., [FH13,
CRR14]) and two-player games on finite turn-based arenas (e.g., [CFK+13a,
ACK+20]). Closely related to multi-objective specifications are approaches
that provide guarantees simultaneously in the worst case and the expected
case [BFRR17].

Regarding randomisation in strategies, [CDGH15] studies when randomisa-
tion is helpful in strategies or in transitions of games. In particular, the authors
show that if there exists an optimal strategy to maximise the probability of an
event in a finite MDP, then there exists a pure optimal strategy. This property
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is generalised by our result on lexicographic MDPs.



Chapter 13

Expected payoffs in Markov decision
processes

In this chapter, we introduce our notation for multi-objective Markov decision
processes and establish technical results regarding expected payoffs in Markov
decision processes. Notation is introduced in Section 13.1. In Section 13.2, we
show that expected payoffs with respect to mixed strategies can be written
as the integral with respect to the mixed strategy of expected payoffs with
respect to pure strategies. This result generalises Lemma 2.17, which states
the same property in the special case of objective indicators. This result plays
a major role in our proofs of some of the results of Chapter 14. We use the
generalisation of Lemma 2.17 to show that convex combinations of expected
payoffs are yet again expected payoffs in Section 13.3. Finally, in Section 13.4,
we provide a characterisation of universally integrable payoffs and a technical
property of universally unambiguously integrable payoffs.

We fix a countable MDPM = (S,A, δ) for this entire chapter.

Contents
13.1 Terminology and notation . . . . . . . . . . . . . . . 232

13.2 Payoffs under mixed strategies . . . . . . . . . . . . 233

13.3 Convexity of expected payoff sets . . . . . . . . . . . 236

13.4 Unambiguously integrable payoffs . . . . . . . . . . 238
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13.1 Terminology and notation

This section introduces terminology and notation for MDPs with multiple payoff
functions. Let d ∈ N>0. We summarise d payoffs f1, . . . , fd : Plays(M)→ R̄ as
a multi-dimensional payoff f̄ : Plays(M)→ R̄d, and write f̄ = (fj)j∈J1,dK.

Let f̄ = (fj)j∈J1,dK and let s ∈ S. We say that f̄ is universally (resp. un-
ambiguously) integrable whenever fj is universally (resp. unambiguously) inte-
grable for all j ∈ J1, dK. We now assume that f̄ is universally unambiguously
integrable.

We use the following notation for the set of expected payoff vectors from
an initial state.

Definition 13.1. Let Σ ⊆ Σ(M) be a set of strategies ofM and s ∈ S. We let
PayΣs (f̄) = {Eσ

s (f̄) | σ ∈ Σ} denote the set of (expected) payoffs of the strategies
in Σ from s. We let Pays(f̄) and Paypures (f̄) be shorthand for Pay

Σ(M)
s (f̄) and

Pay
Σpure(M)
s (f̄) respectively.

We refer to elements of Paypures (f̄) as pure expected payoffs. A set of expected
payoffs need not have a maximum for the component-wise order, e.g., there can
be several Pareto-optimal payoffs.

In multi-objective optimisation, the goal is to ensure a given threshold on
each dimension. This is formalised by the notion of achievable vectors.

Definition 13.2. A vector q ∈ R̄d is achievable (from s) if there exists a
strategy σ such that q ≤ Eσ

s (f̄). We say that σ witnesses that q is achievable.

For any class of strategies Σ ⊆ Σ(M), we let AchΣs (f̄) = down(PayΣs (f̄))

denote the set of vectors for which there exists a strategy of Σ witnesses that
they are achievable. We define Achs(f̄) and Achpures (f̄) as above.

As a technical tool in our analysis of expected payoff sets, we also consider
the lexicographic optimisation of multiple objectives. We can define ensuring
a threshold similarly than in the one-dimensional context (see Section 2.6.1),
with the order over R̄ replaced with the lexicographic order. We also define an
analogue of optimal strategies from the one-dimensional setting.
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Definition 13.3. A strategy σ is lexicographically optimal if Eσ
s (f̄) is the

lexicographic maximum of Pays(f̄).

13.2 Payoffs under mixed strategies

Let f : Plays(M) → R̄ be a one-dimensional universally unambiguously inte-
grable payoff. We generalise Lemma 2.17 from probabilities of objectives to
expectations of payoffs. Lemma 2.17 states for all s ∈ S, the probability of
an objective Ω under a mixed strategy µ from s is

∫
τ∈Σpure(M) P

τ
s(Ω)dµ(τ). We

extend this result from indicators to general payoffs by considering payoffs of
increasing complexity, analogously to the construction of the Lebesgue integral.
In the following statement, we impose restrictions on f that ensure that we
deal with a well-defined integral.

Lemma 13.4. Let µ be a mixed strategy, s ∈ S and f be a universally un-
ambiguously integrable payoff. If infτ Eτ

s(f) ≥ 0 or supτ Eτ
s(f) ≤ 0 or f is

Pµ
s -integrable, then the mapping Σpure(M)→ R̄ : τ 7→ Eτ

s(f) is measurable and

Eµ
s (f) =

∫
τ∈Σpure(M)

Eτ
s(f)dµ(τ).

Proof. Fix a state s ∈ S and let f be a universally unambiguously integrable
payoff. Throughout this proof, we use τ to (implicitly) denote pure strategies.
We show the result for payoffs of increasing complexity. First, we prove it for
indicators of objectives. Second, we show that it also holds for non-negative
simple functions (i.e., linear combinations of indicators) by linearity of the
integral. Third, we deal with non-negative payoffs with the monotone conver-
gence theorem. Fourth, we consider Pµ

s -integrable payoffs. Finally, we close the
proof by considering universally unambiguously integrable payoffs such that
infτ Eτ

s(f) ≥ 0 or supτ Eτ
s(f) ≤ 0.

If f is the indicator of an objective, the result follows from Lemma 2.16, which
guarantees that Σpure(M) → R : τ 7→ Pτ

s(Ω) is measurable, and Lemma 2.17,
which yields the integral.

For the second step of the argument, we assume that f is a non-negative
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simple function. Let α1, . . . , αn ≥ 0 and Ω1, . . . ,Ωn ⊆ Plays(M) be objectives
such that f =

∑n
j=1 αj1Ωj . The function Σpure(M) → R : τ 7→ Eτ

s(f) is
measurable: it is a non-negative linear combination of measurable functions by
the above. It follows from the result for indicators applied for all j ∈ J1, nK and
the linearity of the Lebesgue integral that

Eµ
s (f) =

n∑
j=1

αjPµ
s (Ωj)

=

n∑
j=1

αj

∫
τ∈Σpure(M)

Pτ
s(Ωj)dµ(τ)

=

∫
τ∈Σpure(M)

Eτ
s(f)dµ(τ).

Third, we assume that f is a non-negative measurable function. Let (fn)n∈N
be a sequence of measurable simple functions increasing to f (i.e., for all plays
π ∈ Plays(M), fn(π) ≤ fn+1(π) and limn→∞ fn(π) = f(π)). By the monotone
convergence theorem and the previous point on simple functions, we have

Eµ
s (f) = lim

n→∞
Eµ
s (fn) = lim

n→∞

∫
τ∈Σpure(M)

Eτ
s(fn)dµ(τ). (13.1)

For all pure strategies τ, by the monotone convergence theorem,
limn→∞ Eτ

s(fn) = Eτ
s(f). Therefore, the sequence of functions (τ 7→ Eτ

s(fn))n∈N

over Σpure(M) increases (i.e., is non-decreasing and converges pointwise) to
τ 7→ Eτ

s(f), implying that this function is measurable. The monotone conver-
gence theorem allows us to exchange the limit and integral in the rightmost
term of Equation (13.1), and implies that:

Eµ
s (f) =

∫
τ∈Σpure(M)

lim
n→∞

Eτ
s(fn)dµ(τ) =

∫
τ∈Σpure(M)

Eτ
s(f)dµ(τ).

We introduce some notation for the two last cases. We let f+ = max(f, 0)

and f− = max(−f, 0) denote the non-negative and non-positive parts of f

respectively; we have f = f+ − f−. From the above, we obtain that for all
universally unambiguously integrable payoffs, the function τ 7→ Eτ

s(f) over
Σpure(M) is measurable; it is the difference of the measurable non-negative
functions τ 7→ Eτ

s(f
+) and τ 7→ Eτ

s(f
−).
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For the second-to-last case, we assume that f is Pµ
s -integrable. We prove

that the mappings τ 7→ Eτ
s(f

+) and τ 7→ Eτ
s(f

−) are µ-integrable. We
proceed by bounding these functions by a µ-integrable function. For all
τ ∈ Σpure(M), we have Eτ

s(f
+),Eτ

s(f
−) ≤ Eτ

s(|f |). By the above, we have∫
τ∈Σpure(M) E

τ
s(|f |)dµ(τ) = Eµ

s (|f |), which is a real number since f is Pµ
s -

integrable. We have shown that τ 7→ Eτ
s(|f |) is µ-integrable, which implies that

τ 7→ Eτ
s(f

+) and τ 7→ Eτ
s(f

−) also are. It follows that τ 7→ Eτ
s(f) is µ-integrable.

By definition, we have Eµ
s (f) = Eµ

s (f+) − Eµ
s (f−) and Eτ

s(f) = Eτ
s(f

+) −
Eτ
s(f

−) for all strategies τ ∈ Σpure(M). Combining this with the linearity of the
Lebesgue integral and the result for non-negative payoffs yields the following
sequence of equalities:

Eµ
s (f) = Eµ

s (f
+)− Eµ

s (f
−)

=

∫
τ∈Σpure(M)

Eτ
s(f

+)dµ(τ)−
∫
τ∈Σpure(M)

Eτ
s(f

−)dµ(τ)

=

∫
τ∈Σpure(M)

Eτ
s(f

+)− Eτ
s(f

−)dµ(τ)

=

∫
τ∈Σpure(M)

Eτ
s(f)dµ(τ).

To deal with the last case, we assume that infτ Eτ
s(f) ≥ 0. The anal-

ogous case supτ Eτ
s(f) ≤ 0 can be recovered from the case infτ Eτ

s(f) ≥ 0

by considering −f as the payoff function. We assume that f is not Pµ
s -

integrable, as this case has been examined above, i.e., that Eµ
s (f) = +∞.

The integral
∫
τ∈Σpure(M) E

τ
s(f)dµ(τ) is formally well-defined by the assump-

tion that infτ Eτ
s(f) ≥ 0. To end the argument, we must show that this

integral is +∞. Assume towards a contradiction that this is not the case.
This implies that τ 7→ Eτ

s(f) is µ-integrable. From the result for non-
negative payoffs, we obtain that

∫
τ∈Σpure(M) E

τ
s(f

+)dµ(τ) = Eµ
s (f+) = +∞

and
∫
τ∈Σpure(M) E

τ
s(f

−)dµ(τ) = Eµ
s (f−) ∈ R. By linearity of the Lebesgue
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integral (for µ-integrable payoffs), we obtain that

Eµ
s (f

+) =

∫
τ∈Σpure(M)

Eτ
s(f

+)dµ(τ)

=

∫
τ∈Σpure(M)

(Eτ
s(f) + Eτ

s(f
−))dµ(τ)

=

∫
τ∈Σpure(M)

Eτ
s(f)dµ(τ) +

∫
τ∈Σpure(M)

Eτ
s(f

−)dµ(τ).

This is a contradiction: on the one hand, we have Eµ
s (f+) = +∞ and, on the

other hand, the sum in the last term is a real number. This ends the argument
for the case infτ Eτ

s(f) ≥ 0.

We highlight two major consequences of Lemma 13.4 when combined with
Kuhn’s theorem. On the one hand, for all randomised (i.e., mixed or behavioural)
strategies whose expected payoff is real, there exists a pure strategy with a
greater expected payoff. On the other hand, if there exists a randomised
strategy with an infinite expected payoff, then there are pure strategies with
arbitrarily large expected payoffs in absolute value. We note that even if a
randomised strategy has an infinite expectation, there need not exist a pure
strategy with infinite expectation. This is analogous to the fact that real-valued
random variables can have an infinite expectation.

Remark 13.5 (Partially observation MDPs). Lemma 13.4 holds for all mixed
strategies. In particular, it applies to observation-based mixed strategies in
POMDPs. In the sequel, we only apply Lemma 13.4 in the perfect-information
setting. However, we remark that all of our arguments involving this property
and Kuhn’s theorem extend to countable perfect-recall POMDPs. In particular,
the results of Chapter 14 extend to this more general setting. ◁

13.3 Convexity of expected payoff sets

Let f̄ = (fj)j∈J1,dK be a universally unambiguously integrable payoff of M.
The goal of this section is to show that, for all s ∈ S, convex combinations of
elements of Pays(f̄) are in Pays(f̄) and that Pays(f̄)∩Rd and Achs(f̄)∩Rd are
convex. We provide an argument that relies on mixed strategies; a proof of this
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result using behavioural strategies can be found in [Qua23].
The first step in our argument is to prove that the expected payoff of a convex

combination of mixed strategies is the convex combination of the expected
payoffs of these mixed strategies. We obtain this property as a consequence of
Lemma 13.4.

Lemma 13.6. Let s ∈ S, µ1, . . . , µn be mixed strategies and α1, . . . , αn ∈ ]0, 1[

be convex combination coefficients. Let µ =
∑n

m=1 αmµm. For all universally
unambiguously integrable payoffs f , we have Eµ

s (f) =
∑n

m=1 αmEµm
s (f).

Proof. To obtain the result for non-negative payoffs, by Lemma 13.4, it suffices
to establish that, for all measurable non-negative functions F : Σpure(M)→ R̄,∫

τ∈Σpure(M)
F(τ)dµ(τ) =

n∑
m=1

αm

∫
τ∈Σpure(M)

F(τ)dµm(τ).

For indicators of measurable subsets of Σpure(M), this follows from the definition
of µ and the linearity of the Lebesgue integral. It generalises to non-negative
simple functions over Σpure(M) by linearity, and to all non-negative measur-
able functions by using the monotone convergence theorem with sequences of
measurable non-negative simple functions.

The result for non-negative payoffs extends to universally unambiguously
integrable payoffs by definition of unambiguous integrals with respect to the
distribution induced by a strategy.

Lemma 13.6 and Kuhn’s theorem imply that, for all universally unambigu-
ously integrable payoffs, convex combinations (with non-zero coefficients) of
expected payoffs also are expected payoffs. We obtain that the set of vectors of
reals in sets of expected payoffs and achievable vectors both are convex.

Theorem 13.7. Assume that f̄ is universally unambiguously integrable. Let
s ∈ S. For all non-zero convex combination coefficients α1, . . . , αn ∈ ]0, 1] and
expected payoff vectors q1, . . . ,qn ∈ Pays(f̄), we have

∑n
m=1 αmqm ∈ Pays(f̄).

In particular, Pays(f̄) ∩ Rd and Achs(f̄) ∩ Rd are convex sets.
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Proof. The claim regarding convex combinations of expected payoffs follow
from Lemma 13.6 and Kuhn’s theorem. It directly implies that Pays(f̄) ∩ Rd is
convex.

It remains to show that Achs(f̄) ∩ Rd is convex. Let q, p ∈ Achs(f̄) ∩ Rd

and α ∈ ]0, 1[. We must show that αq + (1 − α)p ∈ Achs(f̄). There exist
(by Kuhn’s theorem) mixed strategies µq and µp such that Eµq

s (f̄) ≥ q and
Eµp
s (f̄) ≥ p. Let µ = αµq + (1− α)µp; it is easy to see that

αq+ (1− α)p ≤ Eµ
s (f̄) = αEµq

s + (1− α)Eµp
s (f̄),

where the latter equality follows from Lemma 13.6. We have shown that
αq+ (1− α)p ∈ Achf̄ (s).

13.4 Unambiguously integrable payoffs

We focus on one-dimensional payoffs in this section. We apply Lemma 13.4 to
obtain a characterisation of universally integrable payoffs. We use the property
underlying this characterisation to show that, for all universally unambiguously
integrable payoffs and all initial states, there exists a real lower or upper bound
on the possible expectations of the payoff from the initial state.

We characterise universally integrable payoffs of M as follows. Let Σ ∈
{Σ(M),Σpure(M)}. A payoff f is universally integrable if and only if for all
s ∈ S, supσ∈Σ Eσ

s (|f |) is real. The non-trivial part of the proof is showing that
the definition of universally integrable and the property when the supremum
ranges over pure strategies both imply the property with the supremum ranging
over all strategies. We show the contrapositive of both implications. We assume
that for some s ∈ S, supσ∈Σ Eσ

s (|f |) = +∞. Lemma 13.4 then implies that
there are pure strategies τ with arbitrarily large Eτ

s(|f |), which implies the
validity of one of the implications. For the other, we mix countably many of
these pure strategies to construct a mixed strategy µ such that Eµ

s (|f |) = +∞.

Lemma 13.8. Let f be a payoff. Let s ∈ S. The following assertions are
equivalent.

(i) f is Pσ
s -integrable for all σ ∈ Σ(M).
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(ii) We have sup{Eσ
s (|f |) | σ ∈ Σ(M)} ∈ R.

(iii) We have sup{Eσ
s (|f |) | σ ∈ Σpure(M)} ∈ R.

In particular, f is universally integrable if and only if (ii) (resp. (iii)) holds for
all s ∈ S.

Proof. Item (ii) directly implies the other two items. We now show that the
other two items imply (ii) via the contrapositive of these implications.

Assume that (ii) does not hold, i.e., that sup{Eσ
s (|f |) | σ ∈ Σ(M)} = +∞.

If there exists a pure strategy σ such that Eσ
s (|f |) = +∞, the negations of (i)

and (iii) follow directly. In the remainder of the proof, we assume that this is
not the case.

First, we show that (iii) does not hold. By Lemma 13.4 (and Kuhn’s
theorem), for all strategies σ ∈ Σ(M), if Eσ

s (|f |) ∈ R, there exists a pure
strategy τ such that Eτ

s(|f |) ≥ Eσ
s (|f |) and, otherwise, if Eσ

s (|f |) = +∞, then
for all M ∈ R, there exists a pure strategy τ such that Eτ

s(|f |) ≥ M . In
particular, (iii) does not hold.

We now construct a strategy σ such that Eσ
s (|f |) = +∞ from the pure

strategies above. For all r ∈ N, let τr be a pure strategy such that Eτr
s (|f |) ≥ 2r.

Let µ be the mixed strategy that randomises over the set {τr | r ∈ N} and
selects strategy τr with probability 1

2r+1 . Kuhn’s theorem implies that there
exists a behavioural strategy σ that is outcome-equivalent to µ. We obtain that
Eσ
s (|f |) = +∞. This ends the proof that (i) does not hold.

Let f be a universally unambiguously integrable payoff. We now use
Lemma 13.8 to prove a useful property of universally unambiguously integrable
payoffs. We prove that, for all states s ∈ S, there either exists a real lower or
upper bound on the expectation of strategies from s. We establish this result
by showing that if no upper bound and no lower bound exist, then we can
construct a mixed strategy whose expected payoff is ill-defined.

Lemma 13.9. Let f be a universally unambiguously integrable payoff function.
For all s ∈ S, we have infσ∈Σ(M) Eσ

s (f) ∈ R or supσ∈Σ(M) Eσ
s (f) ∈ R.
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Proof. Let s ∈ S. Let f+ = max(f, 0) and f− = max(0,−f). Assume towards
a contradiction that infσ∈Σ(M) Eσ

s (f) /∈ R and supσ∈Σ(M) Eσ
s (f) /∈ R. Because

Σ(M) is non-empty, we have infσ∈Σ(M) Eσ
s (f) = −∞ and supσ∈Σ(M) Eσ

s (f) =

+∞. We show that this implies that f is not universally unambiguously
integrable, i.e., there exists a strategy σ ∈ Σ(M) such that Eσ

s (f
+) = Eσ

s (f
−) =

+∞.
We observe that for all σ ∈ Σ(M), we have Eσ

s (f) ≤ Eσ
s (f

+) and Eσ
s (−f) ≤

Eσ
s (f

−). It follows from Lemma 13.8 and Kuhn’s theorem that there exists a
mixed strategy µ+ (resp. µ−) such that f+ (resp. f−) is not Pµ+

s -integrable
(resp. Pµ−

s -integrable). In particular, we obtain that Eµ+
s (f+) = Eµ−

s (f−) = +∞.
The mixed strategy µ = 1

2µ+ + 1
2µ− satisfies Eµ

s (f+) = Eµ
s (f−) = +∞ by

Lemma 13.6. This shows that f is not universally unambiguously integrable:
f does not have an unambiguous Pµ

s -integral and Kuhn’s theorem guarantees
that µ is outcome-equivalent to some behavioural strategy.

Lemma 13.4 cannot be applied to all universally unambiguously integrable
payoffs: we impose some constraints on the expected payoffs to ensure that the
integral in the statement is well-defined. We can use Lemma 13.9 to circumvent
this restriction: it implies that by adding or subtracting a constant to an
unambiguously universally integrable payoff, we can obtain a payoff satisfying
the assumptions of Lemma 13.4.



Chapter 14

Payoff sets in multi-objective Markov
decision processes

We present in detail the results presented in Chapter 3.3 related to the structure
of payoff sets in multi-objective Markov decision processes and its impact on
randomisation requirements in this setting.

We first present an example with two discounted payoff functions that
highlights the potential complexity of payoff sets. This example illustrates that
expected payoff sets need not be convex polytopes, and that even when finite
memory suffices to obtain all expected payoffs, there need not exist a uniform
bound on the necessary amount of memory.

We then discuss lexicographic optimisation in multi-objective MDPs. We
prove that pure strategies suffice for universally integrable payoffs, but not in
general. We use this result to show that finite-support mixed strategies suffice
to (exactly) obtain any expected payoff vector when dealing with universally
integrable payoffs. We show that this result does not generalise to universally
unambiguously integrable payoffs, and prove that, for such payoffs, finite-
support mixed strategies can be used to approximate any expected payoff
vector. We close the section by giving upper bounds on the necessary size for
the supports of the finite-support mixed-strategies of the previous results.

We recall that randomised strategies are necessary to achieve vectors in
multi-objective Markov decision processes, e.g., see Chapter 3.3 or Example 11.1.
For this section, we fix an MDP M = (S,A, δ) and a d-dimensional payoff
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function f̄ = (fj)j∈J1,dK for the whole chapter.
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14.1 Expected payoff sets need not be simple

The goal of this section is to illustrate that expected payoff sets in multi-
objective MDPs may be complex. We provide a two-dimensional example
illustrating that sets of expected payoffs are not necessarily polytopes, even
when the payoffs are universally integrable. In this section, we introduce our
example and comment on several of its properties. To lighten the presentation,
we defer the formal proofs of these properties to Appendix B.

We consider the MDPM depicted in Figure 14.1a and let w denote the two-
dimensional weight function from the illustration. On this MDP, we consider
the two-dimensional payoff f̄ = (f1, f2) given by the discounted-sum payoffs
f1 = DSum

3/4
w1 and f2 = DSum

1/2
w2 . We note that MDPs with several discounted-

sum payoffs with different discount factors have been studied in [CFW13].
Due to the absence of randomness in transitions, the expected payoff of any

pure strategy from s0 is the payoff of a play from s0. Therefore, we obtain that

Paypures0 (f̄) = {(0, 2), (1, 2)} ∪
{(

1 +
3r

4r−1
, 2− 1

2r−1

)
| r ∈ N

}
.

On the one hand, the payoffs (0, 2) and (1, 2) are obtained by moving from
s0 to s1 and s2 respectively and looping in these states forever. On the other
hand, for all r ∈ N, the payoff

(
1 + 3r

4r−1 , 2− 1
2r−1

)
is obtained by spending r
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(a) An MDP with deterministic transi-
tions. Pairs next to actions represent two-
dimensional weights.

E(f1)

E(f2)

1

1

(1, 2)

(b) The set of expected payoffs for the
MDP of Figure 14.1a for the payoff f1 =

DSum3/4
w1

and f2 = DSum1/2
w2

.

Figure 14.1: An MDP with a two-dimensional discounted-sum payoff f̄ such
that extr(Pays0(f̄)) is infinite.

rounds in s2 then moving to s3; for r = 0, we move from s0 to s3 directly. We
provide detailed computations in the proof of Lemma B.1.

We approximately illustrate Pays0(f̄) in Figure 14.1b. This illustration is
based on the equality Pays0(f̄) = conv(Paypures0 (f̄)). This equality follows from
Theorem 14.4, which states that if f̄ is universally integrable, then this equality
holds. Furthermore, Pays0(f̄) and Paypures0 (f̄) are both closed; this can be shown
directly or seen as a special case of Theorem 15.8, which implies that expected
payoff sets for multi-dimensional real-valued continuous payoffs are closed.

Since Pays0(f̄) = conv(Paypures0 (f̄)), we conclude that all extreme points
of Pays0(f̄) can be obtained by using pure strategies. Indeed, any vector of
Pays0(f̄) that cannot be obtained by a pure strategy is a convex combination
of the expected payoffs of pure strategies, and thus is not extreme. In fact,
we can show that the set of extreme points of Pays0(f̄) is exactly Paypures0 (f̄)

(Lemma B.7). In particular, Pays0(f̄) is not a convex polytope. Furthermore,
it can be shown that all pure expected payoffs except (0, 2) are Pareto-optimal
(Lemma B.6). It follows that even the set Achs0(f̄) of achievable vectors has a
complex structure.

Finally, we comment on the memory required to obtain certain expected
payoffs. All but three extreme points of Pays0(f̄) are obtained by moving from
s0 to s2 and looping there finitely many times before moving to s3. In other
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words, these extreme points require pure strategies that count up to some
arbitrarily large number. We show that we can only obtain these payoffs by
using these specific pure strategies (Lemma B.8). Intuitively, the expected
payoff of a randomised strategy that induces more than one play is a non-
trivial convex combination of payoffs of several plays, and therefore not in
extr(Pays0(f̄)). This implies that some expected payoffs need strategies with
arbitrarily large albeit finite memory to be obtained in this instance.

14.2 Lexicographic Markov decision processes

We consider the lexicographic optimisation of multiple payoff functions in
MDPs. We first prove that, if f̄ is universally integrable, then for all initial
states s ∈ S and all strategies σ ∈ Σ(M), there exists a pure strategy τ such
that Eσ

s (f̄) ≤lex Eτ
s(f̄). We then show that this is not necessarily the case

without the assumption that f̄ is universally integrable.
Assume that f̄ is universally integrable. The crux of our proof is to show

that the Lebesgue integral is compatible with the lexicographic order over R̄d.
Once this is shown, we assume towards a contradiction that there is no suitable
pure strategy τ. By Lemma 13.4 and Kuhn’s theorem, we can write Eσ

s (f̄) as
an integral over pure expected payoffs. We then reach the contradiction that
Eσ
s (f̄) <lex Eσ

s (f̄). We formalise this argument below.

Theorem 14.1. Assume that f̄ is universally integrable. Let σ be a strategy
and s ∈ S. There exists a pure strategy τ such that Eσ

s (f̄) ≤lex Eτ
s(f̄).

Proof. Let µ be a mixed strategy that is outcome-equivalent to σ (whose
existence follows from Kuhn’s theorem). To prove the theorem, we reason on
the µ-integral of random variables of (Σpure(M),FΣpure(M)); see Chapter 2.4.3,
Page 36, for the definition of the σ-algebra FΣpure(M). For any real or multivariate
random variable Y over Σpure(M), we write

∫
Y dµ for

∫
τ∈Σpure(M) Y (τ)dµ(τ) to

lighten notation.
For all 1 ≤ j ≤ d, we consider the real random variable Xj : x 7→ Eτx

s (fj)

over Σpure(M). We let X = (X1, . . . , Xd). Because f̄ is universally integrable,
X is µ-integrable and, by Lemma 13.4, we have Eµ

s (f̄) =
∫
Xdµ.
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Let Y = (Y1, . . . , Yd) be an integrable multi-variate real random variable
over Σpure(M). We first show that if X <lex Y , then Eσ

s (f̄) =
∫
Xdµ <lex

∫
Ydµ.

We use this claim below to prove the theorem.
Assume that X <lex Y . We partition Σpure(M) as follows. For all 1 ≤ j ≤ d,

we let

Ej =
{
τ ∈ Σpure(M) | Xj(τ) < Yj(τ) and ∀j′ < j, Xj′(τ) = Yj′(τ)

}
.

Intuitively, Ej is the set of elements such that the strict lexicographic ordering
of their respective images by X and Y is witnessed in component j. The sets E1,
. . . , Ed partition Σpure(M) because X <lex Y. It follows that, for Z ∈ {X ,Y},
we have

∫
Zdµ =

∑d
j=1

∫
Z · 1Ejdµ.

Let j⋆ = min{1 ≤ j ≤ d | µ(Ej) > 0}. To obtain that
∫
Xdµ <lex

∫
Ydµ,

we show that, for j < j⋆, we have
∫
Xjdµ =

∫
Yjdµ and

∫
Xj⋆dµ <

∫
Yj⋆dµ.

To prove these relations, we formulate two observations. First, we observe that
for all 1 ≤ j < j′ ≤ d, Xj and Yj agree over Ej′ (by definition), and thus we
have ∫

Xj · 1Ej′dµ =

∫
Yj · 1Ej′dµ. (14.1)

Second, since µ(Ej′) = 0 for all j′ < j⋆, it follows that for all 1 ≤ j ≤ d and all
Zj ∈ {Xj , Yj} that ∫

Zjdµ =

d∑
j′=j⋆

∫
Zj · 1Ej′dµ. (14.2)

Let 1 ≤ j < j⋆. By combining Equations (14.1) and (14.2), we obtain that∫
Xjdµ =

d∑
j′=j⋆

∫
Xj · 1Ej′dµ =

d∑
j′=j⋆

∫
Yj · 1Ej′dµ =

∫
Yjdµ.

To end the proof that
∫
Xdµ <lex

∫
Ydµ, it remains to show that

∫
Xj⋆dµ <∫

Yj⋆dµ. This inequality is equivalent to
∫
Xj⋆ · 1Ej⋆

dµ <
∫
Yj⋆ · 1Ej⋆

dµ by
Equations (14.1) and (14.2). This inequality holds by compatibility of the
Lebesgue integral with the order of R (recall that Xj⋆(τ) < Yj⋆(τ) for all
τ ∈ Ej⋆) and because µ(Ej⋆) > 0. We have shown that

∫
Xdµ <lex

∫
Ydµ

whenever X <lex Y holds.
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s t
b

0

a

1

b

0

Figure 14.2: A deterministic MDP in which randomisation is need to accumulate
an infinite total reward while reaching the target state t almost-surely.

Now assume that for all pure strategies τ, we have Eτ
s(f̄) <lex Eσ

s (f̄) towards
a contradiction. It follows that X (τ) <lex Eσ

s (f̄) for all τ ∈ Σpure(M). From the
above, we obtain that Eσ

s (f̄) =
∫
Xdµ <lex Eσ

s (f̄), which is a contradiction.

A direct corollary of Theorem 14.1 is the following.

Corollary 14.2. Assume that f̄ is universally integrable. For all s ∈ S, if
there exists a lexicographically optimal strategy from s, then there exists a pure
lexicographically optimal strategy.

We now provide an example illustrating that Theorem 14.1 does not hold
without assuming that f̄ is universally integrable.

Example 14.1. We consider the MDP M depicted in Figure 14.2. Let w

denote the illustrated weight function. We consider the two-dimensional payoff
function f̄ = (f1, f2) such that f1 = 1Reach({t}) and f2 = TReww. We prove
that randomisation is necessary to play lexicographically optimally from s.

Since transitions of M are deterministic, Paypures (f̄) is the set of payoffs
of plays from s. We introduce notation for these plays: for all r ∈ N, let
πr = (sa)rs(bt)ω and let π∞ = (sa)ω. It follows that Paypures (f̄) = {f̄(πr) | r ∈
N ∪ {∞}} = {(1, r) | r ∈ N} ∪ {(0,+∞)}. In particular, no pure strategy has
an expected payoff of (1,+∞), which is the greatest that could occur with f̄ .

However, there exists a randomised strategy whose expected payoff from s is
(1,+∞). For each r ∈ N, let τr be a pure strategy whose outcome from s is πr.
We consider the mixed strategy µ such that, for all r ∈ N, µ assigns probability
2−(r+1) to τ2r . It follows that Eµ

s (f̄) =
∑∞

r=0 µ(τ2r) · f̄(π2r) = (1,∞), i.e., µ is
lexicographically optimal from s. ◁
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14.3 Universally integrable payoffs

The goal of this section is to show that if f̄ is universally integrable, then for
all s ∈ S, Pays(f̄) = conv(Paypures (f̄)). We provide an overview of the proof of
this property in Section 14.3.1. We formally prove the result in Section 14.3.2.

Throughout this section, we assume that f̄ is universally integrable.

14.3.1 Proof overview

Let s ∈ S. By convexity of Pays(f̄), the inclusion conv(Paypures (f̄)) ⊆ Pays(f̄)

holds. Therefore, the main difficulty of the proof is to prove the other inclusion.
Let q ∈ Pays(f̄). The first step of the proof is to construct a linear map

Lq : Rd → Rd′ with d′ ≤ d such that

(i) the vector Lq(q) is the lexicographic maximum of Lq(Pays(f̄)) and

(ii) we have q ∈ ri(Pays(f̄) ∩ V ) where V = L−1
q (Lq(q)) denotes the set of

vectors that share their image by Lq with q.

The mapping Lq is constructed as follows (Examples 14.2 and 14.3 below
illustrate this construction). If q is in the relative interior of Pays(f̄), we let
Lq be the zero-valued linear form. Otherwise, by the supporting hyperplane
theorem (Theorem 2.4), there exists a linear form x∗1 such that x∗1(q) ≥ x∗1(p)

for all p ∈ Pays(f̄). Let H1 = (x∗1)
−1(x∗1(q)) denote the supporting hyperplane

given by x∗1. We check whether q is in the relative interior of Pays(q)∩H1. If it
is the case, we obtain the desired linear mapping by letting Lq = x∗1. Otherwise,
we continue: there is a linear form x∗2 describing a hyperplane H2 that supports
Pays(q) ∩H1 at q. We choose x∗2 such that x∗1 and x∗2 have distinct kernels,
i.e., H1 ̸= H2. To ensure that the kernels are distinct, we construct x∗2 as an
extension to Rd of a non-zero linear form over ker(x∗1). By induction, we continue
constructing linear forms with pairwise distinct kernels (i.e., defining pairwise
distinct supporting hyperplanes) until q ∈ ri(Pays(f̄)∩

⋂
1≤j≤d′ Hj). When this

condition is satisfied, we define, for all v ∈ Rd, Lq(v) = (x∗1(v), . . . , x
∗
d′(v)). The

invocation of the supporting hyperplane theorem at each iteration guarantees
that Lq(q) is a lexicographic maximum of Lq(Pays(f̄)). We remark that, when
the stopping condition is fulfilled, the supporting hyperplane theorem is no
longer applicable.
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Let V = L−1
q (Lq(q)). By construction, q ∈ ri(V ∩ Pays(f̄)). To conclude,

we establish that ri(V ∩ Pays(f̄)) = ri(V ∩ conv(Paypures (f̄))). This suffices
because the latter set is a subset of conv(Paypures (f̄)). This is equivalent to
showing that cl(V ∩ Pays(f̄)) = cl(V ∩ conv(Paypures (f̄))): convex subsets of Rd

have the same relative interior as their closure [Roc70, Thm. 6.3].
On the one hand, the inclusion conv(Paypures (f̄)) ⊆ Pays(f̄) implies that

cl(V ∩ conv(Paypures (f̄))) ⊆ cl(V ∩ Pays(f̄)). For the other inclusion, we need
only show that

V ∩ Pays(f̄) ⊆ cl(V ∩ conv(Paypures (f̄))).

We assume towards a contradiction that this is not the case. We fix a vector
p ∈ V ∩ Pays(f̄) \ cl(V ∩ conv(Paypures (f̄))). Using the hyperplane separation
theorem (Theorem 2.3), we obtain x∗⋆ such that x∗⋆(p) > x∗⋆(v) for all v ∈
cl(V ∩conv(Paypures (f̄))). Because p ∈ Pays(f̄), Theorem 14.1 implies that there
exists a pure strategy σ such that (Lq(p), x

∗
⋆(p)) ≤lex (Lq(Eσ

s (f̄)), x
∗
⋆(Eσ

s (f̄))).
Furthermore, p ∈ V implies that Lq(p) is the lexicographic maximum of
Lq(Pays(f̄)), and thus so is Lq(Eσ

s (f̄)), i.e., Eσ
s (f̄) ∈ V ∩ Paypures (f̄). It fol-

lows that x∗⋆(p) ≤ x∗⋆(Eσ
s (f̄)), which is contradictory. This closes the ar-

gument that cl(V ∩ Pays(f̄)) = cl(V ∩ conv(Paypures (f̄))), which implies that
q ∈ conv(Paypures (f̄)), ending the sketch.

We complement the sketch above with two examples that illustrate the
construction of the mapping Lq. In the first example, we select q as an
extreme point of the set of expected payoffs. In this case, the constructed linear
mapping Lq is such that q is the unique vector p ∈ Rd such that Lq(p) is the
lexicographic maximum of Lq(Pays(f̄)). In our second example, Pays(f̄) is not
closed and we choose q as a non-extreme point such that no pure strategy has
expected payoff q. In this case, we observe that the uniqueness property of
the first example cannot be obtained no matter which linear forms are used to
construct Lq.

Example 14.2 (Extreme point). We consider the MDP depicted in Figure 14.3.
Throughout this example, we (implicitly) consider s0 as the initial state. We
study indicators of reachability objectives: we let f̄ = (1Reach(T1),1Reach(T2))

where T1 = {s1, s4} and T2 = {s2, s4}. The set Pays0(f̄) is depicted in Fig-
ure 14.4: it is the convex hull of the expected payoffs of the pure strategies
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s0s1 s2

s3 s4

a b

c

1
4

3
4

a a

a a

Figure 14.3: An MDP. The doubly circled and filled states respectively highlight
the targets of the reachability objectives Reach({s1, s4}) and Reach({s2, s4}).

f1

f2

1

1

q = (34 ,
3
4)

(a) The blue dashed line (x+ 3y = 3)
is a hyperplane supporting Pays(f̄) at
q. The orange dotted line (6x− 2y =

3) is a hyperplane obtained from an
extension of the linear form defining
the hyperplane {q} of the blue line.

Lq(0, 1)

Lq(1, 0)

Lq(q)

1

1

(b) The image of the set on the left
by the linear mapping Lq : (v1, v2) 7→
(v1 + 3v2, 6v1 − 2v2) obtained through
the equations of the hyperplanes on
the left. Remark that the image of q
is lexicographically optimal.

Figure 14.4: The set of expected payoffs for Example 14.2 and its image by a
linear mapping.
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that play one of the actions a, b or c in s0. We focus on the extreme point
q = (34 ,

3
4) in the remainder of this example.

The construction of Lq is in two steps. First, we consider the linear form
x∗1 defined by, for all v ∈ Rd, x∗1(v) = v1 + 3v2. The hyperplane H = (x∗1)

−1(3)

supports Pays0(f̄) at q and is depicted by the blue dashed line in Figure 14.4a.
It is not satisfactory to set Lq = x∗1: q is an endpoint of the segment [(0, 1),q] =
Pays0(f̄) ∩H, and is therefore not in its relative interior.

We recall that for any linear form y∗ of ker(x∗1) (i.e., the vector space
corresponding to H), there exists v ∈ ker(x∗1) such that y∗(w) = ⟨w,v⟩
for all w ∈ ker(x∗1). Since any non-zero linear form of ker(x∗1) is bijective,
all of them induce a hyperplane of H supporting Pays(f̄) ∩ H at q. We
proceed with the linear form x∗2 : R2 → R defined by x∗2(v) = 6v1 − 2v2 for all
v = (v1, v2) ∈ R2 (derived from the vector w = (6,−2) ∈ ker(x∗1)). Observe
that ker(x∗1) ∩ ker(x∗2) = {0}.

We define Lq(v) = (x∗1(v), x
∗
2(v)). Since Lq is bijective, L−1

q (Lq(q)) is a
singleton set. Therefore, q is in the relative interior of L−1

q (Lq(q)) ∩ Pays0(f̄).
By linearity of the expectation, it holds that Pays0(Lq ◦ f̄) = Lq(Pays0(f̄)).
This set is illustrated in Figure 14.4b; it is easy to check that Lq(q) is the
lexicographic maximum of this set.

In this case, Lq allows us to deduce that there exists a pure strategy σ

such that Eσ
s0(f̄) = q. On the one hand, by Theorem 14.1, there exists a pure

strategy σ that is lexicographically optimal from s0 for Lq ◦ f̄ . On the other
hand, the only payoff vector p ∈ Pays0(f̄) such that Lq(p) is the lexicographic
maximum of Lq(Pays0(f̄)) is q. This implies that q is the payoff of the pure
strategy σ, and thus q ∈ Paypures0 (f̄). ◁

Remark 14.3 (The necessity of induction). In Example 14.2, it is possible to
isolate q by a supporting hyperplane of Pays0(f̄). We could thus choose Lq as
a linear form and bypass the induction step of the construction of Lq here. We
avoid using a linear form for the sake of illustration, as we cannot use linear
forms to isolate extreme points in general. In fact, this can be shown via the
example of Section 14.1.

We recall the set of expected payoffs of this example in Figure 14.5. Precisely,
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E(f1)

E(f2)

1

1

(1, 2)

Figure 14.5: The set of expected payoffs of the example presented in Section 14.1.
The line passing through (0, 2) and (1, 2) is the unique hyperplane supporting
D at the point (1, 2).

it is the set

D = conv

(
{(0, 2), (1, 2)} ∪

{(
1 +

3r

4r−1
, 2− 1

2r−1

)
| r ∈ N

})
.

We show that the only hyperplane supporting D at q = (1, 2) is the line carrying
the segment [(0, 2), (1, 2)]. The slanted lines passing through q in Figure 14.5
suggest that any other hyperplane is not a supporting hyperplane of D. We
formalise this idea.

Assume towards a contradiction that there exists a linear form x∗ : R2 → R
such that for all p ∈ D, x∗(q) ≥ x∗(p) and x∗(q) ̸= x∗((0, 2)). Let α, β ∈ R
such that for all v = (v1, v2) ∈ R2, x∗(v) = αv1 + βv2. We observe that
x∗(q) > x∗((0, 2)) is equivalent to α > 0. We also have, for all ℓ ∈ N,
x∗(q) ≥ x∗((1 + 3ℓ

4ℓ−1 , 2 − 1
2ℓ−1 )), i.e., β ≥ 3ℓ

2ℓ−1 · α. The previous properties
imply that β must be greater than all real numbers, which is a contradiction.

We have shown that q cannot be isolated from the other elements of D
with a linear form, which implies that the induction step in the construction of
Lq cannot be bypassed when dealing with extreme points in general. ◁

The construction outlined in Example 14.2 can be generalised to show that
all extreme points of the set of expected payoffs of f̄ from a given state are
the expected payoff of a pure strategy. However, this property is not sufficient
to show that all expected payoffs are convex combinations of pure expected
payoffs. In particular, the following example highlights that some expected
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s t
a

(0, 1)

b

(1, 0)

a

(0, 1)

Figure 14.6: An MDP with deterministic transitions. The pairs beneath actions
represent a two-dimensional weight function. State t is doubly circled because
it is a target.

f1

f2

4

4

q = (2, 2)

(a) The blue dashed line (x+y =

4) is a hyperplane supporting
Pays(f̄) at q. The orange dotted
line (x− y = 0) is an orthogonal
hyperplane included for reference
for the adjacent figures.

L1(0, 4)

L1(4, 0)

L1(q)

1

1

(b) Image of the payoff
set in Figure 14.7a by
the linear mapping L1

such that (v1, v2) 7→ (v1+

v2, v1 − v2).

L2(0, 4)

L2(4, 0)

L2(q)

1

1

(c) Image of the payoff set
in Figure 14.7a by the lin-
ear mapping L2 such that
(v1, v2) 7→ (v1 + v2, v2 −
v1).

Figure 14.7: The set of expected payoffs for Example 14.3 and its image by two
(related) linear functions. The segment ](0, 0), (4, 0)] in grey does not intersect
Pays(f̄). Its image is similarly coloured in the two other illustrations.

payoffs are not convex combinations of extreme points of the set of expected
payoffs.

Example 14.3 (Non-extreme point). We consider the MDP depicted in Fig-
ure 14.6. We assume that state s is the initial state throughout this example.
Let w = (w1, w2) denote the two-dimensional weight function given on the
illustration. We consider a two-dimensional payoff function f̄ . The payoff
of a play, for each dimension, is zero if t is not visited and, otherwise, its
payoff is given by a discounted-sum payoff. We formalise this as the product
of a discounted-sum payoff and an indicator. Therefore, formally, f̄ = (f1, f2)

is such that, for j ∈ {1, 2}, fj = 1Reach({t}) · DSum
3
4
wj . We observe that, by
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definition of w, f2 = DSum
3
4
w2 .

The set Pays(f̄) is illustrated in Figure 14.7a. Any vector in Pays(f̄) is a
convex combination of 0 and a vector in the segment [(0, 4), (4, 0)[. In particular,
no strategy has an expected payoff of (4, 0) from s. We can derive Pays(f̄) from
Paypures (f̄) = {0} ∪ {(4 − 3ℓ

4ℓ−1 ,
3ℓ

4ℓ−1 ) | ℓ ∈ N}. To obtain Paypures (f̄), we note
that any pure strategy in this MDP induces a single play from s, because all
transitions are deterministic. On the one hand, we can obtain the payoff 0 with
the play (sb)ω (the payoff is zero on the first dimension because t is not visited).
On the other hand, for all ℓ ∈ N, we have f̄((sb)ℓs(at)ω) =

(
4− 3ℓ

4ℓ−1 ,
3ℓ

4ℓ−1

)
.

We consider the payoff vector q = (2, 2) and construct Lq. We remark
that the vector q is not a convex combination of extreme points of Pays(f̄).
Therefore, is not possible to conclude that q ∈ conv(Paypures (f̄)) by adapting the
argument of Example 14.2 to deal with all extreme points. The only hyperplane
H that support Pays(f̄) at q is the line depicted in blue in Figure 14.7a.
We let x∗1 : R2 → R be the linear form defined by x∗2(v) = v1 + v2 for all
v = (v1, v2) ∈ R2. We have H = (x∗1)

−1(4). We observe (via Figure 14.7a) that
q is in the relative interior of Pays(f̄) ∩H. We define Lq = x∗1.

To close this example, we provide an argument based on L−1
q (Lq(q)) being

a line to show that q is a convex combination of expected payoffs of pure
strategies. While this argument differs from the general proof provided below,
it can be generalised to show that q ∈ conv(Paypures (f̄)) whenever L−1

q (Lq(q))

is a line. This argument consists in showing that there are payoffs of pure
strategies on either side of q on the line segment Pays(f̄) ∩H = [(0, 4), (4, 0)[.
This implies that q ∈ conv(Paypures (f̄)).

We fix a direction vector vH = (1,−1) of H. For all vectors p of Pays(f̄)
in [q, (4, 0)[ (resp. [q, (0, 4)]), we have ⟨p,vH⟩ ≥ ⟨q,vH⟩ (resp. ⟨p,−vH⟩ ≥
⟨q,−vH⟩). Consider the linear mappings L1 : w 7→ (x∗1(w), ⟨w,vH⟩) and
L2 : w 7→ (x∗1(w), ⟨w,−vH⟩) over R2. We illustrate the image of Pays(f̄) by L1

and L2 respectively in Figure 14.7b and Figure 14.7c.
Theorem 14.1 implies that, for i ∈ {1, 2}, there exists a pure strategy

σi such that Li(pi) ≥lex Li(q) where pi = Eσi
s (f̄). We obtain, by defini-

tion of Li, that x∗1(pi) = x∗1(q) for i ∈ {1, 2}, as x∗1 supports Pays(f̄) at
q. Therefore, α1 := ⟨p1,vH⟩ ≥ 0 and α2 := ⟨p2,vH⟩ ≤ 0. Furthermore,
for i ∈ {1, 2}, it holds that pi = q + αi

∥vH∥2vH because ( 1
∥q∥2q,

1
∥vH∥2vH)
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is an orthonormal basis of R2, ⟨pi,
1

∥q∥2q⟩ =
2

∥q∥2 · x
∗
1(pi) = 2

√
2 = ∥q∥2

(as x∗1(pi) = x∗1(q)) and ⟨pi,
1

∥vH∥2vH⟩ = αi
∥vH∥2 (by definition of αi). Thus,

q ∈ [p1,p2] ⊆ conv(Paypures (f̄)). ◁

14.3.2 Theorem statement and proof

We now formally state the main theorem of this section and prove it.

Theorem 14.4. Assume that f̄ is universally integrable. For all s ∈ S, we have
Pays(f̄) = conv(Paypures (f̄)). In other words, the expected payoff of any strategy
is also the expected payoff of a finite-support mixed strategy.

Proof. Throughout this proof, we assume that for all 1 ≤ j ≤ d, fj is a real-
valued payoff. This is without loss of generality: these payoffs are universally
integrable, and thus are Pσ

s -almost-surely real-valued for all σ ∈ Σ(M) and
s ∈ S.

It is sufficient to show that Pays(f̄) ⊆ conv(Paypures (f̄)). Let q ∈ Pays(f̄). We
construct the linear mapping Lq as explained in the sketch, i.e., such that Lq(q)

is the lexicographic maximum of Lq(Pays(f̄)) and q ∈ ri(L−1
q (Lq(q))∩Pays(f̄)).

Let D = Pays(f̄) − q. We observe that Lq satisfies the conditions above
if and only if Lq(0) is the lexicographic maximum of Lq(D) and 0 is in the
relative interior of D ∩ ker(Lq). We construct Lq by working with D and 0

instead of Pays(f̄) and q. This allows us to work with vector sub-spaces instead
of affine spaces, overall simplifying the presentation.

We let y∗0 : Rd → R be the constant zero function. If 0 ∈ ri(D), we let
Lq = y∗0. This function satisfies the desired properties. We now assume that
0 /∈ ri(D). We inductively define a sequence of non-zero linear forms y∗1, . . . , y

∗
d′

such that y∗j : ker(y
∗
j−1) → R for all j ∈ J1, d′K. Next, for all j ∈ J1, d′K, we

extend y∗j to a form x∗j : Rd → R. Finally, we define the mapping Lq as
Lq(v) = (x∗1(v), . . . , x

∗
d′(v)) for all v ∈ Rd and show that it satisfies the desired

properties.
Let j ≥ 1. By induction, assume that y∗j−1 is defined (this is the case even

for j = 1). We distinguish two cases. If 0 ∈ ri(ker(y∗j−1) ∩ D), we stop the
construction. We remark that if j = d+1, then ker(y∗j−1) is a singleton set and we



14.3 – Universally integrable payoffs 255

are necessarily in this case (i.e., d′ ≤ d). Now, assume that 0 /∈ ri(ker(y∗j−1)∩D).
The supporting hyperplane theorem (Theorem 2.4) implies that there exists
a linear form y∗j : ker(y

∗
j−1) → R such that for all p ∈ D ∩ ker(y∗j−1), we have

y∗j (p) ≤ 0 = y∗j (0). This allows us to continue with the induction.
Assume that the procedure above has provided linear forms y∗1,. . . ,y∗d′ . We

now extend them to Rd. Let j ∈ J1, d′K. There exists wj ∈ ker(y∗j−1) ⊆ Rd such
that for all v ∈ ker(y∗j−1), we have y∗j (v) = ⟨v,wj⟩. We define x∗j : Rd → R
by, for all v ∈ Rd, x∗j (v) = ⟨v,wj⟩. We let Lq : Rd → Rd′ be such that
Lq(v) = (x∗1(v), . . . , x

∗
d′(v)) for all v ∈ Rd.

We now show that Lq satisfies the required properties. By construction, for
all p ∈ D and all j ∈ J1, d′K, if x∗j′(p) = 0 for all j′ ∈ J1, j − 1K, then necessarily
p ∈ ker(y∗j−1), and thus x∗j (p) ≤ 0. This implies that for all p ∈ D, Lq(p) ≤lex

Lq(0). This shows that Lq(0) is the lexicographic maximum of Lq(D). Next,
we show that 0 ∈ ri(D ∩ ker(Lq)). This follows from the stopping condition in
the construction of Lq and the equality ker(Lq) =

⋂
1≤j≤d′ ker(x

∗
j ) = ker(y∗d′)

(the second equality follows from x∗1 = y∗1 and ker(y∗1) ⊋ . . . ⊋ ker(y∗d′)).
Let V = L−1

q (Lq(q)). We have shown that q ∈ ri(V ∩ Pays(f̄)). It suffices
to show that ri(V ∩ Pays(f̄)) = ri(V ∩ conv(Paypures (f̄))) to conclude that q ∈
conv(Paypures (f̄)). Since all convex subsets of Rd have the same relative interior
as their closure [Roc70, Theorem 6.3], the equality of the relative interiors stated
before is implied by the relation cl(V ∩ Pays(f̄)) = cl(V ∩ conv(Paypures (f̄))).
To end the proof, we show this equality of closures. The inclusion cl(V ∩
conv(Paypures (f̄))) ⊆ cl(V ∩ Pays(f̄)) is direct.

For the other inclusion, it suffices to show that V ∩ Pays(f̄) ⊆ cl(V ∩
conv(Paypures (f̄))). Let p ∈ V ∩ Pays(f̄). Assume, by contradiction, that p /∈
cl(V ∩ conv(Paypures (f̄))). By the hyperplane separation theorem (Theorem 2.3),
there exists a linear form x∗ over Rd such that for all p′ ∈ V ∩ conv(Paypures (f̄)),
we have x∗(p) > x∗(p′). Let Lq : Rd → Rd′+1 such that for all v ∈ Rd, we have
Lq(v) = (Lq(v), x

∗(v)).
Let σ such that p = Eσ

s (f̄). By Theorem 14.1, there exists a pure strategy
τ such that Eτ

s(Lq ◦ f̄) ≥lex Eσ
s (Lq ◦ f̄) = Lq(p). We have Eτ

s(f̄) ∈ V because
Lq(Eτ

s(f̄)) = Eτ
s(Lq ◦ f̄) ≥lex Lq(p) = Lq(q) and Lq(q) is lexicographically

optimal in Lq(Pays(f̄)). It follows that Eτ
s(x

∗ ◦ f̄) = x∗(Eτ
s(f̄)) ≥ x∗(p). This

is a contradiction with x∗ defining a strongly separating hyperplane.
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We now formulate two corollaries of Theorem 14.4. The first one relates to
extreme points of payoffs sets.

Corollary 14.5. Assume that f̄ is universally integrable. For all s ∈ S,
extr(Pays(f̄)) ⊆ Paypures (f̄), i.e., all extreme points of Pays(f̄) are payoffs of
pure strategies.

Proof. By Theorem 14.4, we have Pays(f̄) = conv(Paypures (f̄)). All extreme
points of conv(Paypures (f̄)) must be in Paypures (f̄) by definition of the convex
hull.

Second, we establish that, for all s ∈ S, Pays(f̄) is closed whenever Paypures (f̄)

is closed. We note that, in general, the convex hull of a closed set need not
be closed. However, the convex hull of a compact subset of Rd is closed
(Lemma 2.2). The set of expected payoffs of a universally integrable payoff
function is bounded by the characterisation of universally integrable payoffs in
Lemma 13.8. Therefore, it is thus compact, implying the claimed property.

Corollary 14.6. Assume that f̄ is universally integrable. For all s ∈ S, if
Paypures (f̄) is closed, then Pays(f̄) is compact.

Proof. Let s ∈ S such that Paypures (f̄) is closed. By Lemma 13.8, f̄ is universally
integrable if and only if Paypures (f̄) is bounded. It follows that Paypures (f̄) is
compact. Theorem 14.4 ensures that Pays(f̄) = conv(Paypures (f̄)), and thus
Pays(f̄) is compact by Lemma 2.2.

We close this section by showing that Theorem 14.4 does not generalise
to universally unambiguously integrable payoffs. We build on Example 14.1,
which illustrates that randomisation may be necessary to play lexicographically
optimally for universally unambiguously integrable payoffs.

Example 14.4 (Example 14.1 continued). We consider the MDP M depicted
in Figure 14.2 and the payoff function f̄ = (1Reach({t}),TReww) where w is
the weight function of Figure 14.2. In Example 14.1, we have shown that
there exists a randomised strategy σ such that Eσ

s (f̄) = (1,+∞) and that
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Paypures (f̄) = {(0,+∞)} ∪ {(1, ℓ) | ℓ ∈ N}.
We show that (1,+∞) /∈ conv(Paypures (f̄)). On the one hand, convex

combinations of these vectors that give a non-zero coefficient to the vector
(0,+∞) have a first component is not equal to 1. On the other hand, convex
combinations that assign a zero coefficient to (0,+∞) have a finite second
component. We obtain that (1,+∞) /∈ conv(Paypures (f̄)).

Although we cannot have a payoff of (1,+∞) with finite-support mixed
strategies, we can approximate it with such strategies. We generalise this
observation in the next section. ◁

14.4 Universally unambiguously integrable payoffs

We now relax the assumption that f̄ is universally integrable from the previous
section, and assume that f̄ is universally unambiguously integrable. We formu-
late an approximate variant of Theorem 14.4: from a given state, any expected
payoff of a strategy can be approached by convex combinations of expected
payoffs of pure strategies (in the sense of limits in R̄d).

We provide a proof sketch in Section 14.4.1. The theorem statement and
proof are formalised in Section 14.4.2.

14.4.1 Proof overview

Fix s ∈ S and a strategy σ. The goal is to show that all neighbourhoods of
Eσ
s (f̄) intersect conv(Paypures (f̄)). In other words, we must prove that for all

ε > 0 and all M ∈ R, there exist finitely many pure strategies τ1, . . . , τn and
convex combination coefficients α1, . . . , αn ∈ [0, 1] and, for all j ∈ J1, dK:

• if Eσ
s (fj) = +∞, then

∑n
m=1 αmEτm

s (fj) ≥M ,

• if Eσ
s (fj) = −∞, then

∑n
m=1 αmEτm

s (fj) ≤ −M and,

• otherwise,
∑n

m=1 αmEτm
s (fj) ≥ Eσ

s (fj)− ε.

We fix ε > 0 and M ∈ R. The proof is based on the reformulation of Eσ
s (f̄)

as an integral of pure expected payoffs from Lemma 13.4 and the manipulation
of random variables. Even though Lemma 13.4 is not applicable to all payoffs,
Lemma 13.9 implies that there exists a vector v such that the payoff f̄ + v
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Figure 14.8: Illustration of the approach used to construct the approximation
Y of X adapted to a function over [0, 1]. We round the blue function down
to the closest multiple of 1

4 to obtain the red function. This yields a linear
combination of indicators that is 1

4 -close in all points to the function in blue.

satisfies the assumptions of Lemma 13.4. We can then recover the result for
the original payoff using the linearity of the expectation.

We thus assume without loss of generality that Lemma 13.4 applies to all
payoffs f1, . . . , fd. We consider a mixed strategy µ that is outcome-equivalent
to σ, whose existence is guaranteed by Kuhn’s theorem. For all j ∈ J1, dK, we let
Xj : Σpure(M)→ R̄ : τ 7→ Eτ

s(fj). We let X = (X1, . . . , Xd). By Lemma 13.4,
we have Eσ

s (f̄) =
∫
τ∈Σpure(M)X (τ)dµ(τ). We sketch the proof when the Xj are

(µ-almost-surely) real-valued functions. We comment on the generalisation at
the end of the sketch.

The broad idea is as follows. First, we approximate X with a multivariate
random variable Y = (Y1, . . . , Yd) over Σpure(M). We then approximate the
integral of Y with a convex combination

∑n
m=0 αmY(xm) ∈ conv(Im(Y)). Fi-

nally, we derive the convex combination
∑n

m=0 αmX (xm) from the previous one.
The successive approximations above ensure that the last convex combination
respects the claims of the theorem.

We now expand on the broad idea above. First, we construct Y such that X−
ε
31 ≤ Y ≤ X + ε

31. It follows that, for all j ∈ J1, dK,
∫
τ∈Σpure(M) Yjdµ(τ) is equal

to Eσ
s (fj) whenever Eσ

s (fj) ∈ {−∞,+∞} and otherwise is ε
3 -close. Intuitively,

we construct Y as an infinite linear combination of indicators, following the



14.4 – Universally unambiguously integrable payoffs 259

rounding idea illustrated in Figure 14.8 (where the rounding precision depends
on ε). Its integral is thus (informally) an infinite convex combination of images
of Y: there are sequences (βm)m∈N and (xm)m∈N respectively of coefficients
and elements of Σpure(M) such that

∑∞
m=0 βm = 1 and

∫
τ∈Σpure(M) Ydµ(τ) =∑

m∈N βmY(xm). We derive a sequence (p(n))n∈N in conv(Im(Y(xm))) that
converges to

∫
τ∈Σpure(M) Ydµ(τ) from this series: we let

p(n) =

n∑
m=0

βmY(xm) +

(
1−

n∑
m=0

βm

)
Y(x0)

for all n ∈ N.
Fix n ∈ N large enough such that, for all j ∈ J1, dK, component j of p(n)

is ε
3 -close to

∫
τ∈Σpure(M) Yjdµ(τ) if it is a real number or greater than M + ε

in absolute value otherwise. The convex combination q =
∑n

m=0 βmEτxm
s (f̄) +

(1−
∑n

m=0 βm)Eτx0
s (f̄) is a satisfactory convex combination with respect to the

claim of the theorem. Let j ∈ J1, dK. If Eσ
s (fj) = +∞, we obtain that qj ≥M .

Similarly, if Eσ
s (fj) = −∞, we obtain that qj ≤ −M . Otherwise, we have that

qj is ε-close to Eσ
s (fj).

We now briefly discuss the case where some Xj is not µ-almost-surely real-
valued. For the sake of illustration, we assume that this only applies to j = d

and that Xd ≥ 0. Therefore, we have Eσ
s (fd) = +∞ and there exists some

τ ∈ Σpure(M) such that Eτ
s(fd) = +∞ and Eτ

s(fj) ∈ R for all j ∈ J1, d−1K. Let
τ1, . . . , τn and α1, . . . , αn given by the theorem for (f1, . . . , fd−1), ε

2 and M + ε.
Let q =

∑n
m=1 αmEτm

s (f̄). By choosing η ∈ ]0, 1[ such that all components of
Eτ
s(f̄) other than the last have absolute value no more than ε

2 and the finite
components of (1− η)q are ε

2 -close to the corresponding components of q, we
obtain a suitable convex combination in the form of ηEτ

s(f̄) + (1− η)q.

14.4.2 Theorem statement and proof

We now formally state the main theorem of this section and prove it.

Theorem 14.7. Assume that f̄ is universally unambiguously integrable. Let
s ∈ S. We have cl(Pays(f̄)) = cl(conv(Paypures (f̄))). In particular, for all
strategies σ, all ε > 0 and all M ∈ R, there exist finitely many pure strategies
τ1, . . . , τn and convex combination coefficients α1, . . . , αn ∈ [0, 1] such that for
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all 1 ≤ j ≤ d:

• if Eσ
s (fj) = +∞, then

∑n
m=1 αmEτm

s (fj) ≥M ,

• if Eσ
s (fj) = −∞, then

∑n
m=1 αmEτm

s (fj) ≤ −M , and,

• otherwise, if Eσ
s (fj) ∈ R, Eσ

s (fj)− ε ≤
∑n

m=1 αmEτm
s (fj) ≤ Eσ

s (fj) + ε.

Proof. The inclusion cl(conv(Paypures (f̄))) ⊆ cl(Pays(f̄)) follows from the con-
vexity of Pays(f̄) (see Theorem 13.7). For other inclusion, it suffices to show
that Pays(f̄) ⊆ cl(conv(Paypures (f̄))). This inclusion is equivalent to the last
property of the theorem statement.

Let σ be a strategy, ε > 0 and M ∈ R. Let µ be a mixed strategy that
is outcome-equivalent to σ (whose existence follows from Kuhn’s theorem).
To prove the theorem, we reason on the µ-integral of random variables of
(Σpure(M),FΣpure(M)); see Chapter 2.4.3, Page 36, for the definition of the
σ-algebra FΣpure(M). For any real or multivariate random variable Y over
Σpure(M), we write

∫
Y dµ for

∫
τ∈Σpure(M) Y (τ)dµ(τ) to lighten notation.

We make two assumptions without loss of generality. We defer the proof
that these assumptions are without loss of generality to the end of the proof.
First, we assume that for all j ∈ J1, dK, either Eτ

s(fj) ≥ 0 for all strategies τ

or Eτ
s(fj) ≤ 0 for all strategies τ. This assumption guarantees that Eσ

s (f̄) =∫
τ∈Σpure(M) E

τ
s(f̄)dµ(τ) by Lemma 13.4. Second, we assume that for all j ∈ J1, dK,

the set {τ ∈ Σpure(M) | Eτ
s(fj) /∈ R} has µ-measure zero.

For all j ∈ J1, dK, we consider the random variable Xj : τ 7→ Eτ
s(fj) over

Σpure(M). We let X = (X1, . . . , Xd). The first assumption above implies that
for all j ∈ J1, dK, Xj is a non-negative or non-positive random variable. The
second assumption implies that X is almost-surely Rd-valued. We thus interpret
the random variable X as a function Σpure(M)→ Rd.

We now prove the result under the assumptions above. The first step of
the proof is to construct a random variable Y = (Y1, . . . , Yd) : Σpure(M)→ Rd

which approximates X . To ensure that the integral of Y is an infinite convex
combination of images of Y (in the sense of the proof overview), we define Y as
a function similar to a simple function. More precisely, we define Y as a series
of indicators multiplied by coefficients.
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We fix k ∈ N such that 1
2k
≤ ε

3 . We define Y component by component
first, and introduce its series form later. Let j ∈ J1, dK. We generalise the
construction illustrated in Figure 14.8. For all k ∈ N, we let Yj be the random
variable over Σpure(M) such that

Yj =
∞∑
ℓ=0

ℓ

2k
· 1[

ℓ

2k
, ℓ+1

2k

[(Xj)

if Xj is non-negative, i.e., we round Xj down to the closest multiple of 1
2k

, and,
otherwise,

Yj =

∞∑
ℓ=0

−ℓ
2k
· 1]

−ℓ−1

2k
,−ℓ

2k

](Xj),

i.e., we round Xj up to the closest multiple of 1
2k

. We have Xj − 1
2k
≤ Yj ≤

Xj +
1
2k

. This implies that Xj − ε
3 ≤ Y

(k)
j ≤ Xj +

ε
3 . In particular, Yj is

integrable if and only if Xj is and, and, if both are integrable:

Eσ
s (fj)−

ε

3
≤
∫

Yjdµ ≤ Eσ
s (fj) +

ε

3
. (14.3)

We also have Eσ
s (fj) = +∞ (resp. −∞) if and only if

∫
Yjdµ = +∞ (resp. −∞).

Now that we have shown that Y approximates X , we prove that the integral
of Y can be written as an infinite convex combination of elements of Im(Y). To
this end, we rewrite Y in the series form mentioned above.

Let j ∈ J1, dK. If Xj ≥ 0, we define, for all ℓ ∈ N, Ij(ℓ) =
[

ℓ
2k
, ℓ+1

2k

[
and

vj(ℓ) = ℓ
2k

. Otherwise, if Xj ≥ 0 does not hold, we define, for all ℓ ∈ N,
Ij(ℓ) =

]−ℓ−1
2k

, −ℓ
2k

]
and vj(ℓ) =

−ℓ
2k

. We fix an enumeration (ℓ̄(m))m∈N of Nd. For
all m ∈ N, we let ℓ̄(m) = (ℓ

(m)
1 , . . . , ℓ

(m)
d ) ∈ Nd. We define Bm =

∏d
j=1 Ij(ℓ

(m)
j )

and vm = (vj(ℓ
(m)
j ))j∈J1,dK. We can rewrite Y as follows, using this notation:

Y =
∑
m∈N

vm1Bm(X ).

Through this, we obtain that the integral of Y is an infinite convex combination:
the monotone convergence theorem ensures that∫

Ydµ =
∑
m∈N

vmµ
(
X−1(Bm)

)
.
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Next, to determine the coefficients and pure strategies we seek, we define
a sequence in conv(Im(Y)) converging to

∫
Ydµ. For all m ∈ N, we let βm =

µ
(
X−1(Bm)

)
and let τm ∈ Σpure(M) such that vm = Y(τm) if βm ≠ 0, and τm

is left arbitrary otherwise. We consider the sequence (p(n))n∈N defined by, for
all n ∈ N,

p(n) =
n∑

m=1

βmY(τm) +

(
1−

n∑
m=1

βm

)
Y(τ0).

We have limn→∞ p(n) =
∫
Ydµ and for all n ∈ N, p(n) ∈ conv(Im(Y)). For all

n ∈ N, we let p(n) = (p
(n)
1 , . . . , p

(n)
d ).

We now fix n such that, for all j ∈ J1, dK,
∫
Yjdµ ∈ R implies that

−ε

3
≤ p

(n)
j −

∫
Yjdµ ≤

ε

3
, (14.4)∫

Yjdµ = +∞ implies that p
(n)
j ≥ M + ε and

∫
Yjdµ = −∞ implies that

p
(n)
j ≤ −M − ε. We set α0 = 1−

∑n
m=1 βm and for m ∈ J1, nK, αm = βm. We

remark that p(n) =
∑n

m=0 αmY(τm). We show that the convex combination
q =

∑n
m=0 αmX (τm) =

∑n
m=0 αmEτm

s (f̄) satisfies the claim of the theorem.
We write q = (q1, . . . , qd). It follows from the inequalities Yj − ε

3 ≤ Xj ≤
Yj +

ε
3 for all j ∈ J1, dK and the definitions of q and p(n) that

p(n) − ε

3
1 ≤ q ≤ p(n) +

ε

3
1. (14.5)

Let j ∈ J1, dK. First, assume that Eσ
s (fj) = +∞ (i.e.,

∫
Yjdµ = +∞). In

this case, it follows from Equation (14.5) and p
(n)
j ≥M + ε that

qj =
n∑

m=0

αmEτm
s (fj) ≥ p

(n)
j − ε

3
≥M +

2ε

3
≥M.

The argument for the case Eσ
s (fj) = −∞ follows an analogous reasoning and is

omitted.
We now assume that Eσ

s (fj) ∈ R (i.e.,
∫
Yjdµ ∈ R). By applying Equa-

tions (14.5), (14.4) and (14.3) in succession, we obtain that

qj ≤ p
(n)
j +

ε

3

≤
∫

Yjdµ+
2ε

3

≤ Eσ
s (fj) + ε.
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A similar succession of inequalities (referring to the same equations), yields
qj ≥ Eσ

s (fj)− ε. This ends the argument that q satisfies the conditions outlined
in the statement of the theorem.

To end the proof, it remains to show that the assumptions made above are
without loss of generality. We recall them first:

1. for all j ∈ J1, dK, Eτ
s(fj) ≥ 0 for all τ ∈ Σpure(M) or Eτ

s(fj) ≤ 0 for all
τ ∈ Σpure(M);

2. for all j ∈ J1, dK, µ({τ ∈ Σpure(M) | Xj(τ) /∈ R}) = 0.

In the above, we have shown that the claim of the theorem holds with As-
sumptions 1 and 2. In the following, we first show that the theorem with both
Assumptions 1 and 2 implies the theorem with only Assumption 2. After this,
we show that the theorem with Assumption 2 implies the theorem with neither
additional assumption.

Assume that Assumption 2 holds and let us show that the claim of the
theorem holds. To obtain the result for f̄ , we derive a payoff ḡ = (g1, . . . , gd)

from f̄ such that ḡ satisfies the conditions outlined in Assumptions 1 and 2, so
that we can apply the variant of the theorem with Assumptions 1 and 2 to ḡ.

Let j ∈ J1, dK. If infτ∈Σ(M) Eτ
s(fj) ∈ R, we let gj = fj − infτ∈Σ(M) Eτ

s(fj).
We obtain that Eτ

s(gj) ≥ 0 for all strategies τ. Indeed, for all strategies τ,
this follows by linearity of E if fj is Pτ

s-integrable (which is equivalent to gj

being Pτ
s-integrable) and otherwise the non-negative parts of fj and gj are

| infτ′∈Σ(M) Eτ′
s (fj)|-close to one another, thus share their infinite integral and

we obtain Eτ
s(gj) = Eτ

s(fj) = +∞ ≥ 0. Otherwise, by Lemma 13.9, we have
supτ∈Σ(M) Eτ

s(fj) ∈ R and we let gj = fj − supτ∈Σ(M) Eτ
s(fj). By adapting

the argument of the previous case, we obtain that for all strategies τ, we have
Eτ
s(gj) ≤ 0 and the equivalence Eτ

s(gj) = −∞ if and only if Eτ
s(fj) = −∞.

Let M ′ = M+maxj∈J1,dK |γj | where γj is the constant such that gj = fj−γj

for all j ∈ J1, dK. We let τ1, . . . , τn be the strategies and α1, . . . , αn ∈ [0, 1]

be the coefficients given by the theorem with Assumptions 1 and 2 for ḡ,
σ, ε and M ′. Let j ∈ J1, dK. For all m ∈ J1, nK, fj is Pτm

s -integrable (by
the remaining additional assumption). We thus have

∑n
m=1 αmEτm(fj) =

γj +
∑n

m=1 αmEτm(gj). If Eσ
s (fj) ∈ R, i.e., fj is Pσ

s -integrable, then so is gj and
we directly obtain Eσ

s (fj)−ε ≤
∑n

m=1 αmEτm
s (fj) ≤ Eσ

s (fj)+ε from the similar
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inequality for gj . Next, assume that Eσ
s (fj) = +∞. By the above, this implies

that Eσ
s (gj) = +∞. We obtain (from the application of the theorem to gj) that∑n

m=1 αmEτm
s (fj) ≥ γj +M ′ ≥ M . Finally, if Eσ

s (gj) = −∞, we obtain that∑n
m=1 αmEτm

s (fj) ≤ γj −M ′ ≤ −M in the same way as the previous case.
It remains to show that the theorem with Assumption 2 implies the theorem

with no assumption. For convenience of notation, we assume that there exists
d′ ∈ J1, dK such that, for all j ∈ J1, d′K, µ({τ ∈ Σpure(M) | Eτ

s(fj) /∈ R}) > 0

and, for all j ∈ Jd′ + 1, dK and µ({τ ∈ Σpure(M) | Eτ
s(fj) ∈ R}) = 1.

For all j ∈ J1, d′K, Eσ
s (fj) is infinite and there exists τj ∈ Σpure(M) such that

Eτj
s (fj) = Eσ

s (fj) (because µ({τ ∈ Σpure(M) | Eτ
s(fj) /∈ R}) > 0) and, for all j ∈

Jd′+1, dK, Eτ
s(fj) ∈ R (because µ({τ ∈ Σpure(M) | Eτ

s(fj′) ∈ R}) = 1). If d′ = d,
we conclude using the convex combination

∑d
j=1

1
dE

τj
s (f̄) = Eσ

s (f̄). Therefore,
we assume that d′ < d. The payoff (fd′+1, . . . , fd) satisfies Assumption 2. We
apply the theorem with Assumption 2 to (fd′+1, . . . , fd), strategy σ, ε

3 and M+ε

to obtain pure strategies τd′+1, . . . , τn and convex combination coefficients
βd′+1, . . . , βn that satisfy the implications given in the last property of the
statement of the theorem.

We now define convex combination coefficients α1, . . . , αn to obtain
the claim of the theorem for f̄ . Fix η ∈ ]0, 1[ such that (i) for all
j ∈ J1, d′K, the real components of ηEτj

s (f̄) are no more than ε
3 in ab-

solute value and (ii) (1 − η)
∑n

m=d′+1 βmEτm
s ((fd′+1, . . . , fd)) is ε

3 -close to∑n
m=d′+1 βmEτm

s ((fd′+1, . . . , fd)). For all 1 ≤ m ≤ d′, we set αm = η
d′ and

for m ∈ Jd′ + 1, nK, we set αm = (1 − η)βm. It follows from η ∈ ]0, 1[ that
1− η > 0 and

∑n
m=1 αm = 1.

We show that the pure strategies τ1, . . . , τm and coefficients α1, . . . , αn are
witnesses to the implications in the theorem statement. Let j ∈ J1, dK. If j ≤ d′,
it follows from η > 0 that

∑n
m=1 αmEτm

s (fj) = ηEτj
s (fj) = Eσ

s (fj) ∈ {−∞,+∞},
and the required inequality is trivially satisfied. We assume from here that
j ≥ d′ + 1. It follows from properties (i) and (ii) above that

∑n
m=1 αmEτm

s (fj)

is 2·ε
3 -close to

∑n
m=d′+1 βmEτm

s (fj). Assume that Eσ
s (fj) = +∞. Then, we have

n∑
m=1

αmEτm
s (fj) ≥

n∑
m=d′+1

βmEτm
s (fj)−

2 · ε
3
≥M + ε− 2 · ε

3
≥M.

We obtain that Eσ
s (fj) = −∞ implies

∑n
m=1 αmEτm

s (fj) ≤ −M similarly.
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Finally, assume that Eσ
s (fj) ∈ R. We recall that |

∑n
m=d′+1 βmEτm

s (fj) −
Eσ
s (fj)| ≤ ε

3 by definition of the strategies τd′+1, . . . , τn and coefficients βd′+1,
. . . , βn. We obtain, by the triangular inequality, that∣∣∣∣∣

n∑
m=1

αmEτm
s (fj)− Eσ

s (fj)

∣∣∣∣∣ ≤
∣∣∣∣∣

n∑
m=1

αmEτm
s (fj)−

n∑
m=d′+1

βmEτm
s (fj)

∣∣∣∣∣
+

∣∣∣∣∣
n∑

m=d′+1

βmEτm
s (fj)− Eσ

s (fj)

∣∣∣∣∣
≤ 2 · ε

3
+

ε

3
= ε.

This ends the proof that theorem with Assumption 2 implies the theorem
without any additional assumption.

14.5 Bounding the support of mixed strategies

Theorems 14.4 and 14.7 state that it suffices to mix finitely many pure strategies
to respectively match or approximate the expected payoff of any strategy. We
provide bounds on the number of pure strategies to mix in this section, in the
same vein as Carathéodory’s theorem for convex hulls (Theorem 2.1). We show
that the expected payoff of a finite-support mixed strategy can be obtained
exactly by mixing no more than d+ 1 strategies that are in its support and
that a greater or equal payoff can be obtained by mixing no more than d of
these strategies.

Let s ∈ S, σ1, . . . , σn be pure strategies and α1, . . . , αn ∈ [0, 1] be convex
combination coefficients. Let q = (qj)1≤j≤d =

∑n
m=1 αmEσm

s (f̄). First, let us
discuss the case when q ∈ Rd, i.e., when all considered pure strategies have a
finite expected payoff on all dimensions. In this case, the first bound is direct
by Carathéodory’s theorem for convex hulls.

For the second bound, we observe that q is an element of the compact convex
polytope D = conv({Eσm

s (f̄) | m ∈ J1, nK}). In particular, q is dominated by
an element p lying on a proper face of D (i.e., the intersection of D and a
hyperplane). For instance, we can consider q + β · 1 for β = max{γ ≥ 0 |
q + γ1 ∈ D}. Because proper faces have dimension no more than d − 1,
Carathéodory’s theorem implies that p is a convex combination of no more
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than d vectors of the form Eσm
s (f̄), taken among those lying on the considered

proper face.
Assume now that q /∈ Rd. In this case, Carathéodory’s theorem does not

apply directly. The idea is to reduce ourselves to the previous case. For each
j ∈ J1, dK, if qj is infinite, there is m ∈ J1, nK such that Eσm

s (fm) = qj . For each
infinite component of q, we fix αmEσm

s (f̄) in the convex combination for one
such m. We then obtain the sought bounds from the above; we reason on the
real-valued components of q in the non-fixed part of the convex combination
(after normalising its coefficients to sum to one).

We formalise our theorem and the previous proof sketch below.

Theorem 14.8. Assume that f̄ is universally unambiguously integrable. Let s ∈
S, σ1, . . . , σn be pure strategies and α1, . . . , αn ∈ [0, 1] be convex combination
coefficients. There exist convex combination coefficients β1, . . . , βn ∈ [0, 1] with
|{1 ≤ m ≤ n | βm ̸= 0}| ≤ d+ 1 and convex combination coefficients γ1, . . . ,
γn ∈ [0, 1] with |{1 ≤ m ≤ n | γm ̸= 0}| ≤ d such that

n∑
m=1

αmEσm
s (f̄) =

n∑
m=1

βmEσm
s (f̄) ≤

n∑
m=1

γmEσm
s (f̄).

Proof. For all m ∈ J1, nK, let p(m) = (p
(m)
j )j∈J1,dK = Eσm

s (f̄) and let q =

(qj)1≤j≤d =
∑n

m=1 αmp(m). We assume that for all m ∈ J1, nK, αm ̸= 0.
First, we assume that q ∈ Rd. The existence of coefficients β1, . . . , βn

obeying the required conditions is direct by Carathéodory’s theorem for convex
hulls (Theorem 2.1). We let D = conv({p(m) | m ∈ J1, nK}), which is a compact
set (see Lemma 2.2).

We define p = q+ β · 1 for β = sup{γ ≥ 0 | q+ γ · 1 ∈ D}. We remark that
β is a real number. On the one hand, 0 ∈ {γ ≥ 0 | q + γ · 1 ∈ D}, and thus
β ̸= −∞. On the other hand, D is bounded, therefore β ̸= +∞. Furthermore,
p ∈ D. By convexity of D, q + γ · 1 ∈ D for all 0 ≤ γ < β. It follows that
p ∈ cl(D) = D.

We have q ≤ p. To end the case q ∈ Rd, we show that there exists a
hyperplane H such that p is a convex combination of the vectors p(m) that lie
in H. This suffices, because Carathéodory’s theorem then ensures that p is a
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convex combination of no more than d vectors among the p(m).
If D is included in a hyperplane, there is nothing to show. We thus assume

that D is not included in a hyperplane and obtain a hyperplane using the
supporting hyperplane theorem (Theorem 2.4). By construction, p /∈ int(D) =

ri(D): for all γ > 0, p + γ · 1 /∈ D. Therefore, there exists a linear form
x∗ : Rd → R such that for all v ∈ D, x∗(v) ≤ x∗(p). We claim that p is
a convex combination of the p(m) that lie in the hyperplane (x∗)−1(x∗(p)).
Write p as a convex combination

∑n
m=1 α

′
mp(m). We observe that for all

m ∈ J1, nK, α′
m ̸= 0 implies x∗(p(m)) = x∗(p), as otherwise we would obtain

that x∗(p) < x∗(p). This ends the proof in the case q ∈ Rd.
We now assume that some components of q are infinite. For convenience

of notation, we assume that there is d′ ∈ J1, dK such that, for all j ∈ J1, d′K,
qj ∈ {−∞,+∞} and, for all j ∈ Jd′ + 1, dK, qj ∈ R. For all j ∈ J1, d′K, let
mj ∈ J1, nK such that p(mj)

j = qj . If d′ = d, we have q = 1
d

∑d
j=1 p

(mj). We now
assume that d′ < d.

Let I∞ = {mj | j ∈ J1, d′K}, IR = J1, nK \ I∞. We have |I∞| ≤ d′ ≤ d. In
particular, if IR is empty, the sought result is direct. We assume that IR ̸= ∅. Let
αR =

∑
m∈IR αm > 0, and let proj>d′ : (R̄)d → (R̄)d−d′ denote the projection of

a vector onto its d−d′ last components. We apply the result for vectors in Rd−d′

to proj>d′(
∑

m∈IR
αm
αR

p(m)) with respect to the payoff function (fd′+1, . . . , fd).
It follows that there exist convex combination coefficients (β′

m)m∈IR of which at
most d− d′ + 1 are positive and convex combination coefficients (γ′m)m∈IR of
which at most d− d′ are positive such that

proj>d′

∑
m∈IR

αm

αR
p(m)

 =
∑
m∈IR

β′
mproj>d′(p

(m)) ≤
∑
m∈IR

γ′mproj>d′(p
(m)).

We conclude by observing that

q =
∑

m∈I∞

αmp(m) + αR ·
∑
m∈IR

αm

αR
p(m)

=
∑

m∈I∞

αmp(m) +
∑
m∈IR

αRβ
′
mp(m)

≤
∑

m∈I∞

αmp(m) +
∑
m∈IR

αRγ
′
mp(m),
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i.e., for all m ∈ I∞, we let βm = γm = αm, and for all m ∈ IR, we let
βm = αR · β′

m and γm = αR · γ′m.

We now highlight two corollaries of Theorem 14.8. First, we obtain bounds
when dealing with universally integrable payoffs that follow from Theorem 14.4.

Corollary 14.9. Assume that f̄ is universally integrable. Let s ∈ S.

• For all q ∈ Pays(f̄), q is a convex combination of at most d+ 1 elements
of Paypures (f̄).

• For all q ∈ Achs(f̄), there exists a convex combination p of at most d

elements of Paypures (f̄) such that q ≤ p.

Proof. By Theorem 14.4, Pays(f̄) = conv(Paypures (f̄)). Furthermore, we recall
that q ∈ Achs(f̄) if and only if there exists a strategy σ such that q ≤ Eσ

s (f̄).
We obtain both claims of the corollary directly by Theorem 14.8.

Example 14.4 implies that Corollary 14.9 does not directly extend to univer-
sally unambiguously integrable payoffs. Nonetheless, we can identify a class of
vectors that can be achieved by mixing no more than d strategies: the vectors
in int(Achs(f̄)∩Rd). These are vectors q ∈ Achs(f̄)∩Rd that can be improved
in all dimensions simultaneously, i.e., such that q + ε1 ∈ Achs(f̄) for some
ε > 0. To prove our result, intuitively, we approximate, via Theorem 14.7, the
payoff of a strategy achieving q+ ε1 with a finite-support mixed strategy then
invoke Theorem 14.8.

Corollary 14.10. Assume that f̄ is universally unambiguously integrable. Let
s ∈ S. For q ∈ int(Achs(f̄) ∩ Rd), there exists a convex combination p of at
most d elements of Paypures (f̄) such that q ≤ p.

Proof. Let q = (qj)1≤j≤d ∈ int(Achs(f̄) ∩ Rd). By definition of the interior of a
subset of Rd, there exists ε > 0 such that q+ ε1 ∈ Achs(f̄). Therefore, there
exists a strategy σ such that, for all j ∈ J1, dK, qj < Eσ

s (fj). For all j ∈ J1, dK,
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we have Eσ
s (fj) ̸= −∞ because Eσ

s (fj) > qj ∈ R. Let

η = min ({1} ∪ {Eσ
s (fj)− qj | Eσ

s (fj) ∈ R, j ∈ J1, dK})

and
M = max ({1} ∪ {qj + 1 | Eσ

s (fj) = +∞, j ∈ J1, dK}) .

Theorem 14.7 implies that there exist pure strategies τ1, . . . , τn and convex
combination coefficients α1, . . . , αn ∈ [0, 1] such that if Eσ

s (fj) = +∞, then∑n
m=1 αmEτm

s (fj) ≥ M and, otherwise,
∑n

m=1 αmEτm
s (fj) − Eσ

s (fj) ≥ −η.
By Theorem 14.8, we can assume that n ≤ d. Let p = (pj)1≤j≤d =∑n

m=1 αmEτm
s (f̄).

We show that q ≤ p. Let j ∈ J1, dK. First, assume that Eσ
s (fj) = +∞. In

this case, M ≥ qj , and we obtain qj ≤M ≤ pj . Second, assume that Eσ
s (fj) ∈ R.

In that case, we have η ≤ Eσ
s (fj)− qj , and therefore qj ≤ Eσ

s (fj)− η ≤ pj .





Chapter 15

Continuous payoffs in finite
multi-objectives Markov decision

processes

We study the topological properties of expected payoff sets when considering
continuous payoff functions in finite multi-objective MDPs. The main result of
this section applies to continuous payoffs whose square is universally integrable,
or universally square integrable for short. We prove that the set of expected
payoffs and the set of achievable vectors are closed for such payoff functions. This
class of payoffs subsumes real-valued continuous payoffs (including discounted-
sum payoffs) because such payoffs are bounded (since the set of plays is compact)
and universally integrable continuous shortest-path costs (see Section 15.4).

We divide this chapter in four parts. In Section 15.1, we introduce a topology
on the space of behavioural strategies such that the resulting topological space
is metrisable and compact to formalise a notion of convergence of strategies.
In Section 15.2, we formulate our result for continuous universally square
integrable payoffs. Section 15.3 provides examples illustrating that the results
of Section 15.2 do not hold for continuous payoffs that are not universally
integrable. Finally, we show in Section 15.4 that the results of Section 15.2
apply to continuous universally integrable shortest-path costs.

For this whole chapter, we fix a finite MDP M = (S,A, δ) and a d-
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dimensional continuous payoff f̄ = (fj)j∈J1,dK.

Contents
15.1 A topology on the space of strategies . . . . . . . . 272

15.2 Universally square integrable continuous payoffs . . 278

15.3 Non-universally integrable continuous payoffs . . . 284

15.4 Universally integrable shortest-path costs . . . . . . 286

15.1 A topology on the space of strategies

In this section, we define a topology on the space of strategies to formalise the
convergence of sequences of strategies.

First, we define a topology over D(A(s)) for all s ∈ S. Let s ∈ S. The set
D(A(s)) is a compact subset of RA(s). In the sequel, we consider the metric
(induced by the Euclidean norm) distproba(µ, µ

′) =
√∑

a∈A(s) |µ(a)− µ′(a)|2

for all µ, µ′ ∈ D(A(s)) on distributions over actions.
We endow the set Σ(M) =

∏
h∈Hist(M)D(A(last(h))) of all strategies with

the product topology. We obtain that Σ(M) is a compact metrisable topological
space. We do not define a metric over strategies, as it is not necessary in the
sequel. Instead, we recall that a sequence of strategies (σ(n))n∈N converges to a
strategy σ if and only if, for all h ∈ Hist(M), (σ(n)(h))n∈N converges to σ(h).

We now formulate a result intuitively stating that close strategies induce
distributions that assign similar probabilities to cylinders of histories of bounded
length. We first require the following technical lemma.

Lemma 15.1. Let α1, . . . , αn, β1, . . . , βn ∈ [0, 1]. Then∣∣∣∣∣
n∏

m=1

αm −
n∏

m=1

βm

∣∣∣∣∣ ≤
n∑

m=1

|αm − βm| .

Proof. We proceed by induction. The claim trivially holds for n = 1. To lighten
notation, we prove the case n = 2 separately first. We perform the general
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induction step below by building on this simpler case. We have:

|α1α2 − β1β2| = |
1

2
(α1 − β1)(α2 + β2) +

1

2
(α1 + β1)(α2 − β2)|

≤ |α1 − β1|
|α2 + β2|

2
+ |α2 − β2|

|α1 + β1|
2

≤ |α1 − β1|+ |α2 − β2|.

The second line is obtained by the triangular inequality and the last line is
obtained by using the fact that α1, α2, β1, β2 ∈ [0, 1].

We now perform the general induction step. We assume that the result
holds for some n ∈ N>0 and prove that it holds for n + 1. By applying the
simpler case proven above and then the induction hypothesis, we obtain that∣∣∣∣∣

n+1∏
m=1

αm −
n+1∏
m=1

βm

∣∣∣∣∣ ≤
∣∣∣∣∣

n∏
m=1

αm −
n∏

m=1

βm

∣∣∣∣∣+ |αn+1 − βn+1|

≤
n+1∑
m=1

|αm − βm| .

We now state the lemma regarding induced distributions.

Lemma 15.2. Let σ, τ be two strategies, k ∈ N>0 and η > 0. Assume that, for
all histories h that are at most k states long, distproba(σ(h), τ(h)) ≤ η

k . Then,
for all histories h that are at most k + 1 states long and all s ∈ S, we have
|Pσ

s (Cyl (h))− Pτ
s(Cyl (h))| ≤ η.

Proof. Let h = s0a0s1 . . . sr with r ≤ k. We only prove the claim for s = s0.
The other case is direct because, for s ∈ S \ {s0}, we have Pσ

s (Cyl (h)) =

Pτ
s(Cyl (h)) = 0.
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The proof follows from the following sequence of inequations.

|Pσ
s0(Cyl (h))− Pτ

s0(Cyl (h))| =
r−1∏
ℓ=0

δ(sℓ, aℓ)(sℓ+1) ·

∣∣∣∣∣
r−1∏
ℓ=0

σ(h≤ℓ)−
r−1∏
ℓ=0

τ(h≤ℓ)

∣∣∣∣∣
≤

∣∣∣∣∣
r−1∏
ℓ=0

σ(h≤ℓ)−
r−1∏
ℓ=0

τ(h≤ℓ)

∣∣∣∣∣
≤

r−1∑
ℓ=0

|σ(h≤ℓ)− τ(h≤ℓ)|

≤ k · η
k
= η.

The first line is by definition of probability measures induced by the strategies
from s0. The second line uses the fact that transition probabilities are at most
1. The third line is obtained by Lemma 15.1. The last line follows from the
assumption of the lemma and r ≤ k.

In the following section, we prove that if f̄ is universally square integrable
and Σ ⊆ Σ(M) is closed, then PayΣs (f̄) is compact. We close this section by
highlighting classes of strategies that are closed, i.e., classes of strategies for
which we can apply the previous result.

First, we show that Σpure(M) is a closed subset of Σ(M). The proof boils
down to showing that the limit of a converging sequence of Dirac distributions
is a Dirac distribution. This follows from such sequences being ultimately
constant.

Lemma 15.3. The set Σpure(M) is a closed subset of Σ(M).

Proof. Let (σ(n))n∈N be a sequence of pure strategies that converges to a strategy
σ, i.e., for all h ∈ Hist(M), the sequence (σ(n)(h))n∈N converges to σ(h). We
must show that, for all h ∈ Hist(M), σ(h) is a Dirac distribution.

Let h ∈ Hist(M). Because (σ(n)(h))n∈N is convergent, it is a Cauchy
sequence. Thus, there exists some n0 ∈ N such that for all n,m ≥ n0,
distproba(σ

(n)(h), σ(m)(h)) < 1. It follows from (σ(n)(h))n∈N being a sequence of a
Dirac distributions and the definition of distproba that the sequence (σ(n)(h))n≥n0
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is constant. It follows that σ(h) = σ(n0)(h), and thus σ(h) is a Dirac distribu-
tion.

We can also show that the set of finite-memory strategies with at most
B ∈ N>0 memory states is closed. Furthermore, when taking the limit of a
converging sequence of finite-memory strategies induced by Mealy machines
with deterministic initialisation (resp. outputs, updates), the limit strategy is
also induced by a Mealy machine with deterministic initialisation (resp. outputs,
updates).

The proof reasons on the Mealy machines inducing the elements of the
sequence. First, we extract a subsequence of Mealy machines that all have the
same topology. Second, we extract a subsequence such that each component
of the Mealy machine converges. To conclude, we prove that the limit Mealy
machine induces the limit strategy of the original sequence.

The XYZ acronym in the following statement refers to the classification of
finite-memory strategies studied in Part III (described in Chapter 3.2).

Lemma 15.4. Let X,Y,Z ∈ {D,R} and B ∈ N>0. The set of finite-memory
strategies induced by XYZ Mealy machines with at most B states is closed with
respect to the metric diststrat.

Proof. Let σ be the limit of a sequence of finite-memory strategies (σn)n∈N

induced by XYZ Mealy machines with a most B states. For all n ∈ N, we let
Mn = (Mn, µ

n
init, nxt

n
M, upnM) be a Mealy machine with a most B states inducing

σn. We assume that Mn ⊆ {1, . . . , B}.
We make several assumptions on the sequence of Mealy machines (Mn)n∈N

that can be enforced by working with a subsequence if necessary (using com-
pactness of sets of distributions over finite sets). First, we assume that Mn

is the same for all n ∈ N and let M denote this set. Second, we assume
that supp(µn

init) is constant for all n ∈ N and that (µn
init)n∈N is a convergent

sequence. Third, we assume that, for all m ∈M , s ∈ S and a ∈ A, the supports
supp(nxtnM(m, s)) and supp(upM(m, s, a)) are the same for all n ∈ N and the
sequences (nxtnM(m, s))n∈N and (upnM(m, s, a))n∈N are convergent.

We define a Mealy machine M = (M,µinit, nxtM, upM) as follows. We let



276 Chapter 15 – Continuous payoffs in finite multi-objective MDPs

µinit = limn→∞ µn
init and define nxtM and upM such that, for all m ∈ M ,

s ∈ S and a ∈ A, nxtM(m, s) = limn→∞ nxtnM(m, s) and upM(m, s, a) =

limn→∞ upnM(m, s, a). We obtain that M is an XYZ Mealy machine because
sequences of Dirac distributions can only converge to Dirac distributions.

As a consequence of this definition of M and the assumptions above, there
are fewer initial states and transitions in M than in the machines Mn. For-
mally, for all m ∈ M , s ∈ S, a ∈ A and n ∈ N, we have supp(µinit) ⊆
supp(µn

init), supp(nxtM(m, s)) ⊆ supp(nxtnM(m, s)) and supp(upM(m, s, a)) ⊆
supp(upnM(m, s, a)).

We let σM be the partially-defined strategy induced by M, and prove that
for all histories h in the domain of σM, σM(h) = σ(h), i.e., that σM(h) =

limn→∞ σn(h).
For w ∈ (SA)∗, we reuse the notation µw introduced in Chapter 2.4.4 for the

distribution over memory states when playing according to M after w has taken
place. For all n ∈ N and w ∈ (SA)∗, we denote by µn

w the similarly-defined
distribution for Mn. We first show a technical claim before proceeding with
the proof, to ensure that all objects manipulated below are well-defined. We
show that for all w ∈ (SA)∗ and n ∈ N, if w is consistent with M, then w is
consistent with Mn.

Let n ∈ N. We show this claim by induction on the number of MDP
states in w (i.e., the length of w as a word over the alphabet SA). For the
base case, i.e., the empty word ε, we note that ε is consistent with all Mealy
machines. We now let w = w′sa consistent with M and assume by induction
that the claim holds for w′ (which is necessarily consistent with M, as otherwise,
w could not be). The consistency of w with M implies that there is some
m ∈ supp(µw′) such that a ∈ supp(nxtM(m, s)). By the induction hypothesis,
we have m ∈ supp(µn

w′(m, s)) and w′ consistent with Mn. It follows from these
properties and the fact that a ∈ supp(nxtM(m, s)) ⊆ supp(nxtnM(m, s)), that w

is consistent with Mn. This ends the proof of the claim.
We now show that for all histories h consistent with M, we have σ(h) =

σM(h). For all histories h = ws consistent with M, we recall that σM(h)(a) =∑
m∈M µw(m) · nxtM(m, s)(a) for all a ∈ A. Therefore, to conclude, we need

only prove that for all w ∈ (SA)∗ consistent with M, limn→∞ µn
w = µw because

for all m ∈M , s ∈ S, nxtM(m, s) = limn→∞ nxtnM(m, s).
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Let w be consistent with M. For all n ∈ N, w is consistent with Mn, i.e.,
µn
w is well-defined. The proof is by induction on the length of w. The base

case w = ε is direct via the assumption limn→∞ µn
init = µinit. Next, assume that

w = w′sa and, by induction, that limn→∞ µn
w′ = µw′ . It suffices to show that

for all m ∈ supp(µw), limn→∞ µn
w(m) = µw(m), i.e., that

lim
n→∞

∑
m′∈M µn

w′(m′) · nxtnM(m′, s)(a) · upnM(m′, s, a)(m)∑
m′∈M µn

w′(m′) · nxtnM(m′, s)(a)
= µw(m).

On the one hand, by the induction hypothesis, the numerator converges to∑
m′∈M µw′(m′) · nxtM(m′, s)(a) · upM(m′, s, a)(m). Similarly, the denominator

converges to
∑

m′∈M µw′(m′) · nxtM(m′, s)(a), which is non-zero by consistency
of w with M. This implies that limn→∞ µn

w(m) = µw(m). We have thus shown
that M induces σ.

The set of all finite-memory strategies itself is not closed. In fact, it can be
shown that the closure of the set of strategies induced by Mealy machines with
randomised outputs (i.e., DRD strategies) is the set of all strategies. Intuitively,
with such a finite-memory strategy, it is possible to imitate any strategy for a
finite number of steps in the MDP. By considering increasingly greater number
of steps, we can converge to any strategy in the limit.

Lemma 15.5. The set of finite-memory strategies induced by Mealy machines
with randomised outputs is dense in Σ(M).

Proof. Fix an arbitrary strategy σ. We use ε to denote the empty word. For
each n ∈ N, we define a Mealy machine Mn = (Mn, ε, nxt

n
M, upnM) where Mn =⋃n

m=0(SA)m, and for each m ∈Mn, s ∈ S and a ∈ A, we let upnM(m, s, a) = msa

if msa ∈Mn and upnM(m, s, a) = m otherwise, and nxtnM(m, s) = σ(ms).
For all n ∈ N, the strategy induced by Mn agrees with σ for all histories

that are at most n+ 1 states long. It follows that the sequence of strategies
induced by the Mealy machines Mn converges to σ.
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15.2 Universally square integrable continuous payoffs

We prove that if f̄ is universally square integrable, then for all s ∈ S, Pays(f̄)
and Achs(f̄) are closed. Our proof relies on the following property: if f̄ is
universally square integrable, then for all sequences (σ(n))n∈N of strategies
converging to a strategy σ, and for all s ∈ S, (Eσ(n)

s (f̄))n∈N converges to Eσ
s (f̄).

It suffices to prove the convergence on each dimension to obtain this property.
Therefore, we need only consider one-dimensional payoffs for now.

We split the proof into two parts: first, we consider the particular case
of real-valued continuous payoffs and then generalise to universally square
integrable payoffs. We remark that we may not assume that a universally
integrable continuous payoff is real-valued without loss of generality: changing
the payoff of plays that have an infinite payoff to a real number will violate the
continuity property. Therefore, we do not generalise the property for real-valued
continuous payoffs through such an assumption.

Let f : Plays(M) → R be a continuous real-valued payoff. The proof in
this case relies on the uniform continuity of f . Recall that f is uniformly
continuous if for all ε > 0, there exists ℓ ∈ N such that for all plays π, π′,
π≤ℓ = π′

≤ℓ implies that |f(π)− f(π′)| < ε. In particular, for all ε > 0, f can be
ε-approximated by a linear combination of indicator functions of cylinders of
histories of a fixed length. This provides a means to ε-approximate Eτ

s(f) for
any strategy τ as a linear combination of probabilities of cylinders of histories of
bounded length. Since Lemma 15.2 guarantees that the distributions over plays
induced by strategies that are intuitively close assign similar probabilities to
such cylinders, through the approximations above, we can obtain that Eσ(n)

s (f̄)

is 3ε-close Eσ
s (f̄) for all s ∈ S for large values of n. We formalise this argument

below.
We do not need to make assumptions regarding whether f is universally

integrable. Continuous real-valued payoffs on finite MDPs are bounded (as the
image of a compact set by a continuous function is compact), and thus the
continuity of a real-valued payoff implies that it is universally integrable.

Theorem 15.6. Let s ∈ S. Assume that M is finite, f̄ : Plays(M)→ Rd and
that f̄ is continuous. Then the function Σ(M)→ Rd : σ 7→ Eσ

s (f̄) is continuous.
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In other words, for all sequences (σ(n))n∈N of strategies that converge to a
strategy σ, limn→∞ Eσ(n)

s (f̄) = Eσ
s (f̄).

Proof. It suffices to prove the theorem in the case d = 1 to obtain the general
case. For this reason, we consider a one-dimensional real-valued continuous
payoff f below. Let (σ(n))n∈N be a sequence of strategies converging to a
strategy σ. We start with some notation. By continuity of f , f is bounded. We
let ∥f∥∞ = supπ∈Plays(M) |f(π)|. For any history h = s0a0 . . . sr, we let |h| = r

denote the index of the last state of the history. We also fix, for all histories
h ∈ Hist(M), a play π(h) ∈ Cyl (h) which is a continuation of h.

We must prove that (Eσ(n)

s (f))n∈N converges to Eσ
s (f). Let ε > 0. We

assume that ∥f∥∞ > 0, as otherwise the result is direct: if ∥f∥∞ = 0, then
Eσ(n)

s (f) = Eσ
s (f) = 0 for all n ∈ N.

We start by constructing a simple function which ε
3 -approximates f by

exploiting the uniform continuity of f . By uniform continuity of f , there exists
some k ∈ N>0 such that, for any two plays π, π′ ∈ Plays(M), if π≤k = π′

≤k,
then |f(π)− f(π′)| ≤ ε

3 . It follows that∣∣∣∣∣∣f −
∑
|h|=k

f(π(h)) · 1Cyl(h)

∣∣∣∣∣∣ ≤ ε

3
.

Since f is universally integrable, it follows that, for all τ ∈ Σ(M),∣∣∣∣∣∣Eτ
s(f)−

∑
|h|=k

f(π(h)) · Pτ
s(Cyl (h))

∣∣∣∣∣∣ ≤ ε

3
. (15.1)

To end the argument, we now determine n0 such that, for all n ≥ n0, we
have ∣∣∣∣∣∣

∑
|h|=k

f(π(h)) ·
(
Pσ
s (Cyl (h))− Pσ(n)

s (Cyl (h))
)∣∣∣∣∣∣ ≤ ε

3
. (15.2)

Let M denote the number of histories h such that |h| = k. Since limn→∞ σ(n) =

σ, there exists n0 ∈ N such that for all histories h such that |h| ≤ k (i.e., with
at most k + 1 states), we have distproba(σ

(n)(h), σ(h)) ≤ ε
3·M ·∥f∥∞·k (here, we
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use the fact that there are finitely many such histories). Equation (15.2) follows
from the triangular inequality and Lemma 15.2: we have, for all n ≥ n0,∣∣∣∣∣∣

∑
|h|=k

f(π(h)) ·
(
Pσ
s (Cyl (h))− Pσ(n)

s (Cyl (h))
)∣∣∣∣∣∣

≤ ∥f∥∞ ·
∑
|h|=k

∣∣∣Pσ
s (Cyl (h))− Pσ(n)

s (Cyl (h))
∣∣∣

≤ ∥f∥∞ ·
∑
|h|=k

ε

3 ·M · ∥f∥∞

≤ ε

3
.

Let n ≥ n0. We now show that |Eσ
s (f)− Eσn

s (f)| ≤ ε. From the triangular
inequality, Equation (15.1) and Equation (15.2), we obtain

∣∣∣Eσ
s (f)− Eσ(n)

s (f)
∣∣∣ ≤

∣∣∣∣∣∣Eσ
s (f)−

∑
|h|=k

f(π(h)) · Pσ
s (Cyl (h))

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑
|h|=k

f(π(h)) ·
(
Pσ
s (Cyl (h))− Pσ(n)

s (Cyl (h))
)∣∣∣∣∣∣

+

∣∣∣∣∣∣
∑
|h|=k

f(π(h)) · Pσ(n)

s (Cyl (h))− Eσ(n)

s (f)

∣∣∣∣∣∣
≤ ε

3
+

ε

3
+

ε

3
= ε.

We have thus shown that (Eσ(n)

s (f))n∈N converges to Eσ
s (f).

We now generalise Theorem 15.6 to universally square integrable payoffs.
We note that the previous proof relies on the boundedness of continuous payoffs
and their uniform continuity, and thus is not valid in this more general case.

Similarly to above, it suffices to consider one-dimensional non-negative
payoffs; the general case can be recovered by writing payoffs on each dimen-
sion as the difference of their non-negative and non-positive parts. The non-
negative and non-positive parts of a continuous payoff are also continuous
(see Lemma A.1, Page 403). We let f : Plays(M) → R̄ be a non-negative
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continuous square integrable payoff, s ∈ S, let (σ(n))n∈N be a sequence of
strategies that converges to a strategy σ and ε > 0. Given M ∈ R, we abbre-
viate {f(π) ≥ M | π ∈ Plays(M)} by {f ≥ M}, for all strategies τ, we write
Pτ
s(f ≥ M) instead of Pτ

s({f ≥ M}) and we let min(f,M) denote the payoff
π 7→ min{f(π),M}.

The goal is to show that |Eσ(n)

s (f)− Eσ
s (f))| ≤ ε for all large enough values

of n. We show that there exists a constant M ≥ 0 (dependent on ε) such
that the real-valued continuous payoff min(f,M) (whose continuity follows
from Lemma A.1) satisfies 0 ≤ Eτ

s(f) − Eτ
s(min(f,M)) ≤ ε

3 for all strategies
τ ∈ Σ(M). By the triangular inequality, |Eσ(n)

s (f)− Eσ
s (f))| is no more than

|Eσ(n)

s (f)− Eσ(n)

s (min(f,M))|+ |Eσ(n)

s (min(f,M))− Eσ
s (min(f,M))|

+ |Eσ
s (min(f,M))− Eσ

s (f)|.

The first and last terms are no more than ε
3 by choice of M , and the second

term is smaller than ε
3 for large values of n by Theorem 15.6.

Thus, the main hurdle of the proof is establishing the existence of a suitable
M . The first step consists in showing that the probability of f being large
can be made arbitrarily small, in the sense that for all η > 0, there exists
M(η) such that Pτ

s(f ≥ M(η)) ≤ η for all strategies τ. The negation of
this property would allow the existence of strategies with an arbitrarily large
expected payoff from s, contradicting Lemma 13.8. It then follows from the
Cauchy-Schwarz inequality (e.g., [Dur19, Thm. 1.5.2.]) that, for all strategies τ,
Eτ
s(f −min(f,M)) ≤

√
Eτ
s(f2) · η because f −min(f,M) ≤ f ·1f≥M . Because

f2 is universally integrable, Lemma 13.8 guarantees that supτ Eτ
s(f

2) is finite,
i.e., we obtain the desired inequality by choosing η small enough.

We provide the details of the above sketch in the following proof.

Theorem 15.7. Let s ∈ S. Assume that M is finite, and that f̄ is continuous
and universally square integrable. Then the function Σ(M)→ Rd : σ 7→ Eσ

s (f̄)

is continuous. In other words, for all sequences (σ(n))n∈N of strategies that
converge to a strategy σ, limn→∞ Eσ(n)

s (f̄) = Eσ
s (f̄).

Proof. It suffices to prove the theorem in the case d = 1 to obtain the general
case. For this reason, we consider a one-dimensional universally square integrable
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continuous payoff f . Let (σ(n))n∈N be a sequence of strategies that converges
to a strategy σ. We assume that f is non-negative. We show that this implies
the general case at the end of the proof.

We show that limn→∞(Eσ(n)

s (f̄))n∈N = Eσ
s (f̄) by the standard definition of

convergence. Let ε > 0. Our goal is to determine some M ≥ 0 and some n0

such that for all n ≥ n0, we have

|Eσ(n)

s (f)− Eσ(n)

s (min(f,M))|+|Eσ(n)

s (min(f,M))− Eσ
s (min(f,M))|

+ |Eσ
s (min(f,M))− Eσ

s (f)| ≤ ε

This is sufficient: the sum highlighted above is greater or equal to |Eσ(n)

s (f)−
Eσ
s (f)| by the triangular inequality. We bound each term of the above sum by

ε
3 in the following.

The crux of the proof is determining a bound M ≥ 0 such that for all
strategies τ, Eτ

s(f) − Eτ
s(min(f,M)) < ε

3 . To establish this, we show the
following property: for all η > 0, there exists a bound M(η) ≥ 0 such that, for
all strategies τ, Pτ

s(f ≥M(η)) ≤ η. This last property is shown by contradiction.
Assume that there exists some η > 0 such that for all M ≥ 0, there exists a
strategy τM such that PτM

s (f ≥M) > η. Then, we obtain that for all M ≥ 0,
EτM
s (f) ≥ EτM

s (M · 1{f≥M}) = M · PτM
s (f ≥M) ≥ η ·M . This contradicts the

fact that f is universally integrable (Lemma 13.8).
Let α = 1 + supτ∈Σ(M) Eτ

s(f
2) > 0. The value α is real by universal square

integrability of f (Lemma 13.8). For the remainder of the proof, we fix M ≥ 0

such that for all strategies τ, we have Pτ
s(f ≥M) ≤ ε2

9·α . We prove that M is the
bound sought above. First, we observe that f−min(f,M) = (f−M)·1{f≥M} ≤
f · 1{f≥M}. Because indicators are equal to their square, they are universally
square integrable. By applying the Cauchy-Schwarz inequality, we obtain that,
for all strategies τ,

Eτ
s(f −min(f,M)) ≤ Eτ

s(f · 1{f≥M}) ≤
√
Eτ
s(f2) · Eτ

s(1{f≥M}) ≤
ε

3
.

To conclude (for non-negative payoffs), it remains to show that there exists
n0 such that for all n ≥ n0, we have |Eσ(n)

s (min(f,M))− Eσ
s (min(f,M))| ≤ ε

3 .
To this end, we observe that the payoff min(f,M) is continuous (Lemma A.1).
Theorem 15.6 then implies that a suitable n0 exists (min(f,M) is real-valued).
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We have shown that the theorem holds for non-negative continuous uni-
versally square integrable payoffs. We now generalise to arbitrary continuous
universally square integrable payoffs. Let f+ = max(f, 0) and f− = max(−f, 0)
denote the non-negative and non-positive parts of f . These payoffs are continu-
ous by Lemma A.1. We observe that f2 = (f+)2 + (f−)2, and, in particular,
f2 ≥ (f+)2 + (f−)2. It follows that (f+)2 and (f−)2 are universally integrable.
We obtain the claim of the theorem from the above and the following sequence
of equations:

lim
n→∞

Eσ(n)

s (f) = lim
n→∞

Eσ(n)

s (f+)− lim
n→∞

Eσ(n)

s (f−)

= Eσ
s (f

+)− Eσ
s (f

−)

= Eσ
s (f).

We now prove that for multi-dimensional universally square integrable
payoffs that are continuous, given a closed set of strategies, its set of expected
payoffs and achievable set from a state are compact. For sets of expected
payoffs, this follows from Theorem 15.7: since the image of compact set by
a continuous function is compact, the result is direct. For achievable sets, it
follows from the property that the downward closure of any compact set is
compact (see Lemma A.10, Appendix A.8).

Theorem 15.8. Let s ∈ S and Σ ⊆ Σ(M) be a closed set of strategies. Assume
that M is finite and that f̄ is a continuous universally square integrable payoff.
Then PayΣs (f̄) and AchΣs (f̄) are compact subsets of Rd and R̄d respectively. In
particular, Pays(f̄), Achs(f̄), Pay

pure
s (f̄) and Achpures (f̄) are compact.

Proof. Since Σ is closed and Σ(M) is compact, we obtain that Σ is compact.
It follows from Theorem 15.6 that PayΣs (f̄) is the image of Σ by a continuous
function, and thus is compact. The claim regarding Paypures (f̄) follows from
Lemma 15.3. The claims related to achievable sets follow from the property
that for all compact D ⊆ R̄d, down(D) is compact (Lemma A.10) and the fact
that AchΣs (f̄) = down(PayΣs (f̄)) by definition.
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(a) A weighted MDP with one randomised
transition. Weights are omitted and are
all 1.
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b

(1, 1)

a

(0, 1)

b

(1, 1)

(b) An MDP with two-dimensional
weights.

Figure 15.1: MDPs for counter-examples to Theorems 15.7 (left) and 15.8
(right) without the universally square integrable assumption.

Theorem 15.8 provides a sufficient condition on payoffs which guarantees
that we can dominate any expected payoff by a Pareto-optimal expected payoff.
This property does not hold for all universally integrable payoffs in full generality,
e.g., in the one-dimensional setting, optimal strategies need not exist.

We now turn our attention to finite-memory strategies. Theorem 15.8 and
Lemma 15.4 imply that the set of expected payoffs of strategies induced by
Mealy machines of a bounded size is closed when considering universally square
integrable continuous payoffs. Furthermore, by density of the set of finite-
memory strategies in the set of strategies ofM (Lemma 15.5), it follows from
Theorem 15.7that any expectation of a universally square integrable continuous
payoff can be approximated with finite-memory strategies.

Corollary 15.9. Let s ∈ S and σ ∈ Σ(M). Assume that M is finite and that
f̄ is a continuous universally square integrable payoff. Then for all ε > 0, there
exists a finite-memory strategy τ such that |Eσ

s − Eτ
s| ≤ ε.

15.3 Non-universally integrable continuous payoffs

In this section, we present counterexamples to Theorems 15.7 and 15.8 when
the assumption of universal square integrability is relaxed. The MDPs used in
these counterexamples are depicted in Figure 15.1.

For the first example, we provide an MDP with a shortest-path cost wit-
nessing that Theorem 15.7 does not generalise to shortest-path costs that are
not universally (square) integrable, even when only considering pure strategies
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and when Pays(f̄) is closed.

Example 15.1. We consider the MDPM depicted in Figure 15.1a, the constant
weight function w = 1 and the shortest-path cost function SPath

{t}
w . We provide

a sequence of pure strategies (σ(n))n∈N converging to a pure strategy σ such
that limn→∞ Eσ(n)

s (SPath
{t}
w ) ̸= Eσ

s (SPath
{t}
w ). For all n ∈ N, we define σ(n) as

the pure strategy such that, for all h ∈ Hist(M), σ(n)(h) = b if last(h) = s and
there are at least n actions in h, and otherwise, σ(n)(h) = a. Intuitively, when
starting in s, σ(n) uses action a for the first n rounds of the play and then uses
b for all subsequent rounds. The pure memoryless strategy σ assigning action
a to all states is easily checked to be limn→∞ σ(n).

Let n ∈ N. Let πn denote the play (sa)n(sb)ω. We have Pσ(n)

s ({πn}) = 1
2n .

Indeed, for all r ∈ N, the definition of the probability distribution over plays
under a strategy implies that

Pσ(n)

s (Cyl ((sa)n(sb)rs)) = Pσ(n)

s (Cyl ((sa)ns)) =
1

2n
.

It follows from SPath
{t}
w (πn) = +∞ that Eσ(n)

s (SPath
{t}
w ) = +∞. We conclude

that limn→∞ Eσ(n)

s (SPath
{t}
w ) = +∞.

We now show that Eσ
s (SPath

{t}
w ) ∈ R. First, we note that Pσ

s (Reach({t})) =
1. Therefore, Eσ

s (SPath
{t}
w ) is the unique solution of the equation x = 1 +

1
2x (see, e.g., [BK08]), i.e., Eσ

s (SPath
{t}
w ) = 2 ∈ R. We have shown that

limn→∞ Eσ(n)

s (SPath
{t}
w ) ̸= Eσ

s (SPath
{t}
w ).

We now show that Pays(SPath
{t}
w ) is closed. The memoryless strategy

playing a is optimal when adopting a minimisation point of view. Furthermore,
there exist strategies with arbitrarily large but finite expected payoffs from s.
For instance, for all n ∈ N, the strategy that plays b for the first n rounds in s

and then only uses a after ensures a finite payoff greater than n. By convexity
of Pays(SPath

{t}
w ) ∩ R, it follows that Pays(SPath

{t}
w ) = [2,+∞] and thus is

closed. ◁

We now present a counter-example to Theorem 15.8 when the considered
payoffs are not universally integrable: we provide a continuous payoff such that
its set of expected payoffs and achievable sets from a given state are not closed.

Example 15.2. We consider the MDPM and the weight function w = (w1, w2)

depicted in Figure 15.1b. Let f̄ = (f1, f2) be the two-dimensional payoff such
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that f1 = DSum
1/2
w1 and f2 = SPath

{t}
w2 . To show that Pays(f̄) is not closed, we

show that (2,+∞) ∈ cl(Pays(f̄)) \ Pays(f̄).
First, we show that (2,+∞) ∈ cl(Pays(f̄)). We have f̄((sa)ω) = (0,∞) and

f̄(s(bt)ω) = (2, 1). By convexity of Pays(f̄), we obtain that for all η ∈ ]0, 1[,
(2η,+∞) ∈ Pays(f̄). It follows that (2,+∞) ∈ cl(Pays(f̄)).

Next, we argue that (2,+∞) /∈ Pays(f̄). We observe that the only play π

from s such that f1(π) = 2 is the play s(bt)ω. All other plays π′ starting in
s are such that f1(π

′) < 2. Indeed, for all ℓ ∈ N, we have f1((sa)
ℓs(bt)ω) =∑

ℓ′≥ℓ
1
2ℓ′

= 1
2ℓ−1 < 2. It follows that, to obtain a payoff of 2 on the first

dimension from s, we require a strategy whose only outcome is s(bt)ω. This
implies that (2,+∞) /∈ Pays(f̄). We have shown that Pays(f̄) is not closed. ◁

15.4 Applicability to universally integrable shortest-
path costs

The goal of this section is to prove that all universally integrable shortest-path
costs are universally square integrable in finite MDPs. In particular, this
implies that Theorem 15.7 is applicable to universally integrable continuous
shortest-path costs. We assume thatM is finite throughout this entire section.

Let T ⊆ S be a target set of states. We show that the payoff SPathTw is
universally square integrable for all weight functions w : S ×A→ R if and only
if, for all strategies τ and all initial states s ∈ S, we have Pτ

s(Reach(T )) = 1.
For any weight function w, if SPathTw is universally (square) integrable, then
the set of plays with payoff +∞ has zero Pσ

s -probability for all strategies σ and
s ∈ S, i.e., a target state is reached almost surely no matter the strategy and
initial state.

To show the converse, it suffices to show that SPathT1 , i.e., the shortest-
path cost where all weights are 1, is universally square integrable, because all
shortest-path costs in finite arenas are bounded in absolute value by a multiple
of SPathT1 (as there are finitely many weights in a finite MDP). Because all
weights are 1, the expectation of (SPathT1 )2 from s ∈ S under a strategy σ

can be written as a series over r ∈ N of r2 multiplied by the Pσ
r -probability

of reaching T after exactly r actions are used. Convergence of this series is
guaranteed by the fact that the sequence of probabilities of reaching the target
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after exactly r actions is in O(αr) for some α ∈ [0, 1[. This asymptotic bound
on these probabilities follows from the linear convergence of value iteration for
reachability in MDPs of a specific form [HM18].

The formal proof below requires the notion of end-components of MDPs.

Definition 15.10. An end-component ofM is a pair E = (E,AE) such that

(i) E ⊆ S is a non-empty set of states,

(ii) AE : E → 2A\{∅} is a mapping assigning, to all states s ∈ E, a non-empty
set of actions such that for all a ∈ AE(s), supp(δ(s, a)) ⊆ E and

(iii) from any s, s′ ∈ E, there exists a history s0a0s1 . . . ar−1sr with r ≥ 1

such that s0 = s, sr = s′ and aℓ ∈ AE(sℓ) for all 0 ≤ ℓ ≤ r − 1.

Condition (iii) in the previous deviation requires that an end-component be
strongly connected.

Lemma 15.11. Let T ⊆ S be a set of targets and sinit ∈ S be an initial state.
Assume that M is finite. We have Pσ

sinit
(Reach(T )) = 1 for all strategies σ if

and only if, for all strategies σ and all weight functions w : S ×A→ R, SPathTw
is Pσ

sinit
-square integrable. In particular, for any weight function w, if SPathTw is

universally integrable, then SPathTw is universally square integrable.

Proof. If all shortest-path costs with target T are Pσ
sinit

-integrable for all strate-
gies σ, then under all strategies and from all initial states, the set of plays with
payoff +∞ (which is independent of the weight function) must have probability
zero, i.e., the set of targets is reached almost-surely. This implies that the equiva-
lence stated in the lemma entails the claim made in particular. In the remainder
of the proof, we assume that for all strategies σ, we have Pσ

sinit
(Reach(T )) = 1

and show that for all weight functions w and strategies σ, SPathTw is Pσ
sinit

-square
integrable.

If sinit ∈ T , then for all plays π ∈ Cyl (sinit), SPathTw(π) = 0. Therefore, we
directly obtain that SPathTw is Pσ

sinit
-square integrable for all strategies σ. We

thus assume that sinit /∈ T .



288 Chapter 15 – Continuous payoffs in finite multi-objective MDPs

We assume without loss of generality that all states of M are reachable
from sinit (i.e., for all states s ∈ S, there exists a history starting in sinit and
ending in s). Furthermore, we also assume that there is a unique absorbing
target state, i.e., that T = {t} such that for all a ∈ A(t), δ(t, a)(t) = 1. We can
always reduce to this case by considering the MDP M′ obtained from M by
merging all target states into a single absorbing state in which all actions are
enabled. For any strategy σ and all weight functions w, SPathTw is Pσ

sinit
-square

integrable if and only if its counterpart inM′ is Pσ′
sinit

-square integrable, where
σ′ ∈ Σ(M′) agrees with σ over Hist(M) ∩ Hist(M′).

We now fix a strategy σ. First, we consider the constant weight function
w = 1 and show that SPathT1 is Pσ

sinit
-square integrable. The general case follows

from this one.
We preface the argument with some notation. For all r ∈ N, we let

Reach≤r(T ) = {s0a0s1 . . . ∈ Plays(M) | ∃ ℓ ≤ r, sℓ ∈ T} denote the set of
plays in which a target is reached in at most r transitions. For all r ∈ N>0, we
let Reach=r(T ) = Reach≤r(T ) \ Reach≤r−1(T ) and Reach=0(T ) = Reach≤0(T ).
Given Ω ∈ {Reach(T )} ∪ {Reach≤r(T ) | r ∈ N}, we let, Pmin

sinit
(Ω) =

minτ∈Σ(M) Pτ
sinit

(Ω) denote the least probabilities that strategies can obtain
for Ω from s. These minima are well-defined and (Pmin

sinit
(Reach≤r(T )))r∈N is an

increasing sequence that converges to Pmin
sinit

(Reach(T )) = 1 (see, e.g., [BK08]).
The equality Pσ

sinit
(Reach(T )) = 1 implies that

Eσ
sinit

((SPathT1 )
2) =

∑
r∈N

r2 · Pσ
sinit

(Reach=r(T )).

It suffices to show that there exists constants α ∈ ]0, 1[ and β ∈ [0,+∞[ such
that for all r ∈ N, Pσ

sinit
(Reach=r(T )) ≤ β ·αr to obtain convergence. Indeed, the

convergence of the above series is implied by that of the series
∑

r∈N β · r2 · αr,
whose convergence is guaranteed by Cauchy’s convergence test for non-negative
series (because limr→∞

r
√
β · r2 · αr = α < 1).

We now seek the constants α and β satisfying the above condition. We
obtain from Pσ

sinit
(Reach(T )) = Pmin

sinit
(Reach(T )) = 1 that, for all r ∈ N, we have

Pσ
sinit

(Reach=r(T )) ≤ Pσ
sinit

(Reach(T ) \ Reach≤r−1(T ))

= Pσ
sinit

(Reach(T ))− Pσ
sinit

(Reach≤r−1(T ))

≤ Pmin
sinit

(Reach(T ))− Pmin
sinit

(Reach≤r−1(T )).
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To bound the last term, we prove that M is min-reduced in the sense
of [HM18]. An MDP is min-reduced if there are two states s+ and s− such
that T = {s+}, s− ̸= s+ and all end-components have a singleton {s+} or {s−}
as their set of states. In our case, the only end-components of M are of the
form ({t}, A′) where A′ ⊆ A is non-empty. By contradiction, assume that there
is an end-component E = (E,AE) such that E ̸= {t}. Then t /∈ E because t

is absorbing and an end-component is strongly connected. Because E is be
reachable from sinit, there exists a strategy reaching E with positive probability
and then surely remaining in E from there (by only using actions authorised by
AE). This contradicts the fact that for all strategies τ, Pτ

sinit
(Reach(T )) = 1.

It follows from [HM18, Proof of Thm. 2] that there exists I ∈ N>0 such
that, for all ℓ ∈ N, Pmin

sinit
(Reach(T )) − Pmin

sinit
(Reach≤ℓI(T )) ≤ (1 − ηI)ℓ where η

is the smallest positive transition probability in M. Let r ∈ N, ℓ ∈ N and
0 ≤ p < I such that r = ℓI + p. We obtain, using the fact that the sequence
(Pmin

sinit
(Reach≤r′(T )))r′∈N is non-decreasing, that

Pmin
sinit

(Reach(T ))− Pmin
sinit

(Reach≤r(T )) ≤ Pmin
sinit

(Reach(T ))− Pmin
sinit

(Reach≤ℓI(T ))

≤ (1− ηI)ℓ

=
(

I
√
1− ηI

)r−p

≤
(

I
√

1− ηI
)r−(I−1)

.

We conclude that it suffices to set α = I
√
1− ηI and β =

(
I
√

1− ηI
)−I

to

conclude the proof that SPathT1 is Pσ
sinit

-square integrable.
We end the proof by establishing that for all weight functions w, the shortest-

path cost SPathTw is Pσ
sinit

-square integrable. Let W = max(s,a)∈S×A |w(s, a)|.
By the triangular inequality, we obtain that |SPathTw| ≤W · SPathT1 . We have
thus bounded SPathTw in absolute value by a multiple of a Pσ

sinit
-square integrable

function, thus implying that SPathTw is also Pσ
sinit

-square integrable.
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Chapter 16

Introduction

In this part, we detail the results presented in Chapter 3.4, originating from
joint work with Michal Ajdarów, Petr Novotný and Mickaël Randour [AMNR25].
We study decision problems in one-counter Markov decision processes (Defini-
tion 2.49) for interval strategies, a class of memoryless strategies described by
interval partitions of the set of counter values. We focus on the state-reachability
(Definition 2.53) and selective termination (Definition 2.54) objectives, which
respectively ask to visit a target regardless of counter value and to hit counter
value zero in a target state.

We refer the reader to Chapter 3.4 for an extended presentation of the
context. We divide this part into five chapters. We summarise their contents
below, and comment on related work at the end of this chapter.

Interval strategies. Chapter 17 introduces interval strategies, presents
some of their properties and formalises our three interval strategy decision
problems. Recall that we consider two semantics for MDPs induced by OC-
MDPs (see Definition 2.51): bounded OC-MDPs, in which we impose a counter
upper bound such plays that reach it are interrupted, and unbounded OC-MDPs,
in which no counter upper bound is imposed.

An interval strategy is a memoryless strategy of the MDP over configurations
induced by an OC-MDP that admits a finite description based on interval
partitions of the set of counter values. We consider two variants of interval
strategies (Definition 17.2): open-ended interval strategies (OEIS), defined both
in bounded and unbounded OC-MDPs and cyclic interval strategies (CIS),
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defined in unbounded OC-MDPs. On the one hand, an OEIS is a strategy
such that, for all states, the decisions made in this state are the same for all
sufficiently large counter values. On the other hand, a CIS is a strategy for
which there exists a positive integer period such that, for all states, the decisions
made in this state are identical given two counter values that differ by the
period.

Strategies of either type can be described by some finite interval partition
of all counter values for OEISs and of counter values up to the period for
CISs, and by one memoryless strategy of the finite MDP underlying the OC-
MDP per interval. We investigate the relationship between interval strategies
and the corresponding strategies of the underlying MDP in Chapter 17.2. We
obtain that OEISs in bounded OC-MDPs and CISs correspond to finite-memory
strategies, but that the relevant Mealy machines may require as many memory
states as the counter upper bound or the period respectively (Example 17.1).
We also obtain that OEISs in unbounded OC-MDPs need not correspond to
finite-memory strategies.

We then study how powerful interval strategies are with respect to our
two objectives. In bounded OC-MDPs, the existence of optimal OEIS follows
from the existence of pure memoryless optimal strategies for reachability in
finite MDPs (e.g., [BK08]). For unbounded OC-MDPs, we show that interval
strategies can be used to approximate the value (Lemma 17.5). We then
illustrate that an optimal OEIS (resp. CIS) need not exist, even if an optimal
CIS (resp. OEIS) does (Examples 17.2 and 17.3). This shows that interval
strategies do not suffice to play optimally in general, although they can be used
to play almost-optimally.

Finally, we formalise the three decision problems we are interested in. We
first define the interval strategy decision problem, which asks whether a given
interval strategy ensures an objective from an initial configuration with a
probability greater than a given threshold (Definition 17.6). We then define two
realisability problems for structurally-constrained interval strategies. On the
one hand, the fixed-interval OEIS (resp. CIS) realisability problem asks whether
there exists an OEIS (resp. a CIS) based on a given interval partition that ensures
an objective from an initial configuration with a probability greater than a given
threshold (Definitions 17.7 and 17.8). On the other hand, the parameterised
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OEIS (resp. CIS) realisability problem asks whether there exists an interval
partition whose size and number of intervals is bounded from above by given
parameters and an OEIS (resp. a CIS) based on this partition that ensures an
objective from an initial configuration with a probability greater than a given
threshold (Definitions 17.9 and 17.10). For these two realisability problems,
we show that randomised strategies may yield better maximum probabilities
than pure strategies (Example 17.4), and thus consider two variants: one where
we ask whether a suitable pure strategy exists and another for randomised
strategies.

Compressed Markov chains. Markov chains induced (Definition 2.14)
by interval strategies are large in bounded OC-MDPs and are infinite in un-
bounded OC-MDPs. We analyse such induced Markov chains by means of a
compression approach: we build a compressed Markov chain with fewer con-
figurations and adjusted transitions. We define compressed Markov chains
in Chapter 18, then prove some key properties to solve our interval strategy
decision problems with them.

The compression of an induced Markov chain preserves selective termination
probabilities (Theorem 18.4). While this is not the case for state-reachability
probabilities, we can apply a modification to the OC-MDP such that state-
reachability probabilities are preserved for a given target (Theorem 18.5).

We obtain that verification can be reduced to the analysis of compressed
Markov chains. However, we cannot directly analyse compressed Markov chains
for two reasons. First, transition probabilities in compressed Markov chains
can be either irrational or can require large representations (Example 18.1).
Second, compressed Markov chains are obtained by removing configurations
locally for each interval over which the strategy behaves uniformly, and thus
the compression of the Markov chain induced by a CIS is infinite.

For the first issue, we show that we can represent transition probabilities as
the least solutions of polynomial size quadratic equation systems (Theorems 18.6
and 18.9). Furthermore, we show that our systems for transitions over bounded
intervals, we can refine the system to have a unique solution in polynomial time,
and the refined system can be solved in polynomial time in the Blum-Shub-Smale
(BSS) model (see Chapter 2.9) of computation (Theorem 18.11).
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For the second issue, we exploit the periodic nature of CISs to show that
compressed Markov chains for CISs are induced by one-counter Markov chains
(Chapter 18.5).

Verification algorithms. We present our verification algorithms in Chap-
ter 19. We provide a specific approach for OEIS in bounded OC-MDPs, and
two similar approaches to deal with OEISs (that works in both the unbounded
and bounded settings) and CISs.

The key to solving the verification problem for OEISs in bounded OC-MDPs
is the ability to compute the transition probabilities of the compressed Markov
chain in polynomial time in the BSS model. Therefore, in the BSS model, our
problem boils down to computing reachability probabilities in finite Markov
chains, which can be done in polynomial time by solving a linear system of
equations (see Appendix A.2.1). We obtain a PPosSLP complexity upper bound
(by the results of [ABKM09]) through this approach (Theorem 19.1).

For OEISs and CISs, we reduce to checking whether a universal formula
holds in the (first-order) theory of the reals. We briefly summarise the main
idea for OEISs.

We build formulae from our characterisation of transition probabilities in
compressed Markov chains and the characterisation of reachability probabilities
in Markov chains as the least solution of a linear system. The resulting formulae
are such that any vector satisfying their conjunction is an over-estimation of the
intended values (Lemma 19.2). To answer the verification problem, it suffices to
check that all over-estimations of the probability of interest are greater or equal
to the threshold (Theorem 19.3). We thus obtain a co-ETR upper complexity
bound (Theorem 19.5).

We adapt this approach to CISs as follows. The main difference is that we
apply the compression approach twice. First, we compress the Markov chain
induced by the CIS and derive its one-counter Markov chain description. We
then compress the Markov chain induced by this one-counter Markov chain
with respect to a finite interval partition (i.e., similarly to an OEIS). We then
define an adaptation of the OEIS verification formula that uses the characteri-
sation of transition probabilities in a compression twice (Theorem 19.7). This
approach also yields a co-ETR upper bound for the CIS verification problem
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(Theorem 19.9).

Realisability algorithms. Chapter 20 presents our interval strategy
realisability algorithms. We use different approaches depending on whether the
goal is to check the existence of a well-performing pure or randomised strategy.

For pure interval strategy realisability, we propose algorithms based on a
guess-and-check approach. For the fixed-interval problem, we guess actions for
each state-interval pair, and, for the parameterised problem, we guess both an
appropriate interval partitions and actions for each state-interval pair. We then
check the resulting strategy by verifying it. Through this approach, we obtain
a NPPosSLP upper bound for OEISs in bounded OC-MDPs (Theorem 20.2)
and a NPETR = NPco-ETR upper bound for OEISs in unbounded OC-MDPs
(Theorem 20.5) and for CISs (Theorem 20.8).

For randomised interval strategy realisability, we build on the formulae for
verification by treating strategy probabilities in these formulae as variables
instead of parameters. By prefacing the verification formulae with existen-
tial quantifiers for strategy probabilities (see the formulae of Theorems 20.6
and 20.9), we obtain a PSPACE upper bound for fixed-interval OEIS and CIS
realisability (Theorems 20.7 and 20.10). We obtain the same upper bounds
for the parameterised problem, as it suffices to non-deterministically guess a
partition compatible with parameters and then run a fixed-interval algorithm.

For our randomised OEIS realisability problems in bounded OC-MDPs, we
show that we can use non-determinism to reduce to checking the validity of an
existential formula (Theorem 20.3). This avoids the quantifier alternation of
the above approach, and yields an NPETR upper bound (Theorem 20.4).

Lower bounds. We close this part with lower complexity bounds in
Chapter 21. We first present square-root-sum hardness results for all of our
problems. The square-root-sum problem asks, given some natural numbers and
a natural threshold, whether the sum of the square roots of the first numbers
is greater or equal to the threshold. In unbounded OC-MDPs, we obtain
the square-root-sum hardness of our three interval strategy problems from a
square-root-sum hardness result for one-counter Markov chains [EWY10]. In
bounded OC-MDPs, we adapt the reduction of [EWY10] so that, intuitively,
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the reduction remains valid when imposing a large enough counter upper bound
(Lemma 21.6). This yields the square-root-sum hardness of our three problems
in bounded OC-MDPs (Theorem 21.7).

Finally, we show the NP-hardness of the realisability problem for (pure and
randomised) counter-oblivious strategies for selective termination, a special case
of our two interval strategy realisability problems. A counter-oblivious strategy
is a memoryless strategy that disregards counter values, i.e., a one-interval
OEIS and a CIS of period one. We provide a reduction from the NP-complete
Hamiltonian cycle problem, which asks whether there exists a simple cycle
visiting all vertices in a finite directed graph. Intuitively, we build an OC-MDP
from the graph by duplicating an initial vertex in such a way that there exists
a Hamiltonian cycle if and only if it is possible, in the OC-MDP, to reach the
duplicate initial vertex from the original one in as many steps as there are
vertices. Counter-oblivious strategies cannot almost-surely close the cycle in
the required amount of steps unless there is a Hamiltonian cycle in the graph.

Related work. In addition to the main references cited previously, we
mention some (non-exhaustive) related work. The closest is [BBN+20]: interval
strategies are similar to counter selector strategies, studied in consumption
MDPs. These differ from OC-MDPs in key aspects: all transitions consume
resources (i.e., bear negative weights), and recharges can only be done in special
reload states, where it is considered as an atomic action up to a given capacity.
Consumption and counter-based (or energy) models have different behaviors
(e.g., [BCKN12]). The authors of [BBN+20] also study incomparable objectives:
almost-sure Büchi objectives.

Another related model is solvency games [BKSV08], which are stateless
variants of OC-MDPs with binary counter updates. The goal in a solvency
game is to never go bankrupt (i.e., the complement objective of termination).
Berger et al. identify a natural class of rich man’s strategies, which correspond
to our OEISs. While [BKSV08] shows that optimal rich man’s strategies do
not always exist, if they do, their existence substantially simplifies the model
analysis.

Finally, we remark that restricting oneself to subclasses of strategies that
prove to be of practical interest is a common endeavor in synthesis: e.g., strate-
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gies represented by decision trees [BCC+15, BCKT18, AJK+21, JKW23], pure
strategies [Gim07, DKQR20, BORV23] and finite-memory strategies [CRR14,
BRV22, BORV23].





Chapter 17

Interval strategies

This chapter introduces interval strategies, highlights some of their properties
and formalises our interval strategy decision problems. Definitions are given
in Section 17.1. Section 17.2 discusses the conciseness of interval strategy
representations with respect to Mealy machine equivalents in the finite MDP
underlying the considered OC-MDP. We then study the power of interval
strategies in Section 17.3. On the one hand, we show that the values (i.e.,
the supremum probabilities) for state-reachability and selective termination
for pure interval strategies coincides with the value for arbitrary strategies.
On the other hand, we show that our two classes of interval strategies are
not sufficient to play optimally in general. Finally, we formalise our interval
strategy verification and realisability problems in Section 17.4.

For this whole chapter, we fix an OC-MDP Q = (Q,A, δ, w) and a bound
B ∈ N̄ on counter values.
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17.1 Definition

Interval strategies are a subclass of memoryless strategies of M≤B(Q) that
admit finite compact representations based on families of intervals. Intuitively,
a strategy is an interval strategy if there exists an interval partition (i.e.,
a partition containing only intervals) of the set of counter values such that
decisions taken in a state for two counter values in the same interval coincide.
We require that this partition has a finite representation to formulate verification
and synthesis problems for interval strategies.

The set J1, B−1K contains all counter values for which decisions are relevant.
Let I be an interval partition of J1, B − 1K. We use the following terminology
to relate interval partitions and memoryless strategies.

Definition 17.1. A memoryless strategy σ ofM≤B(Q) is based on the partition
I if for all q ∈ Q, all I ∈ I and all k, k′ ∈ I, we have σ(q, k) = σ(q, k′).

All memoryless strategies are based on the trivial partition of J1, B−1K into
singleton sets. In practice, we are interested in strategies based on partitions
with a small number of large intervals.

We define two classes of interval strategies: strategies that are based on finite
partitions and, in unbounded OC-MDPs, strategies that are based on periodic
partitions. An interval partition I of N>0 is periodic if there exists a period
ρ ∈ N>0 such that for all I ∈ I, I+ρ = {k+ρ | k ∈ I} ∈ I. A periodic interval
partition I with period ρ induces the interval partition J = {I ∈ I | I ⊆ J1, ρK}
of J1, ρK. Conversely, for any ρ ∈ N>0, an interval partition J of J1, ρK generates
the periodic partition I = {I + k · ρ | I ∈ J , k ∈ N}.

We define two types of interval strategies as follows.

Definition 17.2 (Interval strategies). Let σ be a memoryless strategy of
M≤B(Q). The strategy σ is an open-ended interval strategy (OEIS) if it
is based on a finite interval partition of J1, B − 1K. When B =∞, σ is a cyclic
interval strategy (CIS) if there exists a period ρ ∈ N>0 such that for all q ∈ Q

and all k ∈ N>0, we have σ(q, k) = σ(q, k + ρ).
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The qualifier open-ended for OEISs follows from there being an unbounded
interval in any finite interval partition of N>0 if the counter is unbounded. A
strategy is a CIS with period ρ if and only if it is based on a periodic interval
partition of N>0 with period ρ.

Remark 17.3. We do not consider strategies based on ultimately periodic interval
partitions. However, our techniques can be adapted to analyse such strategies.
We analyse OEISs and CISs through so-called compressed Markov chains (see
Chapter 18). A compressed Markov chain can be defined for any memoryless
strategy of M≤B(Q), and by combining our approaches for the analysis of
OEISs and CISs via compressed Markov chains, we can analyse strategies
based on ultimately periodic partitions. Furthermore, it can shown that our
complexity bounds for the decision problems we study extend to these strategies.
◁

We represent interval strategies as follows. First, assume that σ is an OEIS
and let I be the coarsest finite interval partition of J1, B − 1K on which σ is
based. We can represent σ by a table that lists, for each I ∈ I, the bounds of
I and a memoryless strategy of Q dictating the choices to be made when the
current counter value lies in I.

Next, assume that B =∞ and that σ is a CIS with period ρ. Let J be an
interval partition of J1, ρK such that σ is based on the partition I generated by
J . We represent σ by ρ and an OEIS of M≤ρ+1(Q) based on J that specifies
the behaviour of σ for counter values up to ρ.

Remark 17.4. In practice, in the bounded setting, it is not necessary to encode
the counter upper bound B in the representation of an OEIS; it is implicit from
M≤B(Q). Nonetheless, we assume that B is part of the strategy representation
for the sake of convenience: this allows us to treat all bounded intervals
uniformly in complexity analyses, as though all interval bounds are in the
encoding of considered OEIS. This has no impact on our complexity results, as
B is part of the description ofM≤B(Q). ◁

Interval strategies subsume counter-oblivious strategies, i.e., memoryless
strategies that make choices based only on the state and disregard the current
counter value. Counter-oblivious strategies can be viewed as memoryless
strategies σ : Q→ D(A) of Q.
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17.2 Interval strategies and Mealy machines

We now discuss the relationship between strategies of Q with memory and mem-
oryless strategies ofM≤B(Q). Intuitively, memoryless strategies ofM≤B(Q)
can be seen as strategies of Q when an initial counter value is fixed: we can
use memory to keep track of the counter instead of observing it. We can thus
compare our representation of interval strategies to the classical Mealy machine
representation of the corresponding strategies of Q.

In this section, we formalise a translation from memoryless strategies of
M≤B(Q) to strategies of Q with memory. We then show that the strategies
derived from OEISs in the bounded setting and the strategies derived from CISs
are finite-memory strategies of Q, and that their Mealy machine representation
may require a size exponential in the binary encoding size of the counter upper
bound for a CIS and of the smallest period of the CIS otherwise. For OEISs in
unbounded OC-MDPs, we obtain that their counterpart in Q need not be a
finite-memory strategy.

We first formalise how to derive a strategy of Q from a memoryless strategy
of M≤B(Q) and an initial counter value. Let kinit ∈ J1, B − 1K be an initial
counter value and let σ be a memoryless strategy of M≤B(Q). We build a
(partially-defined) strategy τσkinit of Q from σ. Intuitively, instead of having the
counter value as an input of the strategy, we store the current counter value in
memory. For any history hQ = q1a1 . . . ar−1qr ∈ Hist(Q), we define w(hQ) =∑r−1

ℓ=0 w(qℓ, aℓ). The strategy τσkinit is defined, for any history hQ ∈ Hist(Q), by
τσkinit(hQ) = σ((last(hQ), kinit + w(hQ))) when kinit + w(hQ) ∈ J1, B − 1K and is
left undefined otherwise.

Similarly, the state-reachability and selective termination objectives of
M≤B(Q) can be translated into objectives of Q when an initial counter value
kinit is specified. We can show that the probability in M≤B(Q) of such an
objective under σ from a configuration (q, kinit) matches the probability of the
counterpart objective in Q under the strategy τσkinit from q.

If B ∈ N, the counterpart in Q of any OEIS has finite memory: there are
only finitely many counter values. Assume that B ∈ N and let σ be an OEIS.
Formally, the strategy τσkinit is induced by the following Mealy machine: we let
M = (M,µinit, nxtM, upM) where M = J1, B−1K, minit = kinit, and for all q ∈ Q,
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q0 q1 q2
a | 1

1
2

1
2 b | −1

a | −1 a | 0

Figure 17.1: An OC-MDP. Edge splits following actions indicate probabilistic
transitions. We indicate the weight of a state-action pair next to each action.

k ∈M and a ∈ A, we let upM(k, q, a) = k + w(q, a) and nxtM(k, q) = σ((q, k)).
Intuitively, M induces τσkinit because it keeps track of the weight of the current
history and this weight determines the choice prescribed by τσkinit .

This construction yields a Mealy machine whose size is exponential in
the binary encoding size of B. The following example illustrates that such
exponential-size Mealy machines may be required, even for OEISs based on the
partition {{1}, J2, B−1K}, i.e., OEISs that only have to distinguish 1 from other
counter values. Additionally, this same example shows that the counterpart in
Q of an OEIS may require infinite memory in the unbounded setting.

Example 17.1. We consider the OC-MDP Q illustrated in Figure 17.1. Let
B ∈ N̄>0, B ≥ 3. We consider the OEIS σ defined by σ(q1, k) = a for all
k ∈ J2, B − 1K and σ(q1, 1) = b. The strategy σ maximises the probability of
terminating in q2 from the configuration (q0, 1).

We let τσ1 denote the counterpart of σ in Q for the initial counter value 1.
We show that for all k ∈ J2, B − 2K, a deterministic Mealy machine with at
most k states cannot induce τσ1 . In particular, if B is finite, it means that any
Mealy machine inducing τσ1 must have at least B− 1 states, and if B is infinite,
it means that there is no (finite) Mealy machine inducing τσ1 .

Let k ∈ J2, B − 2K. We proceed by contradiction. Assume that there exists
a Mealy machine M = (M,µinit, nxtM, upM) inducing τσ1 such that |M | ≤ k.
For all ℓ ∈ JkK, we let mℓ = ûpM((q0a)

k(q1a)
ℓ) and let hℓ = (q0a)

k(q1a)
ℓq1. For

all ℓ ∈ JkK, hℓ is a history of Q in the domain of τσ1 (because k < B − 1 and
the initial counter value is 1) that is consistent with τσ1 . Since M induces τσ1 , it
follows that for all ℓ ∈ Jk − 1K, we have τσ1 (hℓ) = nxtM(mℓ, q1) = a and that
τσ1 (hk) = nxtM(mk, q1) = b. However, mk must occur more than once in the
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sequence (mℓ)ℓ∈JkK because this sequence is obtained by repeating the update
rule upM(·, q1, a) from m0 and there are no more than k memory states in M.
This is a contradiction. ◁

We now assume that B =∞. The counterpart in Q of any CIS is a finite-
memory strategy: it suffices to keep track of the remainder of division of the
counter value by a period. Let σ be a CIS, ρ be a period of σ and kinit be
an initial counter value. Formally, the strategy τσkinit is induced by the Mealy
machine M = (M,µinit, nxtM, upM) defined as follows. We let M = Jρ − 1K
and minit = kinit mod ρ. Updates are defined, for all q ∈ Q, k ∈ M and
a ∈ A, by upM(k, q, a) = (k + w(q, a)) mod ρ. The next-move function is
defined differently following whether the memory state is zero or not. We
let, for all q ∈ Q, k ∈ M and a ∈ A, nxtM(k, q)(a) = σ((q, k)) if k ̸= 0 and
nxtM(0, q)(a) = σ((q, ρ)). Intuitively, M induces τσkinit because the remainder of
the current counter value for its division by the period is sufficient to mimic σ.

By adapting Example 17.1, we can show that a CIS representation may be
exponentially more succinct than any Mealy machine for its counterpart in Q.

17.3 The power of interval strategies

Interval strategies are a proper subclass of memoryless strategies ofM≤B(Q)
whenever B = ∞. Therefore, a natural question is to ask whether interval
strategies can be used to approximate the value (in the sense of Definition 2.39)
from a given initial state for selective termination and state-reachability ob-
jectives. The question is not relevant in the bounded setting: all memoryless
strategies are OEISs and uniformly optimal pure memoryless strategies always
exist in finite MDPs for reachability [BK08].

In Section 17.3.1, we show that pure OEISs and CISs in unbounded OC-
MDPs are sufficient to play almost-optimally in M≤B(Q) from all states for
selective termination and state-reachability. We then provide examples in
Section 17.3.2 to illustrate that our two classes of interval strategies are not
sufficient to play optimally when optimal strategies exist. We provide an
example where there is an optimal OEIS but no optimal CIS and another where
the situation is reversed.
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17.3.1 Approximating values with interval strategies

We study the question of whether OEISs and CISs in unbounded OC-MDPs
attain the same value from a given initial state as general strategies for selective
termination and state-reachability objectives. We assume that B =∞ for the
remainder of the section. In countable MDPs, for reachability objectives, pure
memoryless strategies are as powerful as general ones [Orn69, KMS+20]. To
show that the value for interval strategies coincides with the classical value, we
derive interval strategies from pure memoryless strategies such that the interval
strategies perform almost as well as the initial strategy.

Let σ be a pure memoryless strategy ofM≤∞(Q) and let s ∈ Q× N be a
configuration. Let T ⊆ Q be a target and let Ω ∈ {Term(T ),Reach(T )}. Let
ε > 0 denote our approximation precision. We can write Ω as the union, for
n ∈ N, of the plays that reach a target configuration of Ω without the counter
exceeding n. The continuity of probability implies that we can ε-approximate
Pσ
M≤∞(Q),s

(Ω) by only considering the subset of Ω in which counter values are
bounded by some large enough n prior to reaching a target configuration. It
follows that any memoryless strategy τ that agrees with σ on all configurations
with a counter value of at most n will be such that

Pτ
M≤∞(Q),s

(Ω) ≥ Pσ
M≤∞(Q),s

(Ω)− ε.

We use this observation to construct our sought OEIS and CIS.

Lemma 17.5. Assume that B =∞. Let T ⊆ Q and Ω ∈ {Term(T ),Reach(T )}.
Let Σ denote the set of pure OEISs (resp. the set of pure CISs). Then, for all
s ∈ Q× N, the supremum

sup
σ∈Σ

Pσ
M≤∞(Q),s

(Ω)

coincides with the value from s for Ω.

Proof. Let s = (q, k) ∈ Q × N. In the following, by a target configuration,
we mean a configuration in the target set of configurations of Ω viewed as a
reachability objective. Throughout this proof, all probabilities over play are
with respect toM≤∞(Q); we omit it from the notation henceforth.
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In this context, the value can be approached with pure memoryless strate-
gies [Orn69, KMS+20]. Therefore, it suffices to show that, for all pure memory-
less strategies σ ofM≤∞(Q) and all ε > 0, there exists an OEIS (resp. a CIS)
τ such that

Pτ
s(Ω) ≥ Pσ

s (Ω)− ε.

Let σ be a memoryless strategy of M≤B(Q) and let ε > 0. Let, for all
n ∈ N, Ω<n ⊆ Ω denote the set of plays in Ω such that a target configuration
is reached without ever visiting a configuration with counter value greater or
equal to n. Because Ω is a reachability objective, we have Ω =

⋃
n∈NΩn. By

the continuity of probability, we obtain that

lim
n→∞

Pσ
s (Ω<n) = Pσ

s (Ω).

We fix n ≥ k large enough such that

Pσ
s (Ω<n) ≥ Pσ

s (Ω)− ε.

We now let τ denote an OEIS or a CIS agreeing with σ over Q× JnK. We
claim that

Pτ
s(Ω) ≥ Pσ

s (Ω)− ε.

Let H ⊆ Hist(M≤∞(Q)) be the set of histories in which counter values
are strictly less than n that end in a target configuration and such that no
target configuration appears prior to the last configuration. We obtain that H
is prefix-free and that Cyl (H) = Ω<n. Because τ and σ agree over Q× JnK, we
obtain that:

Pτ
s(Ω) ≥ Pτ

s(Ω<n) = Pτ
s(Cyl (H)) = Pσ

s (Cyl (H)) = Pσ
s (Ω<n) ≥ Pτ

s(Ω)− ε.

This ends the proof.

17.3.2 Limitations of interval strategies

Lemma 17.5 shows that interval strategies can be used to approximate the
optimal probability of the objectives we study from any state. In this section, we
provide an example where an OEIS suffices to play optimally but no CIS does,
and another where a CIS suffices but no OEIS does. These two examples can
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Figure 17.2: An OC-MDP where all unspecified weights are −1. An OEIS is
sufficient to maximise the probability of reaching t from (p, 1), but no CIS is.

be combined to obtain an example in which a strategy based on an ultimately
periodic partition of N is required; we present them separately to simplify their
presentation.

Our two examples share a similar structure: we have an initial state with a
single enabled action with weight 1 from which we either loop back or move
into a finite-horizon MDP, i.e., an OC-MDP where all weights are −1, in which
termination is guaranteed. We obtain a uniformly optimal strategy in the
finite-horizon MDPs by using value iteration to determine optimal actions
for each remaining number of steps. We provide a brief description of value
iteration in Appendix A.2.2.

We first provide an example where an optimal OEIS exists, but no optimal
CIS does. In finite-horizon MDPs, when the remaining number of steps is large,
the optimal actions are chosen to be safe actions. More precisely, one only
uses actions that could be prescribed by an optimal memoryless strategy for
(infinite-horizon) reachability. However, when the number of steps gets low, it
can be worthwhile to take an actions that would be deemed too risky otherwise.
In the following example, we require a specific action when the number of
remaining steps gets low, and otherwise we use another action.

Example 17.2. We consider the OC-MDP Q depicted in Figure 17.2 in which
all weights are −1 besides the one on the transition leading out of p. We
consider the objective Ω = Reach(t⊤) = Term(t⊤), the counter bound B =∞.
We claim that there exists an OEIS that is optimal from (p, 1), but no CIS.

We first analyse the optimal decisions to be made in q depending on the
counter value. From (q, 1), action a leads to Ω being satisfied with probability
1
2 whereas choosing b yields a probability of 3

4 . Therefore, we must choose b in
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Figure 17.3: An OC-MDP where all unspecified weights are −1. A CIS is
sufficient to maximise the probability of reaching t from (p, 1), but no OEIS is:
one must alternate the actions a and b in q0 to be optimal.

(q, 1). On the other hand, for any k ≥ 2, a is preferable to b in (q, k): action a

leads to a satisfaction probability of 1
2 + 1

2θk−1, where θk−1 ≥ 3
4 is the optimal

probability from (q, k − 1) (the inequality θk−1 ≥ 3
4 follows from k − 1 ≥ 1),

whereas b yields the smaller probability 3
4 .

We claim that the only optimal memoryless strategy from (p, 1) is the pure
OEIS σ defined by σ(q, 1) = b and σ(q, k) = a for all k ≥ 2. On the one hand,
regardless of the used strategy, all configurations (q, k) with k ≥ 2 will be
reached from (p, 1). It follows that any memoryless strategy that is optimal
from (p, 1) must agree with σ over all configurations with counter value greater
or equal to 2. Any strategy that agrees with σ over these configurations visits
(q, 1) with positive probability and thus must also play optimally from there. It
follows that the only optimal memoryless strategy from (p, 1) is σ. In particular,
no CIS is optimal from (p, 1). ◁

We now consider an example that show that OEISs do not suffice in general
to play optimally. In our example, we describe a finite-horizon MDP in which
it is necessary to alternate between two enabled actions to play optimally. It
follows that there is an optimal CIS but no optimal OEIS.

Example 17.3. We consider the OC-MDP Q = (Q,A, δ, w) depicted in Fig-
ure 17.3 in which all weights are −1 besides the one on the transition leading
out of p. We consider objective Ω = Reach(t) = Term(t), the counter bound
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B =∞. We claim that there exists a CIS that is optimal from (p, 1), but no
OEIS. Similarly to Example 17.2, we first analyse the optimal choices in (q0, k)

for all k ∈ N>0, and derive an optimal CIS from them. We let, for all k ∈ N,
v(k) = (v

(k)
q )q∈q where, for all q ∈ Q, v(k)q denotes the maximum probability of

Ω from (q, k) for all strategies.
First, we note that the value in all configurations in {q1, q2}×N is indepen-

dent of the chosen strategy: if one removes p and q0 from the OC-MDP, we
obtain a one-counter Markov chain. For all k ∈ N, we can show by induction
that v

(2k)
q1 = 1− 1

2k
, v(2k+1)

q1 = 1− 1
2k+1 and v

(2k)
q2 = v

(2k+1)
q2 = 1− 1

2k
.

Let σ : Q× N→ A be an optimal strategy; such a strategy exists because
the only decisions are made in q0 and we can define pure uniformly optimal
strategies in finite-horizon MDPs through value iteration. We establish that for
any k ∈ N>0, it must be the case that σ(q0, k) = a if k is odd and σ(q0, k) = b

otherwise. It follows from σ being optimal that

σ(q0, k) ∈ argmax
c∈{a,b}

∑
q∈Q

δ(q0, c)(q) · v(k−1)
q

 . (17.1)

Let k ∈ N0. First, let us assume that k = 2 · ℓ + 2 is even (note that
k ≥ 1, i.e., we can write k in this way while handling all cases). It follows from
Equation (17.1) that it suffices that the inequality

1

6
+

1

3
·
(
1− 1

2ℓ

)
<

1

2
·
(
1− 1

2ℓ+1

)
,

holds to imply σ(q0, k) = b. Given that this inequality is equivalent to 4 > 3,
we obtain σ(q0, k) = b. Now, let us assume that k = 2 · ℓ+ 1 is odd. It follows
from Equation (17.1) that if suffices to have

1

6
+

1

3
·
(
1− 1

2ℓ

)
>

1

2
·
(
1− 1

2ℓ

)
,

hold to have σ(q0, k) = a. Given that this inequality is equivalent to 2 < 3, we
obtain σ(q0, k) = a.

It follows from the above that the CIS that selects action a in q0 for odd
counter values and b for even counter values is optimal from (p, 1) for Ω.
Furthermore, the above shows that no OEIS can be optimal from (p, 1), as for
all k ≥ 2, we reach (q0, k) from (p, 1) with positive probability regardless of the
used strategy (and we must play optimally from these configurations). ◁
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17.4 Interval strategy decision problems

We formally define the decision problems we are interested in regarding interval
strategies. The common inputs of these problems are an OC-MDP Q with
rational transition probabilities, a counter bound B ∈ N̄>0 (encoded in binary
if it is finite), a target T ⊆ Q, an objective Ω ∈ {Reach(T ),Term(T )}, an initial
configuration sinit = (qinit, kinit) and a threshold θ ∈ [0, 1] ∩ Q against which
we compare the probability of Ω. Problems that are related to CISs assume
that B =∞ (as all strategies in the bounded case are OEISs). We lighten the
probability notation below by omittingM≤B(Q) from it.

First, we are concerned with the verification of interval strategies, i.e.,
whether Ω is satisfied with probability at least θ from sinit for a given strategy.

Definition 17.6. The interval strategy verification problem asks to decide, given
an interval strategy σ, whether Pσ

sinit
(Ω) ≥ θ.

When studying the verification problem, we assume that the encoding of
the input interval strategy matches the description of Section 17.1.

The other two problems relate to interval strategy synthesis. The corre-
sponding decision problem is called realisability. We provide algorithms checking
the existence of well-performing structurally-constrained interval strategies. We
formulate two variants of this problem.

For the first variant, we fix an interval partition I of J1, B − 1K beforehand
and ask to check if there is a good strategy based on I.

Definition 17.7. The fixed-interval OEIS realisability problem asks, given a
finite interval partition I of J1, B − 1K, whether there exists an OEIS σ based
on I such that Pσ

sinit
(Ω) ≥ θ.

The variant for CISs is defined similarly.

Definition 17.8. The fixed-interval CIS realisability problem asks, given a
period ρ ∈ N>0 and an interval partition J of J1, ρK, whether there exists a CIS
σ based on the partition generated by J such that Pσ

sinit
(Ω) ≥ θ.
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For the second variant, we parameterise the number of intervals in the
partition and the size of bounded intervals.

Definition 17.9. The parameterised OEISs realisability problem asks, given a
bound d ∈ N>0 on the number of intervals and a bound n ∈ N>0 on the size
of bounded intervals, whether there exists an OEIS σ such that Pσ

sinit
(Ω) ≥ θ

and σ is based on an interval partition I of J1, B − 1K with |I| ≤ d and, for all
bounded I ∈ I, |I| ∈ J1, nK.

We note that, in the above definition, the parameter n does not constrain
the required infinite interval in the unbounded setting B =∞. For CISs, the
parameterised realisability problem is defined as follows.

Definition 17.10. The parameterised CIS realisability problem asks, given a
bound d ∈ N>0 on the number of intervals and a bound n ∈ N>0 on the size of
intervals, whether there exists a CIS σ such that Pσ

sinit
(Ω) ≥ θ and σ is based on

an interval partition I of N>0 with period ρ such that |I| ≤ n for all I ∈ I and
I induces a partition of J1, ρK with at most d intervals.

For both parameterised realisability problems, we assume that the number
d is given in unary. This ensures that witness strategies, when they exist, are
based on interval partitions that have a representation of size polynomial in
the size of the inputs.

Remark 17.11. In bounded OC-MDPs, instances of the parameterised OEIS
realisability problem such that no partitions are compatible with the input
parameters d and n are trivially negative. If B ∈ N, then there are no interval
partitions of J1, B − 1K compatible with the parameters d and n whenever
B − 1 > d · n. This issue does not arise for OEISs in unbounded OC-MDPs
or for CISs, as counter-oblivious strategies are always possible witnesses no
matter the parameters. ◁

For both realisability problems, we consider two variants, depending on
whether we want the answer with respect to the set of pure or randomised
interval strategies. For many objectives in MDPs (e.g., reachability, parity ob-
jectives [BK08, BORV23]), the maximum probability of satisfying the objective
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Figure 17.4: A variant of the OC-MDP of Figure 17.2. All weights are −1 and
are omitted from the figure.

is the same for pure and randomised strategies. As highlighted by the following
example (a variant of Example 17.2), when we restrict the structure of the
sought interval strategy, there may exist randomised strategies that perform
better than all pure ones. Intuitively, randomisation can somewhat alleviate
the loss in flexibility caused by structural restrictions [CRR14].

Example 17.4. The fixed-interval and parameterised realisability problems
subsume the realisability problem for counter-oblivious strategies. We provide
an OC-MDP in which there exists a randomised counter-oblivious strategy
that performs better than any pure counter-oblivious strategy from a given
configuration.

We consider the OC-MDP Q depicted in Figure 17.4 in which all weights
are −1, the objective Reach(t⊤) = Term(t⊤), a counter bound B ≥ 3 and the
initial configuration (q, 2). In Example 17.2, we have considered a variant of
this OC-MDP and have shown that to maximise the probability of reaching t⊤

from (q, 2) with an unrestricted strategy, we must select action a in (q, 2) and
then b in (q, 1).

We now limit our attention to counter-oblivious strategies. For pure strate-
gies, no matter whether action a or b is chosen in q, t⊤ is reached with probability
3
4 from (q, 2). However, when playing both actions uniformly at random in
q, the resulting reachability probability from (q, 2) is 25

32 > 3
4 . This shows

that randomised counter-oblivious strategies can achieve better reachability
(resp. selective termination) probabilities than pure strategies. ◁



Chapter 18

Compressing induced Markov chains in
one-counter Markov decision processes

This chapter introduces compressed Markov chains. Compressed Markov chains
are the main tool underlying our algorithms for the interval-strategy-related
decision problems formalised in the previous chapter. We use compressed
Markov chains to analyse the (possibly infinite) Markov chains induced by
memoryless strategies over the space of configurations of an OC-MDP. A
compressed Markov chain is defined with respect to a memoryless strategy
and an interval partition on which the strategy is based. This construction
is generic, in the sense that it can formally be defined not only for interval
strategies, but for all memoryless strategies.

Section 18.1 illustrates and formalises compressed Markov chains. A com-
pressed Markov chain can only be constructed with respect to interval partitions
with intervals respecting some size constraint; Section 18.2 explains how to
efficiently refine interval partitions to enforce these constraints. In Section 18.3,
we prove that termination probabilities and the probability of hitting a counter
upper bound are preserved following compression. We show that the transition
probabilities of the compressed Markov chain can be represented as solutions of
systems of quadratic equations in Section 18.4. Finally, we close the chapter by
proving that compressed Markov chains for CISs are induced by one-counter
Markov chains in Section 18.5.

For this whole chapter, we fix an OC-MDP Q = (Q,A, δ, w), a bound
B ∈ N̄>0 on counter values and a memoryless strategy σ ofM≤B(Q) based on

315
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an interval partition I of J1, B − 1K.
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18.1 Definition

We define the compressed Markov chain CσI (Q) derived from the Markov chain
induced onM≤B(Q) by σ and the partition I. We write CσI instead of CσI (Q)
whenever Q is clear from the context. Intuitively, we keep some configurations
in the state space of CσI and, to balance this, transitions of CσI aggregate several
histories of the induced Markov chain. We also apply compression for bounded
intervals: interval bounds are represented in binary and thus the size of an
interval is exponential in its encoding size. We open with an example.

Example 18.1. We consider the OC-MDP depicted in Figure 18.1a and
counter upper bound B = +∞. Let σ denote the randomised OEIS based
on I = {J1, 7K, J8,∞K} such that σ(q, 1)(a) = σ(p, 1)(a) = σ(q, 8)(c) = 1 and
σ(p, 8)(a) = σ(p, 8)(b) = 1

2 .
We define the compressed Markov chain CσI depicted in Figure 18.1b by

processing each interval individually. First, we consider the bounded interval
I = J1, 7K. When we enter I from its minimum or maximum, we only consider
counter jumps by powers of 2, starting with 1 = 20. If a counter value in I

is reached by jumping by 2β, we consider counter updates of 2β+1 from it;
Figure 18.2 illustrates this counter update rule. This explains the counter
progressions from (q, 1) to (q, 8) and from (t, 7) to (t, 0). The state space of
CσI with respect to I contains the configurations whose counter values can be
reached via this scheme. Transitions aggregate several histories ofM≤∞(Q),
e.g., the probability from s = (q, 2) to s′ = (p, 4) is the probability under σ
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(b) Fragment of the compressed Markov chain of Exam-
ple 18.1 reachable from (q, 1). Configuration parentheses
are omitted to lighten the figure.

Figure 18.1: An illustration of an OC-MDP and its compression for a specific
strategy.

of all histories ofM≤∞(Q) from s to s′ along which counter values elsewhere
than in s′ remain between min I = 1 and 3 (i.e., the counter value before the
next step). The encoding of transition probabilities may be exponential in the
number of retained configurations; this is highlighted by the progression of
probability denominators between (q, 1) and (q, 8).

For the unbounded interval I = J8,∞K, we only consider configurations
with counter value min I = 8 and consider transitions to configurations with
counter value min I−1 = 7. In this case, for instance, the transition probability
from (p, 8) to (p, 7), corresponds the probability under σ inM≤∞(Q) of hitting
counter value 7 for the first time in p from (p, 8). This example illustrates that
this probability can be irrational. Here, the probability of moving from (p, 8) to
(p, 7) is a solution of the quadratic equation x = 1

4+
1
2x

2 (see [KEM06]): 1
4 is the

probability of directly moving from (p, 8) to (p, 7) and 1
2x

2 is the probability of
moving from (p, 8) to (p, 7) by first going through the intermediate configuration
(p, 9).

Finally, we comment on the absorbing state ⊥. The rules making up
transitions of CσI outlined above require a change in counter value. We redirect
the probability of never seeing such a change to ⊥. In this example, σ does not
allow a counter decrease from (q, 8). ◁



318 Chapter 18 – Compressing Markov chains in one-counter MDPs

0 1 2 4 6 7 8

Figure 18.2: An illustration of the counter update scheme in a compressed
Markov chain for the interval J1, 7K.

Example 18.1 outlines the main ideas to construct CσI . To ensure that
compressed Markov chains are well-defined, we impose the following assumption
on I which guarantees that, in general, bounded intervals of I can only be
entered by one of their bounds.

Assumption 18.1. For all bounded I ∈ I, log2(|I|+ 1) ∈ N, i.e., |I| = 2βI − 1

for some βI ∈ N.

Assumption 18.1 is not prohibitive: we prove in Section 18.2 that, given a
bounded interval, we can partition it into sub-intervals satisfying the required
size constraint in polynomial time. We assume that Assumption 18.1 is satisfied
for I for the remainder of the chapter.

We now formalise CσI = (SI , δ
σ
I ). We start by defining its state space SI

which does not depend on σ. We first formalise the configurations that are
retained for each interval.

Let I ∈ I. First, let us assume that I is unbounded and let b−I denote its
minimum. We set SI = Q× {b−I }, i.e., we only retain the configurations with
minimal counter value in I.

Next, let us assume that I is bounded and of the form Jb−I , b
+
I K. Let

βI = log2(|I| + 1) (this is an integer by Assumption 18.1). We retain the
counter values that can be reached via a generalisation of the scheme depicted
in Figure 18.2. The set of retained configurations for I is given by

SI = Q×
(
{b−I + 2α − 1 | α ∈ JβI − 1K} ∪ {b+I − (2α − 1) | α ∈ JβI − 1K}

)
.

Finally, we consider absorbing configurations and the new state ⊥. We let
S⊥
I = {⊥} ∪ (Q× {0, B}) if B ∈ N and S⊥

I = {⊥} ∪ (Q× {0}) otherwise. We
define SI = S⊥

I ∪
⋃

I∈I SI .
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We now define the transition function δσI . For all s ∈ S⊥
I , we let δσI (s)(s) = 1.

For configurations whose counter value lies in one of the intervals I ∈ I, we
provide a unified definition based on a notion of successor counter values,
generalising the ideas of Example 18.1 and Figure 18.2.

Let I ∈ I. If I is unbounded, we define the successor of b−I = min I to be
b−I − 1. We now assume that I = Jb−I , b

+
I K is bounded and let βI = log2(|I|+ 1)

and α ∈ JβI − 1K. The successors of b−I + 2α − 1 are b−I − 1 and b−I + 2α+1 − 1.
Symmetrically, for b+I − (2α − 1), its successors are b+I + 1 and b+I − (2α+1 − 1).
Both cases entail a counter change by 2α. Assumption 18.1 ensures that all
successor counter values appear in SI .

Let s = (q, k) ∈ SI \ S⊥
I and s′ = (q′, k′) ∈ SI \ {⊥}. If k′ is not a

successor of k, we set δσI (s)(s
′) = 0. Assume now that k′ is a successor of

k. We let Hsucc(s, s
′) ⊆ Hist(M≤B(Q)) be the set of histories h such that

first(h) = s, last(h) = s′ and for all configurations s′′ along h besides s′,
the counter value of s′′ is not a successor of k; outside of s′ along h, the
counter remains, in the bounded case, strictly between the two successors of
k, and, in the unbounded case, strictly above the successor k − 1 of k. We set
δσI (s)(s

′) = Pσ
M≤B(Q),s

(Cyl (Hsucc(s, s
′))). To ensure that δσI (s) is a distribution

we let δσI (s)(⊥) = 1−
∑

s′′ ̸=⊥ δσI (s)(s
′′); this transition captures the probability

of the counter never hitting a successor of k.

Remark 18.2. Although we have formalised compressed Markov chains for
OC-MDPs, the construction can be applied to one-counter Markov chains.
In particular, the properties outlined below transfer to the compression of a
one-counter Markov chain. ◁

In the following, we differentiate histories of CσI from histories ofM≤B(Q)
by denoting them with a bar, e.g., h̄ indicates a history of CσI .

18.2 Efficiently refining interval partitions

To define a compressed Markov chain with respect to an interval partition J
of J1, B − 1K, we require that the size constraints of Assumption 18.1 hold,
i.e., that for all bounded I ∈ J , log2(|I| + 1) ∈ N. We present a refinement
procedure for interval partitions that enforces this property while generating few
intervals. At the end of this section, we provide an additional procedure that
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Algorithm 18.1: Procedure Refine to split an interval into intervals
of size in {2β − 1 | β ∈ N}.

Data: A bounded interval I = Jb−, b+K.
1 ℓ← ⌊log2(b+ − b− + 2)⌋(= ⌊log2(|I|+ 1)⌋);
2 if |I| = 2ℓ − 1 then
3 return {I};
4 else
5 I ′ ← Jb−, b− + 2ℓ − 2K; I ′′ ← Jb− + 2ℓ − 1, b+K;
6 return {I ′} ∪ Refine(I ′′);

can be used to retain specific configurations in the state space of compressed
Markov chains.

To refine an interval partition, we subdivide its bounded intervals one by
one. Breaking up these intervals into singleton sets is not a valid approach for
complexity reasons; any input interval partition is such that its interval bounds
are represented in binary, i.e., the size of intervals is exponential in the size of
their representation. We provide a polynomial-time refinement procedure that
divides an interval into sub-intervals of the required size in Algorithm 18.1. To
refine an interval, we determine a largest sub-interval of a suitable size and then
continue by recursively partitioning its complement. This algorithm enables
us, in the context of verification, to modify the interval partition from the
representation of an interval strategy into one suitable for compressed Markov
chains.

We show that, for all bounded intervals I of N>0, the partition Refine(I)

(from Algorithm 18.1) has a polynomial size (with respect to the binary encoding
of the bounds of I) and all of its elements J satisfy log2(|J |+ 1) ∈ N.

Lemma 18.3. Let I = Jb−, b+K be a bounded interval of N>0. The interval
partition Refine(I) of I obtained via Algorithm 18.1 satisfies |Refine(I)| ≤
log2(|I|+1)+1 ≤ log2(b

+)+1 and, for all J ∈ Refine(I), we have log2(|J |+1) ∈
N.
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Proof. Let ℓ = ⌊log2(|I|+ 1)⌋. We show both statements by induction.
For the size of the elements in Refine(I), we proceed by induction on |I|.

If |I| = 1, then Refine(I) = {I} (since 1 = 21 − 1) and the result follows.
Now, assume that for all intervals smaller than I, the statement holds. If
I = 2ℓ − 1, we have Refine(I) = {I} which satisfies the condition. Otherwise,
we let I ′ = Jb−, b− + 2ℓ − 2K and I ′′ = Jb− + 2ℓ − 1, b+K. In particular, we have
|I ′| = b− + 2ℓ − 2− b− + 1 = 2ℓ − 1 and thus log2(|I ′|+ 1) ∈ N. We conclude
that all elements of Refine(I) = {I ′} ∪ Refine(I ′′) satisfy the required constraint
on their size.

We now show that |Refine(I)| ≤ ℓ + 1. We proceed by induction on ℓ. If
ℓ = 1, then |I| = 1 and we have |Refine(I)| = 1. This closes the base case.

We assume by induction that for all I ′ such that ℓ′ = ⌊log2(|I ′|+ 1)⌋ < ℓ,
we have |Refine(I ′)| ≤ ℓ′ + 1. If |I| = 2ℓ − 1, we have |Refine(I)| = 1 ≤ ℓ+ 1.
We thus assume that 2ℓ − 1 < |I| < 2ℓ+1 − 1 (the upper bound follows from
the definition of ℓ). We let I ′ = Jb−, b− + 2ℓ − 2K and I ′′ = Jb− + 2ℓ − 1, b+K.
It remains to show that |Refine(I ′′)| ≤ ℓ to conclude. It holds that |I ′′| =
|I| − (2ℓ − 1) < 2ℓ+1 − 1− (2ℓ − 1) = 2ℓ. We distinguish two cases in light of
this. First, we assume that |I ′′| = 2ℓ − 1. In this case, we have |Refine(I ′′)| = 1,
which implies that |Refine(I)| = 2 ≤ ℓ+1. Second, we assume that |I ′′| < 2ℓ−1.
By the induction hypothesis, we obtain that |Refine(I ′′)| ≤ ℓ, ensuring that
|Refine(I)| ≤ ℓ+ 1 and ending the argument.

For the sake of conciseness, we extend the Refine operator to infinite intervals
and interval partitions. For any infinite interval I of N>0, we let Refine(I) = {I}.
Let J be an interval of N>0 and let J be a partition of J . We let Refine(J ) =⋃

I∈J Refine(I). Lemma 18.3 implies that the constraints of Assumption 18.1
are satisfied by Refine(J ). This result also yields bounds on the size of Refine(J )
when J is finite.

We remark that if an interval partition J of N>0 has period ρ and is
generated by an interval partition J ′ of J1, ρK, then Refine(J ) is generated by
Refine(J ′).

We now introduce an operator ensuring that a specific counter value is
retained in a compression by making it an interval bound. For any interval
I = Jb−, b+K of N>0 (not necessarily bounded) and k ∈ N, we let Isolate(I, k)
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denote {I} if k /∈ I and {Jb−, kK, Jk + 1, b+K} \ {∅} if k ∈ I. We extend the
Isolate operator to interval partitions as follows. For all intervals J of N>0,
interval partitions J of J and k ∈ N, we let Isolate(J , k) =

⋃
I∈J Isolate(I, k).

18.3 Validity of the compression approach

We establish that for all configurations s ∈ SI and states q ∈ Q, the probability
of terminating or reaching the counter upper bound B in q coincides in CσI and
in the Markov chain induced on M≤B(Q) by σ. There is not such a direct
correspondence for state-reachability probabilities. We prove that for all targets
T ⊆ Q, there exists an OC-MDP Q′ with state space Q derived by changing
transitions of Q such that, for all q ∈ T , the probability of visiting T for the first
time via a configuration with state q inM≤B(Q) under σ coincides with the
probability of terminating or hitting the counter upper bound in q inM≤B(Q′)

under σ.
For the first property, we rely on a relation between histories of CσI and

of M≤B(Q). Let h = s0a0 . . . ar−1sr ∈ Hist(M≤B(Q)) such that last(h) ∈
Q × {0, B} and last(h) occurs only once in h. By induction, we identify a
sequence of configurations in SI along h that is a well-formed history of CσI . Let
ℓ0 = 0. Assume that we have constructed an increasing sequence ℓ0 < . . . < ℓι

such that sℓ0 . . . sℓι ∈ Hist(CσI ). If ℓι ≠ r, we let ℓι+1 be the least index ℓ > ℓι

such that sℓ ∈ SI and δσI (sℓι)(sℓ) > 0 and continue the induction. Such an index
is guaranteed to exist. Since weights are in {−1, 0, 1}, we witness all counter
values between that of sℓι and sr in the suffix sℓι . . . sr. Furthermore, all counter
values have a smaller successor, and those from a bounded interval have a greater
successor. If ℓι = r, the induction ends and we let h̄ = s0sℓ1 . . . sℓr′−1

sℓr′ be the
resulting history. We say that h̄ abstracts h, and it is the unique history of CσI
that does so.

We now state the first theorem of this section. The crux of its proof is to
establish that, for all histories h̄ of CσI ending in Q × {0, B}, the probability
of its cylinder in CσI matches the probability that a history abstracted by h̄

occurs in the Markov chain induced by σ onM≤B(Q). We conclude by writing
reachability objectives as countable unions of history cylinders. For the sake of
clarity, in the following statement, we indicate the relevant MDP or Markov
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chain for each objective.

Theorem 18.4. Let s ∈ SI \ {⊥}. For all q ∈ Q, Pσ
M≤B(Q),s

(Term(q)) =

PCσ
I ,s

(ReachCσ
I
(q, 0)) and, if B ∈ N, Pσ

M≤B(Q),s
(ReachM≤B(Q)(q,B)) =

PCσ
I ,s

(ReachCσ
I
(q,B)).

Proof. Let q ∈ Q. We only prove the result for the target configuration (q, 0).
The argument is the same when the target is (q,B). To lighten notation, we let
M =M≤B(Q) for the remainder of the proof.

Let h̄ = s0s1 . . . sr ∈ Hist(CσI ) be such that first(h̄) = s and last(h̄) = (q, 0).
We let Habs(h̄) ⊆ Hist(M) be the set of histories abstracted by h̄. We show that
PCσ

I ,s
(CylCσ

I

(
h̄
)
) = Pσ

M,s(CylM
(
Habs(h̄)

)
). By construction of the abstraction

relation, all elements of Habs(h̄) are a uniquely defined concatenation of an
element of Hsucc(s0, s1) with an element of Hsucc(s1, s2), . . . , with an element
of Hsucc(sr−1, sr). Conversely, any such concatenation is an element of Habs(h̄).
We obtain:

PCσ
I ,s

(CylCσ
I

(
h̄
)
)

=
r−1∏
ℓ=0

Pσ
M,s(CylM (Hsucc(sℓ, sℓ+1)))

=

r−1∏
ℓ=0

 ∑
hℓ∈Hsucc(sℓ,sℓ+1)

Pσ
M,s(CylM (hℓ))


=

∑
h0∈Hsucc(s0,s1)

. . .
∑

hr−1∈Hsucc(sr−1,sr)

(
r−1∏
ℓ=0

Pσ
M,s(CylM (hℓ))

)

=
∑

h0∈Hsucc(s0,s1)

. . .
∑

hr−1∈Hsucc(sr−1,sr)

(
Pσ
M,s(CylM (h0 · . . . · hr−1))

)
= Pσ

M,s(CylM
(
Habs(h̄)

)
).

The first line follows by definition of δσI and the definition of the probability
distribution over plays of Markov chains. For the second line, we first observe
that for all ℓ ∈ Jr − 1K, the set Hsucc(sℓ, sℓ+1) is prefix-free and thus the
cylinders of elements of Hsucc(sℓ, sℓ+1) are pairwise disjoint. The third line
is a rewriting of the second. The fourth line is obtained by definition of the
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probability distribution induced by a strategy in an MDP, using the fact that σ
is a memoryless strategy. The last line is obtained because Habs(h̄) is the set of
all concatenations occurring in the previous line.

We can now end the argument. Let H and H̄ denote the set of histories of
M and CσI respectively that start in s and end in (q, 0) with only one occurrence
of (q, 0). These two sets are prefix-free and we have H =

⋃
h̄∈H̄Habs(h̄). Using

the above, we conclude that:

Pσ
M,s(Term(q)) =

∑
h∈H

Pσ
M,s(CylM (h))

=
∑
h̄∈H̄

PCσ
I ,s

(CylCσ
I

(
h̄
)
)

= PCσ
I ,s

(Reach((q, 0))).

This is the claim of the theorem.

We now discuss state-reachability probabilities. Let T ⊆ Q be a tar-
get. Transitions of CσI group together (possibly infinitely many) transitions of
M≤B(Q). In particular, this compression may result in some visits to T not
being observed in CσI despite occurring inM≤B(Q). By slightly modifying Q,
we can guarantee that all of these visits are witnessed in the new compressed
Markov chain.

The idea is to make all target states absorbing with self-loops of weight −1.
Formally, we let Q′ = (Q,A, δ′, w′) be the OC-MDP defined by letting, for all
q ∈ Q and all a ∈ A(q), δ′(q, a) = δ(q, a) and w′(q, a) = w(q, a) if q /∈ T and,
otherwise, δ′(q, a)(q) = 1 and w′(q, a) = −1. We remark that σ is a well-defined
memoryless strategy ofM≤B(Q′).

By design, any history ofM≤B(Q) that ends in a configuration in T × JBK
and that does not visit this set before is also a history of M≤B(Q′). The
cylinders of these histories in both MDPs have the same probability under σ,
as transitions are the same in states outside of T . This implies that, under
σ, the probability of terminating or hitting the counter upper bound in T in
M≤B(Q′) is equal to the probability of reaching T inM≤B(Q). We conclude
by Theorem 18.4 that the compressed Markov chain CσI (Q′) captures the state-
reachability probabilities for the target T inM≤B(Q) under σ. We formalise
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this by the following theorem, in which, for the sake of clarity, we indicate the
relevant MDP or Markov chain for each objective.

Theorem 18.5. Let T ⊆ Q. Let Q′ = (Q,A, δ′, w′) be defined as above. For
all s ∈ SI , Pσ

M≤B(Q),s
(ReachM≤B(Q)(T )) = PCσ

I (Q′),s(ReachCσ
I (Q′)(T × {0, B})).

Proof. To lighten notation, we let M = M≤B(Q) and M′ = M≤B(Q′)

for the remainder of the proof. By Theorem 18.4, it suffices to show that
Pσ
M,s(ReachM(T )) = Pσ

M′,s(ReachM′(T × {0, B})).
Let H ⊆ Hist(M) be the set of histories h ∈ Hist(M) such that last(h) ∈

T × JBK and no prior configuration of h is in T × JBK. The state-reachability
objective ReachM(T ) can be written as CylM (H). Since H is prefix-free, we
have Pσ

M,s(ReachM(T )) =
∑

h∈H Pσ
M,s(CylM (h)). Furthermore, for all h ∈ H,

by definition of δ′, since no configuration with a state in T occurs along h besides
the last one, we have h ∈ Hist(M′) and Pσ

M,s(CylM (h)) = Pσ
M′,s(CylM′ (h)).

To end the proof, it suffices to show that CylM′ (H) = ReachM′(T ×{0, B}).
We show both inclusions. Let π ∈ CylM′ (H). By definition of H, there exists a
configuration of π with a state in T . If the counter value of this configuration is
B, then we have π ∈ ReachM′(T × {0, B}). If not, we are guaranteed to have a
configuration in T × {0} along π because states of T are absorbing in Q′ and
their self-loops have weight −1. Conversely, let π ∈ ReachM′(T × {0, B}). By
definition of the reachability objective, there must be a configuration with a
state in T along π. The earliest occurrence of a state of T (regardless of the
counter value) witnesses that π ∈ CylM′ (H). This ends the proof.

18.4 Characterising transition probabilities

Example 18.1 illustrates that the transition probabilities of a compressed Markov
chain may require large representations or be irrational. This section presents
characterisations of these transition probabilities via equation systems.

For the remainder of this section, we fix an interval I ∈ I. We present a
system characterising the outgoing transition probabilities from configurations
of CσI with counter value in I. In Section 18.4.1, we assume that I is unbounded,
and we handle the bounded case in Section 18.4.2. We also provide bounds on
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the size of the systems.

18.4.1 Unbounded intervals

We assume that I is an infinite interval and let b− = min I. This implies that
B =∞. We characterise the transition probabilities from the configurations of
SI with counter value b− via existing results on termination probabilities in
one-counter Markov chains.

For any q, p ∈ Q, the transition probability δσI ((q, b
−))((p, b− − 1)) can

be seen as a termination probability in a one-counter Markov chain. Let τ

denote the counter-oblivious strategy σ(·, b−). We consider the one-counter
Markov chain R = (Q, δτ), where, for all q, p ∈ Q and all u ∈ {−1, 0, 1}, we let
δτ(q)(p, u) =

∑
a∈A(q),w(q,a)=u τ(q)(a) · δ(q, a)(p).

Let q, p ∈ Q and let s = (q, b−). There is a bijection between h ∈
Hsucc(s, (p, b

− − 1)) and the set of histories of C≤∞(R) that start in (q, 1) and
end in (p, 0): one omits all actions and subtracts b− − 1 to all counter values in
the history. By definition of σ and δτ , this bijection preserves the probability of
cylinders. This implies that δσI ((q, b

−))((p, b− − 1)) is exactly the probability,
in C≤∞(R), of terminating in p from (q, 1).

It follows that, in our case, we can characterise our transitions probabilities
as termination probabilities in one-counter Markov chains. We use the charac-
terisation of termination probabilities in probabilistic pushdown automata, a
generalisation of one-counter Markov chains in which termination equates to
reaching an empty stack, of [KEM06]. We specialise this characterisation to
the setting of one-counter Markov chains in the following theorem.

Theorem 18.6 ([KEM06]). For each q, p ∈ Q, we consider a variable ⟨q ↘ p⟩
and the system of equations formed by the equations, for all q, p ∈ Q,

⟨q ↘ p⟩ = δI(q)(p,−1) +
∑
t∈Q

δI(q)(t, 0) · ⟨t↘ p⟩

+
∑
t∈Q

δI(q)(t, 1) ·

∑
t′∈Q
⟨t↘ t′⟩ · ⟨t′ ↘ p⟩

 ,

where δI(t)(t′, u) =
∑

a∈A(t),w(t,a)=u σ(t, b
−)(a) · δ(t, a)(t′) for all t, t′ ∈ Q and
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all u ∈ {−1, 0, 1}. The least non-negative solution of this system is obtained by
substituting each variable ⟨q ↘ p⟩ by δσI ((q, b

−))((p, b− − 1)).

The equation system of Theorem 18.6 has one variable of the form ⟨q ↘ p⟩
for every two states q, p ∈ Q and there is one equation per variable. Furthermore,
the equations have length polynomial in the sizes of |A| and |Q|. Indeed, if
we distribute all products in the right-hand sides of the equations to rewrite
them as a sum of products, there are at most |A| · |Q|2 products of at most
four variables or constants. We obtain the following result.

Lemma 18.7. The equation system of Theorem 18.6 has |Q|2 variables and
equations. Its equations have length polynomial in |Q| and |A|.

18.4.2 Bounded intervals

We now assume that I is bounded. We write I = Jb−, b+K and let β =

log2(|I| + 1) ∈ N>0. To improve readability, we assume that b− = 1 and
b+ = 2β − 1. All results below can be recovered for the general case by adding
b− − 1 to the counter values in configurations.

Counter values of I that are kept in SI can be partitioned in two sets: the
set {2α | α ∈ Jβ−1K} of values reachable from b− and the set Q×{2β−2α | α ∈
Jβ−1K} of values reachable from b+ (in the sense of Figure 18.2). By symmetry
of the transition structure of the compressed Markov chain, the outgoing
transitions from a configuration (q, 2α) correspond to outgoing transitions from
the configuration (q, 2β − 2α).

Lemma 18.8. Let q, p ∈ Q and α ∈ Jβ − 1K. It holds that δσI (q, 2
α)(p, 2α+1) =

δσI (q, 2
β − 2α)(p, 2β) and δσI (q, 2

α)(p, 0) = δσI (q, 2
β − 2α)(p, 2β − 2α+1)

Proof. We only prove that δσI (q, 2
α)(p, 2α+1) = δσI (q, 2

β−2α)(p, 2β) as the other
case is similar. We define a bijection

F : Hsucc((q, 2
α), (p, 2α+1))→ Hsucc((q, 2

β − 2α), (p, 2β))

and prove that Pσ
M≤B(Q),(q,2α)

(Cyl (h)) = Pσ
M≤B(Q),(q,2β−2α)

(Cyl (F(h))) for all
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h ∈ Hsucc((q, 2
α), (p, 2α+1)). This is sufficient to obtain our result.

Let h ∈ Hsucc((q, 2
α), (p, 2α+1)). We let F(h) be the history obtained by

adding 2β − 2α+1 to all counter values along h. We must show that F(h) ∈
Hsucc((q, 2

β − 2α), (p, 2β)). For the first and last configurations, we observe
that 2α + 2β − 2α+1 = 2β − 2α and 2α+1 + 2β − 2α+1 = 2β. For the other
configurations, their counter values are in the interval J1, 2α+1 − 1K, thus their
counterparts in F(h) have a counter value in J2β − 2α+1 + 1, 2β − 1K.

We now establish that

Pσ
M≤B(Q),(q,2α)

(Cyl (h)) = Pσ
M≤B(Q),(q,2β−2α)

(Cyl (F(h))).

Let h = (q0, k0)a0(q1, k1) . . . ar(qr, kr). Because σ is memoryless, based on I
and I ∈ I, we obtain

Pσ
M≤B(Q),(q,2α)

(Cyl (h)) =
r−1∏
ℓ=0

δ(qℓ, aℓ)(qℓ+1) · σ(sℓ, kℓ)(aℓ)

=

r−1∏
ℓ=0

δ(qℓ, aℓ)(qℓ+1) · σ(sℓ, kℓ + 2β − 2α+1)(aℓ)

= Pσ
M≤B(Q),(q,2β−2α)

(Cyl (F(h))).

To prove that F is bijective, we define its inverse. We let F−1 be the function
over Hsucc((q, 2

β − 2α), (p, 2β)) that subtracts 2β − 2α+1 to all counter values
along histories. It is easy to verify that F−1 is well-defined and that it is the
inverse of F .

Due to Lemma 18.8, it is sufficient for us to characterise the outgoing
transition probabilities for the configurations in Q× {2α | α ∈ Jβ − 1K}. We do
so via a quadratic system of equations. We provide intuition on how to derive
this system for our interval I = J1, 2β−1K by using Markov chains: our systems
can be derived from linear systems for reachability probabilities in the Markov
chains illustrated below. We recall the general form of these linear systems in
Appendix A.2.1.

Let us first consider transitions from Q× {1}. We illustrate the situation
in Figure 18.3: we consider a Markov chain over Q × {0, 1, 2} where states
in Q × {0, 2} are absorbing and transitions from other states are inherited
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q, 1p, 0

p, 1

p, 2
δI(q)(p,−1)

(w = −1)

δI(q)(p, 0)

(w = 0)

δI(q)(p, 1)

(w = 1)

Figure 18.3: Markov chain transition scheme used to derive a characterisation
of transitions from Q×{1} in CσI for a bounded interval of the form J1, 2β − 1K.
In this figure, δI(q)(p, u) =

∑
a∈A(q)

w(q,a)=u

σ((q, 1))(a) · δ(q, a)(p).

from the Markov chain induced by σ on M≤B(Q). We represent transitions
in this Markov chain from a configuration (q, 1) ∈ Q× {1} to configurations
with a state p ∈ Q. For any q ∈ Q, the probability of reaching a configuration
s′ ∈ Q× {0, 2} from (q, 1) in this Markov chain is δσI ((q, 1))(s

′) by definition.
Next, we let α ∈ J1, β − 1K and consider configurations in Q× {2α}. The

situation is depicted in Fig. 18.4. We divide a counter change by 2α into counter
changes by 2α−1 and, thus, rely on the transition probabilities from Q×{2α−1}
in CσI . In this case, we can see transition probabilities from Q× {2α} in CσI as
reachability probabilities in a Markov chain over Q×{0, 2α−1, 2α, 3 ·2α−1, 2α+1}.

By putting together the reachability systems for Q×{2α} for all α ∈ Jβ−1K,
we obtain a quadratic system of equations. To formalise our system and prove
its validity, we introduce some notation.

Let α ∈ Jβ − 1K, q, p ∈ Q and k ∈ J1, 2α+1 − 1K. We let Hα((q, k) ↗ p)

(resp. Hα((q, k) ↘ p)) denote the set of histories h of M≤B(Q) such that
first(h) = (q, k), last(h) = (p, 2α+1) (resp. (p, 0)) and no configuration along h

besides its last one has a counter value in {0, 2α+1}. These sets are prefix-free.
We let [(q, k)↗ p]α = Pσ

M≤B(Q),(q,k)
(Cyl (Hα((q, k)↗ p))) and [(q, k)↘ p]α =

Pσ
M≤B(Q),(q,k)

(Cyl (Hα((q, k)↘ p))). In all of this notation, if α is the subscript,
then an upwards (resp. downwards) arrow indicates that the counter of the
target configuration is 2α+1 (resp. 0).

The transition probabilities of CσI can be written with the above notation.
For all q, p ∈ Q and α ∈ Jβ − 1K, we have δσI ((q, 2

α))((p, 0)) = [(q, 2α) ↘ p]α
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q, 2αp, 2α−1 p, 3 · 2α−1

q, 0 q, 2α+1

δσI (q, 2
α−1)(p, 0) δσI (q, 2

α−1)(p, 2α)

δσI (p, 2
α−1)(q, 2α) δσI (p, 2

α−1)(q, 0)

δσI (p, 2
α−1)(q, 0) δσI (p, 2

α−1)(q, 2α)

Figure 18.4: Markov chain transition scheme used to derive a characterisation
of transitions from Q× {2α} for 0 < α < β in CσI for a bounded interval of the
form J1, 2β − 1K.

and δσI ((q, 2
α))((p, 2α+1)) = [(q, 2α)↗ p]α.

The following theorem formalises our characterisation of the transition
probabilities of CσI for configurations in SI ∩ (Q× I). The size of this system is
polynomial in |Q| and β. We provide a self-contained proof that does not refer
to the Markov chains described in Figures 18.3 and 18.4. This proof is inspired
from the reasoning used to establish Theorem 18.6 in [KEM06]. A corollary of
this proof is that the Markov chains above yield an accurate characterisation
of the transition probabilities.

Theorem 18.9. For each q, p ∈ Q, we consider variables ⟨(q, 1) ↗ p⟩0 and
⟨(q, 1) ↘ p⟩0, and for all α ∈ J1, β − 1K and k ∈ {2α−1, 2α, 3 · 2α−1}, we
consider variables ⟨(q, k) ↗ p⟩α and ⟨(q, k) ↘ p⟩α. For all q, p ∈ Q and all
u ∈ {−1, 0, 1}, let δI(q)(p, u) =

∑
a∈A(q),w(q,a)=u σ(q, 1)(a) · δ(q, a)(p).
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Consider the system of equations given by, for all q, p ∈ Q:

⟨(q, 1)↗ p⟩0 = δI(q)(p, 1) +
∑
t∈Q

δI(q)(t, 0) · ⟨(t, 1)↗ p⟩0 (18.1)

⟨(q, 1)↘ p⟩0 = δI(q)(p,−1) +
∑
t∈Q

δI(q)(t, 0) · ⟨(t, 1)↘ p⟩0

and for all α ∈ J1, β − 1K,

⟨(q, 2α−1)↗ p⟩α =
∑
t∈Q
⟨(q, 2α−1)↗ t⟩α−1 · ⟨(t, 2α)↗ p⟩α, (18.2)

⟨(q, 2α)↗ p⟩α =
∑
t∈Q

(
⟨(q, 2α−1)↗ t⟩α−1 · ⟨(t, 3 · 2α−1)↗ p⟩α

+ ⟨(q, 2α−1)↘ t⟩α−1 · ⟨(t, 2α−1)↗ p⟩α
)
,

(18.3)

⟨(q, 3 · 2α−1)↗ p⟩α =
∑
t∈Q

(
⟨(q, 2α−1)↘ t⟩α−1 · ⟨(t, 2α)↗ p⟩α

)
+ ⟨(q, 2α−1)↗ p⟩α−1,

(18.4)

⟨(q, 3 · 2α−1)↘ p⟩α =
∑
t∈Q
⟨(q, 2α−1)↘ t⟩α−1 · ⟨(t, 2α)↘ p⟩α,

⟨(q, 2α)↘ p⟩α =
∑
t∈Q

(
⟨(q, 2α−1)↘ t⟩α−1 · ⟨(t, 2α−1)↘ p⟩α

+ ⟨(q, 2α−1)↗ t⟩α−1 · ⟨(t, 3 · 2α−1)↘ p⟩α
)
,

⟨(q, 2α−1)↘ p⟩α =
∑
t∈Q

(
⟨(q, 2α−1)↗ t⟩α−1 · ⟨(t, 2α)↘ p⟩α

)
+ ⟨(q, 2α−1)↘ p⟩α−1.

The least non-negative solution of this system is obtained by substituting each
variable ⟨(q, k)↗ p⟩α by [(q, k)↗ p]α and ⟨(q, k)↘ p⟩α by [(q, k)↘ p]α.
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Proof. Occurrences of P in this proof refer toM≤B(Q), thus we omit it from
the notation. We show a claim to shorten our arguments. Let s, s′ ∈ Q× JBK.
Let H ⊆ Hist(M≤B(Q)) be a prefix-free set of histories starting in s. Assume
that there exist two prefix-free sets of histories H(1) and H(2) such that the last
(resp. first) configuration of all elements of H(1) (resp. H(2)) is s′ and we have
H = {h1 · h2 | h1 ∈ H(1), h2 ∈ H(2)}. Then it holds that

Pσ
s (Cyl (H)) = Pσ

s

(
Cyl
(
H(1)

))
· Pσ

s′

(
Cyl
(
H(2)

))
. (18.5)

Equation (18.5) can be proven as follows:

Pσ
s (Cyl (H)) =

∑
h1∈H(1)

∑
h2∈H(2)

Pσ
s (Cyl (h1 · h2))

=
∑

h1∈H(1)

∑
h2∈H(2)

Pσ
s (h1) · Pσ

s′(h2)

=

( ∑
h1∈H(1)

Pσ
s (Cyl (h1))

)
·
( ∑

h2∈H(2)

Pσ
s (Cyl (h2))

)
= Pσ

s (Cyl
(
H(1)

)
) · Pσ

s′(Cyl
(
H(2)

)
)

The first line follows from H being prefix-free. The second line is obtained from
the definition of Pσ

s , using the fact that σ is memoryless. We obtain the third
line by algebraic manipulations and the last one using the fact that H(1) and
H(2) are prefix-free.

We now prove the theorem. We start by proving that the asserted solution
is a solution of the system. We only verify Equations (18.1)–(18.4), i.e., the
equations in which the left-hand side of the equation has a variable with an
upwards arrow ↗. Arguments for the others are analogous.

Let q, p ∈ Q. First, we consider the case α = 0. We recall thatH0((q, 1)↗ p)

is prefix-free. We partition H0((q, 1) ↗ p) into two sets H and H′ such that
H is the set of histories starting in (q, 1) whose second configuration is (p, 0)

and H′ = H0((q, 1)↗ p) \ H. For all histories of H′, their second configuration
has counter value 1. We rewrite Pσ

(q,1)(Cyl (H)) and Pσ
(q,1)(Cyl (H

′)) to prove the
desired equality. On the one hand, we have

Pσ
(q,1)(Cyl (H)) =

∑
a∈A(q)
w(q,a)=1

Pσ
(q,1)(Cyl ((q, 1)a(p, 2))) = δI(q, 1)(p).
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For the other set, we partition H′ according to the second configuration of the
histories. We further partition the resulting sets following the first action and
apply Equation (18.5) to obtain

Pσ
(q,1)(Cyl

(
H′))

=
∑
t∈Q

∑
a∈A(q)
w(q,a)=0

∑
h∈H0((t,1)↗p)

Pσ
(q,1)(Cyl ((q, 1)a(t, 1) · h))

=
∑
t∈Q

( ∑
a∈A(q)
w(q,a)=0

σ(q, 1)(a) · δ(q, a)(t)
)
· Pσ

(t,1)(Cyl (H0((t, 1)↗ p)))

=
∑
t∈Q

δI(q, 0)(t) · [(t, 1)↗ p]0.

Equation (18.1) thus follows from the above and

[(q, 1)↗ p]0 = Pσ
(q,1)(Cyl (H)) + Pσ

(q,1)(Cyl
(
H′)).

This ends the case where α = 0.
Let α ≥ 1. We start by considering Equation (18.2). All histories in

Hα((q, 2
α−1)↗ p) have a configuration with counter value 2α. We let (Ut)t∈Q

be a partition of Hα((q, 2
α−1)↗ p) based on the state of the first configuration

with counter value 2α that is reached. For all t ∈ Q and all h ∈ Ut, we let
h1 and h2 such that h = h1 · h2 where h1 is the prefix of h up to the first
occurrence of (t, 2α), and let, for i ∈ {1, 2}, U (i)

t = {hi | h1 · h2 ∈ Ut}. We
have U

(1)
t = Hα−1((q, 2

α−1)↗ t) and U
(2)
t = Hα((q, 2

α)↗ t) by construction.
We conclude that Equation (18.2) is satisfied by the candidate solution via the
following equations (the second line uses Equation (18.5)):

[(q, 2α−1)↗ p]α =
∑
t∈Q

Pσ
(q,2α−1)

(Cyl (Ut))

=
∑
t∈Q

Pσ
(q,2α−1)

(
Cyl
(
U

(1)
t

))
· Pσ

(t,2α)

(
Cyl
(
U

(2)
t

))
=
∑
t∈Q

[(q, 2α−1)↗ t]α−1 · [(t, 2α)↗ p]α.

We now move on to Equation (18.3). We partition Hα((q, 2
α) ↗ p) as

follows. Let t ∈ Q. We let Ut (resp. Dt) denote the subset of Hα((q, 2
α)↗ p)
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containing the histories such that the first configuration with counter value
3 · 2α−1 (resp. 2α−1) that is visited has state t and no prior configuration
has a counter value in {3 · 2α−1, 2α−1}. The sets Dt and Ut, t ∈ Q partition,
Hα((q, 2

α) ↗ p). Indeed, all of these sets are disjoint by definition and any
history from (q, 2α) to (p, 2α+1) must traverse a configuration with counter value
3 · 2α−1. Similarly to above (for Equation (18.2)), for all t ∈ Q and all h ∈ Ut

(resp. Dt), we let h = h1 · h2 such that h1 ends in the configuration witnessing
that h ∈ Ut (resp. Dt). For i ∈ {1, 2}, we let U

(i)
t = {hi | h1 · h2 ∈ Ut} and

D
(i)
t = {hi | h1 · h2 ∈ Dt}. By applying Equation (18.5), we obtain:

[(q, 2α)↗ p]α =
∑
t∈Q

Pσ
(q,2α)

(
Cyl
(
U

(1)
t

))
· Pσ

(t,3·2α−1)

(
Cyl
(
U

(2)
t

))
+
∑
t∈Q

Pσ
(q,2α)

(
Cyl
(
D

(1)
t

))
· Pσ

(t,2α−1)

(
Cyl
(
D

(2)
t

))
We now prove that the cylinder probabilities match the terms in Equa-

tion (18.3). Let t ∈ Q. We have Pσ
(t,3·2α−1)

(
Cyl
(
U

(2)
t

))
= [(t, 3 · 2α−1)↗ p]α

and Pσ
(t,2α−1)

(
Cyl
(
D

(2)
t

))
= [(t, 2α−1)↗ p]α because U

(2)
t and D

(2)
t are respec-

tively the sets Hα((t, 3 · 2α−1)↗ p) and Hα((t, 2
α−1)↗ p).

The sets U
(1)
t and D

(1)
t do not directly match relevant sets of histories as

above. However, there are bijections from U
(1)
t to Hα−1((q, 2

α−1) ↗ t) and
from D

(1)
t to Hα−1((q, 2

α−1)↘ t). Both bijections map a history to the history
obtained by subtracting 2α−1 to the counter values in all configurations along
the history. All counter values in a history in U

(1)
t or D

(1)
t and its image lies in

the interval I. Therefore, for all h1 ∈ U
(1)
t ∪D(1)

t with first(h1) = s, if its image
by the relevant bijection is h′1 such that first(h′1) = s′, then Pσ

s (Cyl (h1)) =

Pσ
s′(Cyl (h

′
1)). We conclude that Pσ

(q,2α)

(
Cyl
(
U

(1)
t

))
= [(q, 2α−1)↗ t]α−1 and

Pσ
(q,2α)

(
Cyl
(
D

(1)
t

))
= [(q, 2α−1)↘ t]α−1 (a similar argument is more detailed

in the proof of Lemma 18.8). We have shown that the asserted solution satisfies
Equation (18.3).

We now move on to Equation (18.4). We follow the same scheme as above,
i.e., we partition Hα((q, 3 · 2α−1)↗ p). First, we let Up be the subset with all
histories that never hit counter value 2α. For any t ∈ Q, we let Dt be the subset
of Hα((q, 3 · 2α−1)↗ p) \ Up consisting of histories that reach counter value 2α

for the first time in a configuration with state t. The sets Dt, t ∈ Q, and Up
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partition Hα((q, 3 · 2α−1)↗ p). As above, for any t ∈ Q and h ∈ Dt, we write
h = h1 · h2 such that h1 is the prefix of h up to the first occurrence of (t, 2α).
For i ∈ {1, 2}, we let D

(i)
t = {hi | h1 · h2 ∈ Dt}. Like before, we obtain, from

Equation (18.5),

[(q, 3 · 2α−1)↗ p]α =
∑
t∈Q

Pσ
(q,3·2α−1)

(
Cyl
(
D

(1)
t

))
· Pσ

(t,2α)

(
Cyl
(
D

(2)
t

))
+ Pσ

(q,3·2α) (Cyl (Up)) .

Let t ∈ Q. It follows from D
(2)
t = Hα((t, 2

α)↗ p) that Pσ
(t,2α)

(
Cyl
(
D

(2)
t

))
=

[(t, 2α) ↗ p]α. We can adapt the bijection-based argument used for Equa-
tion (18.3) to conclude that Pσ

(q,3·2α−1)

(
Cyl
(
D

(1)
t

))
= [(q, 2α−1) ↘ t]α−1 and

Pσ
(q,3·2α−1)

(Cyl (Up)) = [(q, 2α−1)↗ p]α−1. This shows that Equation (18.4) is
verified by the asserted solution, and ends the argument that all equations hold.

It remains to show that the asserted solution is the least non-negative
solution of the system. Once again, we only consider the case of variables with
ascending arrows as the other case can be handled similarly. We fix an arbitrary
non-negative solution of the system. We denote its component corresponding
to a variable x by x⋆.

All probabilities in the asserted solution can be written as the probability
of a cylinder of a set of histories. In particular, these probabilities can be
approximated by only considering the histories with at most r actions (for
r ∈ N). It suffices therefore to show that each approximation is lesser or equal
to the fixed arbitrary solution to end the proof.

For all r ∈ N, q, p ∈ Q, α ∈ Jβ − 1K and k ∈ {2α−1, 2α, 3 · 2α−1} if α ̸= 0

and k = 1 otherwise, we let [(q, k) ↗ p]≤r
α = Pσ

(q,k)(Cyl
(
H≤r

)
) where H≤r is

the subset of Hα((q, k)↗ p) containing all histories with at most r actions. We
define [(q, k)↘ p]≤r

α similarly.
Let q and p ∈ Q. We use nested induction arguments in the remainder of

the proof: an outer induction on α and an inner induction on r.
First, we deal with the case α = 0. Let r ∈ N. For the base case r = 0,

we have [(q, 1)↗ p]≤0
0 = 0 ≤ ⟨(q, 1)↗ p⟩⋆0 because we consider a non-negative

solution. We now assume that [(q, 1) ↗ p]≤r−1
0 ≤ ⟨(q, 1) ↗ p⟩⋆0 by induction.

We can apply the reasoning used when considering Equation (18.1) in the first
part of the proof (taking in account the length of histories) and then apply the



336 Chapter 18 – Compressing Markov chains in one-counter MDPs

induction hypothesis to obtain:

[(q, 1)↗ p]≤r
0 = δI(q)(p, 1) +

∑
t∈Q

δI(q)(t, 0) · [(t, 1)↗ p]≤r−1
0

≤ δI(q)(p, 1) +
∑
t∈Q

δI(q)(t, 0) · ⟨(t, 1)↗ p⟩⋆0

= ⟨(q, 1)↗ p⟩⋆0.

This closes the proof for the case α = 0.
Next, let α ≥ 1. We assume, by induction on α, that we have shown that for

all t, t′ ∈ Q, we have [(t, 2α−1)↗ t′]α−1 ≤ ⟨(t, 2α−1)↗ t′⟩⋆α−1 and [(t, 2α−1)↘
t′]α−1 ≤ ⟨(t, 2α−1) ↘ t′⟩⋆α−1. The base case r = 0 of the inner induction is
direct because for all k ∈ {2α−1, 2α, 3 · 2α−1}, we have [(q, k)↗ p]≤0

α = 0.
We assume by induction that [(t, k)↗ t′]≤r

α ≤ ⟨(t, k)↗ t′⟩⋆α for all t, t′ ∈ Q

and all k ∈ {2α−1, 2α, 3 · 2α−1}. All required inequalities are obtained by
an adaptation of the argument used in the first part of the proof for Equa-
tions (18.2), (18.3) and (18.4), i.e., partitioning the set of histories while taking
in account the length of histories and invoking Equation (18.5). For this reason,
we omit some details. From configuration (q, 2α−1), we obtain that

[(q, 2α−1)↗ p]≤r
α ≤

∑
t∈Q

[(q, 2α−1)↗ t]α−1 · [(t, 2α)↗ p]≤r−1
α .

By the induction hypotheses and the fact we are dealing with a solution of the
system, we obtain [(q, 2α−1)↗ p]≤r

α ≤ ⟨(q, 2α−1)↗ p⟩⋆α. Next, for configuration
(q, 2α), we obtain that

[(q, 2α)↗ p]≤r
α ≤

∑
t∈Q

(
[(q, 2α−1)↗ t]α−1 · [(t, 3 · 2α−1)↗ p]≤r−1

α

+ [(q, 2α−1)↘ t]α−1 · [(t, 2α−1)↗ p]≤r−1
α

)
.

It follows from the induction hypotheses and the fact we deal with a solution
that [(q, 2α)↗ p]≤r

α ≤ ⟨(q, 2α)↗ p⟩⋆α. Finally, for configuration (q, 3 · 2α−1), we
have

[(q, 3 · 2α−1)↗ p]≤r
α ≤

∑
t∈Q

(
[(q, 2α−1)↘ t]α−1 · [(t, 2α)↗ p]≤r−1

α

)
+ [(q, 2α−1)↗ p]α−1.
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The induction hypotheses imply that [(q, 3 · 2α−1)↗ p]≤r
α ≤ ⟨(q, 3 · 2α−1)↗ p⟩⋆α.

We have shown that the asserted solution is the least non-negative solution
of the system.

We now analyse the size of the equation system of Theorem 18.9. There are
as many equations as there are variables. There are 2 · |Q|2 equations in the
system for which the variable of the left-hand side is indexed by 0, and, for all
α ∈ J1, β − 1K, there are 6 · |Q|2 equations in the system for which the variable
of the left-hand side is indexed by α. We can also show that these equations
have length polynomial in |Q| and |A|. We obtain the following result.

Lemma 18.10. The equation system of Theorem 18.9 has 2 · |Q|2 · (3β − 2)

variables and equations. Its equations have length polynomial in |Q| and |A|.

Proof. The argument regarding the number of variables and equations is given
above. We thus provide an analysis of the length of the equations. We analyse
Equations (18.1)–(18.4) from Theorem 18.9. A similar analysis applies to the
other equations. We need only comment on the right-hand side of each equation,
as the left-hand side contains a single variable.

We start with Equation (18.1). If we rewrite its right-hand side as a sum
of products (we substitute references to δI by the corresponding sum), we
obtain a sum of no more than |Q| · |A| products of at most three variables or
constants. For Equations (18.2)–(18.4), we observe that their right-hand side
are respectively sums of no more than 2|Q| products of two variables.

Theorem 18.9 provides a system of equations that may not have a unique
solution. We describe how to alter this system to have a unique solution based
on the supports of the distributions assigned by σ.

We rely on the Markov chains described in Figures 18.3 and 18.4. By
Theorem 18.9, the transition probabilities of CσI are reachability probabilities in
these Markov chains. More precisely, the system of Theorem 18.9 is a collection
of systems for reachability probabilities in these Markov chains. It follows
that modifying the equation system of Theorem 18.9 by setting all relevant
probabilities to zero will ensure uniqueness of the solution.
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It remains to determine how to identify the probabilities that are zero in
the least solution of the system. The probabilities that are zero only depend
on the transitions (with non-zero probability) between configurations (see
Appendix A.2.1). Therefore, we need not compute the transition probabilities
of the Markov chains (which would have an important computational cost, see
Example 18.1) and need only determine the transitions qualitatively.

The idea of the procedure is to proceed gradually increasing the counter
step size. First, we can study the Markov chain for counter values {0, 1, 2}, as
illustrated in Figure 18.3, and perform a graph-based analysis to determine
which probabilities to set to zero for outgoing transitions from Q× {1} in CσI .
Then, for all α ∈ Jβ − 1K, assuming that the non-zero transition probabilities
in CσI have been determined for configurations in Q× {2α−1}, we can perform
another graph-based analysis on the Markov chain described in Figure 18.4 to
determine the non-zero transition probabilities from Q× {2α} in CσI .

In this way, we obtain a procedure that runs in time polynomial in |Q| and
β: we perform a reachability analysis on one graph of size 3 · |Q| for the base
case and on β − 1 graphs of size 5 · |Q| for the other cases. This analysis does
not require the precise probabilities given by σ, and it is sufficient to only know
which actions are chosen with positive probabilities in Q× I. When given the
precise probabilities, the system resulting from this procedure can be solved in
polynomial time in the BSS model; by construction, its unique solution can
be computed by solving β linear systems. We summarise this result in the
following theorem.

Theorem 18.11. There exists an algorithm modifying the system of Theo-
rem 18.9 such that

(i) the least solution of the original system is the unique solution of the
modified one and

(ii) the algorithm runs in time polynomial in β and the representation size of
Q.

This algorithms only relies on the support of the distributions in the image
of σ and not the precise probabilities. The resulting system can be solved in
polynomial time in the BSS model.
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Proof. We first formalise the Markov chains of Figures 18.3 and 18.4. The
remainder of our argument is based on these β Markov chains.

We let C0 = ({⊥} ∪ (Q × {0, 1, 2}), δI0) be the Markov chain such that all
states in {⊥}∪ (Q×{0, 2}) are absorbing and for all q, p ∈ Q and u ∈ {−1, 0, 1},
δI0((q, 1))((p, 1+u)) =

∑
a∈A(q),w(q,a)=u σ(q, 1)(a) ·δ(q, a)(p) (unattributed prob-

ability goes to ⊥).
For all α ∈ J1, β−1K, we let Cα = ({⊥}∪(Q×{0, 2α−1, 2α, 3·2α−1, 2α+1}), δIα)

where the states in {⊥}∪ (Q×{0, 2α+1}) are absorbing and, for all q, p ∈ Q and
k ∈ {2α−1, 2α, 3 · 2α−1}, we let δα((q, k))((p, k − 2α−1)) = δσI ((q, 2

α−1))((p, 0))

and δα((q, k))((p, k + 2α−1)) = δσI ((q, 2
α−1))((p, 2α)).

We observe that for all p ∈ Q and all α ∈ Jβ−1K, the subset of equations from
Theorem 18.9 with the variables of the form ⟨(q, k)↗ p⟩α (resp. ⟨(q, k)↘ p⟩α)
in the left-hand side coincides with a system for reachability probabilities in
Cα for target {(p, 2α+1)} (resp. {(p, 0)}) when substituting variables indexed
by α − 1 by their assignment in the least solution of the system. We devise
an algorithm that individually modifies every such system so it has a unique
solution. Because we are dealing with systems for reachability probabilities, we
obtain a system with a unique solution by setting the variables whose assignment
in the least solution of the system is zero to zero. This set of variables can be
determined using a qualitative reachability analysis of the Markov chains Cα.

We analyse the Markov chains in order, i.e., we start with C0, then continue
with C1 and so on. This is necessary: the transitions with non-zero probabilities
in a Markov chain Cα with α ≥ 1 are not known beforehand, but can be inferred
from the analysis of Cα−1. We prove the following invariant of our procedure:
after processing Cα, the least non-negative solution of the modified system is
the least non-negative solution of the original system and all variables indexed
by α′ ≤ α have a unique valid assignment in any solution of the new system.
We modify the system by adding constraints that are satisfied by the least
non-negative solution of the original system. Thus, the first part of the invariant
follows directly and we do not comment on it.

The transition structure of the Markov chain C0 can be constructed directly
as follows: there exists a transition from a state (q, 1) to a state (p, 1 + u) if
and only if there exists an action a ∈ supp(σ(q, 1)) such that w(q, a) = u and
p ∈ supp(δ(q, a)) (in particular, the numerical probabilities do not matter).
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This yields a directed graph G0 over Q × {0, 1, 2}. For all q, p ∈ Q, we have
[(q, 1) ↗ p]0 = 0 (resp. [(q, 1) ↘ p]0 = 0) if and only if (p, 2) (resp. (p, 0))
cannot be reached from (q, 1) in G0, and in this case, we add ⟨(q, 1)↗ p⟩0 = 0

(resp. ⟨(q, 1) ↘ p⟩0 = 0) to the system. After analysing C0, the invariant is
satisfied. Indeed, following the addition of the new equations, there is only one
possible assignment of the variables indexed by 0 in any solution: all of these
variables are involved in a Markov chain reachability probability system with a
unique solution.

We now let α ∈ J1, β − 1K and assume that Cα−1 has been processed. We
assume that the invariant holds by induction. Via the analysis of Cα−1, we know
which transitions of Cα have non-zero probability because these probabilities
are reachability probabilities in Cα−1 by Theorem 18.9. We construct a directed
graph Gα over the state space of Cα similarly to above. Let s = (q, k) ∈
Q×{2α−1, 2α, 3·2α−1} and p ∈ Q. In Gα, there is an edge from s to (p, k+2α−1) if
[(q, 2α−1)↗ p]α−1 > 0 and there is an edge from s to (p, k−2α−1) if [(q, 2α−1)↘
p]α−1 > 0. Whether these probabilities are positive is known from the analysis
of Cα−1. As above, we have [(q, k) ↗ p]α = 0 (resp. [(q, k) ↘ p]α = 0) if and
only if (p, 2α+1) (resp. (p, 0)) cannot be reached from (q, k) in Gα, and in this
case, we add ⟨(q, k)↗ p⟩α = 0 (resp. ⟨(q, k)↘ p⟩α = 0) to the system.

We prove that the invariant is preserved after this iteration. By induction,
all variables indexed by α− 1 have only one possible valid assignment. Given a
solution of the system obtained after processing Cα, the variables indexed by
α must satisfy an equation system with a unique solution, the coefficients of
which are given by the unique valid assignment of the variables indexed by α−1.
It follows that there can only be one valuation for the variables indexed by α

in any solution of this system. This, in addition to the inductive hypothesis,
guarantees that the invariant holds after the analysis of Cα. In the end, after
analysing Cβ−1, the invariant guarantees that the resulting system has a unique
solution.

To end the proof, it remains to show that the above algorithm respects
the asserted complexity bounds. For all α ∈ Jβ − 1K, constructing the graph
Gα takes time polynomial in the representation of Q. Indeed, for G0, to find
all successors of a configuration (q, 1), it suffices to iterate over all actions
a ∈ supp(σ(q, 1)) and then build on the set of successors supp(δ(q, a)). For
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the other graphs Gα, their structure is inferred from the analysis of Gα−1.
Each graph Gα can be analysed in polynomial time by performing a backward
reachability analysis from each configuration on the right (i.e., after the arrow)
of a variable indexed by α, and there are 2|Q| such configurations per graph.
As we analyse β graphs, the overall time required to implement the procedure
above respects the announced complexity bounds.

It remains to prove that the unique solution of the system provided by
the procedure above can be computed in polynomial time in the BSS model.
It suffices to solve linear systems for reachability probabilities in each of the
Markov chains Cα for α ∈ Jβ − 1K. This can be done in polynomial time with
unit-cost arithmetic: these Markov chains have no more than 5 · |Q| states
each.

18.5 Representing compressed Markov chains

The definition of the compressed Markov chain does not impose any conditions
on the memoryless strategy σ: CσI can be defined without assuming that σ

is an OEIS or a CIS. However, for algorithmic purposes, we require that CσI
has a finite representation that is amenable to verification algorithms. In this
section, we focus on the representation of the state space of CσI , as the results
of Section 18.4 provide a finite representation of transition probabilities for
each interval.

By construction, CσI is finite if and only if I is finite. Thus CσI can only
be finite when σ is an OEIS. In the remainder of this section, our goal is to
show that CσI has a finite representation when σ is a CIS and I is periodic. We
assume that B =∞ and that σ is a CIS that for the remainder of the section.
We let ρ denote a common period of σ and I. We let J be the partition of
J1, ρK induced by I.

We claim that CσI is induced by a one-counter Markov chain Rσ
J = (RJ , δ

σ
J )

where RJ = SI∩({⊥}∪(Q×J1, ρK)) and δσJ is described below. We first explain
the interpretation of configurations before giving intuition on δσJ . Let ((q, k), k′)
be a configuration of C≤∞(Rσ

J ) such that k′ ≥ 1 or k = ρ (configurations that
do not satisfy these conditions will be unreachable and thus ignored). This
configuration corresponds to the configuration (q, ρ · (k′ − 1) + k) ∈ SI . The
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counter value k keeps track of where in the period we are and the counter
value k′ indicates how many multiples of ρ the counter has (strictly) exceeded.
This correspondence guarantees that the configuration ((q, ρ), 0) of C≤∞(Rσ

J )

represents the configuration (q, 0) ∈ SI .
Transitions are defined so that successors in C≤∞(Rσ

J ) correspond to suc-
cessors in CσI . We formalise δσJ : RJ → D(RJ × {−1, 0, 1}) as follows. Like
before, ⊥ is absorbing and we give a weight of zero to its self-loop to ensure
that we cannot terminate in ⊥. In other words, we set δσJ (⊥)(⊥, 0) = 1. Let
s = (q, k) ∈ RJ . Each transition from s in CσI to a state in RJ yields a transi-
tion with weight zero in Rσ

J , i.e., for all s′ ∈ RJ , we let δσJ (s)(s′, 0) = δσI (s)(s
′).

In particular, all incoming transitions of ⊥ have weight zero. Any transition
from s to a configuration (p, 0) in CσI induces a transition from s to (p, ρ) in Rσ

J
with a weight of −1, i.e., we let δσJ (s)((p, ρ),−1) = δσI (s)((p, 0)). Intuitively,
in this case, we go back to the previous period. Finally, any transition from
s to the configuration (p, ρ + 1) in CσI yields a transition with a weight of 1
in Rσ

J from s to (p, 1) ∈ RJ (this configuration is guaranteed to be in SI

because 1 is the minimum of the first interval and I has period ρ), i.e., we let
δσJ (s)((p, 1), 1) = δσI (s)((p, ρ+ 1)). Intuitively, in this case, we have passed a
multiple of ρ. We obtain a well-defined transition function with the above: for
all counter values k of configurations in RJ , the successor counter values of k
are a counter value of a configuration in RJ , 0 or ρ + 1, i.e., the upper and
lower bound respectively of the intervals adjacent to J1, ρK in I ∪ {J0K}.

We now show that the termination probabilities in CσI and in C≤∞(Rσ
J )

match from all initial configurations with the correspondence outlined previ-
ously.

Theorem 18.12. For all (q, k) ∈ RJ \ {⊥} and k′ ∈ N such that k′ ≥ 1 or
k = ρ and all p ∈ Q, we have

PCσ
I ,(q,ρ·(k′−1)+k)(Reach((p, 0))) = PC≤∞(Rσ

J ),((q,k),k′)(Term((p, ρ))).

Proof. We define an injective mapping F : SI \ {⊥} → RJ × N such that,
for any s = (q, k) ∈ SI , if k is divisible by ρ, we let F(s) = ((q, ρ), kρ ), and
otherwise, we let F(s) = ((q, k mod ρ), ⌊kρ⌋+ 1). We observe that the image of
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F is the set of configurations ((q, k), k′) of C≤∞(Rσ
J ) such that k′ ≥ 1 or k = ρ.

The configurations of C≤∞(Rσ
J ) with a state other than ⊥ that are not in the

image of F have no incoming transitions in C≤∞(Rσ
J ) and are absorbing by

construction. The statement of the theorem is equivalent to showing that for all
s ∈ SI and all p ∈ Q, we have PCσ

I ,s
(Reach(p, 0)) = PC≤∞(Rσ

J ),F(s)(Term(p, ρ)).
Let [δσJ ]

≤∞ denote the transition function of C≤∞(Rσ
J ). The crux of

the proof is to establish that for all s, s′ ∈ SI , we have δσI (s)(s
′) =

[δσJ ]≤∞(F(s))(F(s′)). To refer to this property, we say that F preserves transi-
tions.

Let s = (q, k) ∈ SI . If k = 0, we have δσI (s)(s) = 1 = [δσJ ]≤∞(F(s))(F(s)) =
[δσJ ]

≤∞(((q, ρ), 0))((q, ρ), 0)) since configurations with counter value zero are
absorbing. We thus assume that k > 0.

We distinguish two cases below. First, we assume that ρ = 1, i.e., the
strategy σ is counter-oblivious. It follows that for all (p, k′) ∈ Q× N, we have
F((p, k′)) = ((p, 1), k′). The successor counter values of k are k − 1 and k + 1

because ρ = 1. Let p ∈ Q, u ∈ {−1, 1} and s′ = (p, k + u). By definition of Rσ
J

and of CσI (in particular, its periodic structure), we have

[δσJ ]
≤∞(F(s))(F(s′)) = δσJ ((q, 1))((p, 1), u)

= δσI ((q, 1))((p, 1 + u))

= δσI (s)(s
′).

This ends the proof that F preserves transitions when ρ = 1.
Now, we assume that ρ > 1. First, we assume that k is divisible by ρ, i.e.,

that F(s) = ((q, ρ), kρ ). Successor counter values of k are k + 1 and k − 1,
since multiples of ρ are the maximum of their interval in I. Let p ∈ Q. First,
we consider s′ = (p, k + 1). In this case, we have F(s′) = ((p, 1), kρ + 1). By
definition of Rσ

J and of CσI , we have

[δσJ ]
≤∞(F(s))(F(s′)) = δσJ ((q, ρ))((p, 1), 1)

= δσI ((q, ρ))((p, ρ+ 1))

= δσI (s)(s
′).
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Now, we consider s′ = (p, k − 1). We obtain F(s′) = ((p, ρ− 1), kρ ) and

[δσJ ]
≤∞(F(s))(F(s′)) = δσJ ((q, ρ))((p, ρ− 1), 0)

= δσI ((q, ρ))((p, ρ− 1))

= δσI (s)(s
′).

We have shown that F preserves the transitions from s whenever k is a multiple
of ρ.

We now assume that k is not a multiple of ρ, and thus that F(s) =

((q, k mod ρ), ⌊kρ⌋ + 1). Let p ∈ Q, k′ be a successor counter value of k and
s′ = (p, k′). Let I = Jb−, b+K ∈ I such that k ∈ I. It follows that k′ ∈
Jb− − 1, b+ + 1K. Since multiples of ρ are upper bounds of intervals, this implies
that k′ ∈ J⌊kρ⌋ · ρ, (⌊

k
ρ⌋+ 1) · ρ+ 1K. In light of this, we distinguish four cases:

(i) k′ = ⌊kρ⌋ · ρ,

(ii) k′ = (⌊kρ⌋+ 1) · ρ

(iii) k′ = (⌊kρ⌋+ 1) · ρ+ 1, and

(iv) k′ is in none of the previous cases.

First, we assume that k′ = ⌊kρ⌋ · ρ, which implies that F(s′) = ((p, ρ), ⌊kρ⌋).
We have

[δσJ ]
≤∞(F(s))(F(s′)) = δσJ ((q, k mod ρ))((p, ρ),−1)

= δσI ((q, k mod ρ))((p, 0))

= δσI (s)(s
′).

Second, we assume that k′ = (⌊kρ⌋+1) · ρ. This implies F(s′) = ((p, ρ), ⌊kρ⌋+1).
It holds that

[δσJ ]
≤∞(F(s))(F(s′)) = δσJ ((q, k mod ρ))((p, ρ), 0)

= δσI ((q, k mod ρ))((p, ρ))

= δσI (s)(s
′).
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Third, we assume that k′ = (⌊kρ⌋ + 1) · ρ + 1. This implies that F(s′) =

((p, 1), ⌊kρ⌋+ 2). It follows that

[δσJ ]
≤∞(F(s))(F(s′)) = δσJ ((q, k mod ρ))((p, 1), 1)

= δσI ((q, k mod ρ))((p, ρ+ 1))

= δσI (s)(s
′).

Finally, we assume that none of the previous cases holds. We conclude that
F(s′) = ((p, k′ mod ρ), ⌊kρ⌋+ 1). We obtain

[δσJ ]
≤∞(F(s))(F(s′)) = δσJ ((q, k mod ρ))((p, k′ mod ρ), 0)

= δσI ((q, k mod ρ))((p, k′ mod ρ))

= δσI (s)(s
′).

This ends the proof that F preserves transitions.
We lift F to histories by letting, for all h̄ = s1 . . . sr ∈ Hist(CσI ) in which

⊥ does not occur, F(h̄) = F(s1) . . .F(sr) and we obtain, since F preserves
transitions, PCσ

I ,first(h̄)
(Cyl

(
h̄
)
) = PC≤∞(Rσ

J ),F(first(h̄))(Cyl
(
F(h̄)

)
). The claim

of the theorem follows by writing the objectives as disjoint unions of history
cylinders and using the fact that F is injective.





Chapter 19

Interval strategy verification
algorithms

We present algorithms for the interval strategy verification problem (Defini-
tion 17.6) based on the compressed Markov chains of Chapter 18. In Section 19.1,
we present a polynomial time algorithm in the BSS model of computation for
the verification of OEISs in bounded OC-MDPs. Sections 19.2 and 19.3 present
a reduction from the verification problem for OEISs and CISs respectively to
checking the validity of a universal formula in the theory of the reals.

Throughout this chapter, we use the Refine and Isolate operators over
interval partitions defined in Chapter 18.2. In several places, we reference linear
systems for reachability probabilities in Markov chains; we refer the reader to
Appendix A.2.1 for a description of these systems.

We fix the following inputs for the whole chapter: an OC-MDP Q =

(Q,A, δ, w), a counter upper bound B ∈ N̄>0, an OEIS or CIS σ ofM≤B(Q),
an initial configuration sinit = (qinit, kinit) ∈ Q × JBK, a set of targets T ⊆ Q

and a threshold θ ∈ [0, 1] ∩Q.
To avoid redundancy, we describe the algorithms in a unified fashion for both

the selective termination objective Term(T ) and the state-reachability objective
Reach(T ). We let Ω ∈ {Term(T ),Reach(T )} denote the objective. The major
difference between the algorithms for selective termination and state-reachability
is with respect to the studied OC-MDP: analysing the state-reachability proba-
bilities requires a (polynomial-time) modification of Q beforehand (see Theo-
rem 18.5). We assume that this modification has been applied if Ω = Reach(T ).

347
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To further unify notation, we let TΩ = T × {0} if Ω = Term(T ) or B =∞ and
TΩ = T × {0, B} otherwise. This choice is motivated by the fact that, for all
partitions I of J1, B − 1K for which CσI = (SI , δ

σ
I ) is well-defined and sinit ∈ SI ,

Theorems 18.4 and 18.5 ensure that Pσ
M≤B(Q),sinit

(Ω) = PCσ
I ,sinit

(Reach(TΩ)).

Contents
19.1 Verification in bounded OC-MDPs . . . . . . . . . . 348

19.2 Open-ended interval strategies . . . . . . . . . . . . 349

19.3 Cyclic interval strategies . . . . . . . . . . . . . . . . 354

19.1 Verification in bounded one-counter Markov de-
cision processes

We provide a PPosSLP upper bound on the complexity of the OEIS verifi-
cation problem in bounded OC-MDPs. We assume that B ∈ N>0. Let
I ′ be the partition of J1, B − 1K given by the description of σ. We let
I = Refine(Isolate(I ′, kinit)). It follows that σ is based on I and that sinit ∈ SI

(because kinit is a bound of an interval in I).
To obtain a PPosSLP complexity upper bound, we need only show that

we can decide whether Pσ
M≤B(Q),sinit

(Ω) ≥ θ in polynomial time in the BSS
model [ABKM09]. In this model of computation, we can explicitly compute
the transition probabilities of CσI in polynomial time (by Theorem 18.11) and
use them to compute the probability of reaching TΩ from sinit in CσI . This
reachability probability is exactly Pσ

M≤B(Q),sinit
(Ω) by Theorems 18.4 and 18.5.

We conclude by comparing it to θ. We obtain the following result.

Theorem 19.1. The OEIS verification problem for state-reachability and selec-
tive termination in bounded OC-MDPs is in PPosSLP.

Proof. In this proof, we reason in the BSS model of computation. Our goal is
to clarify the algorithm outlined above and prove that it runs in polynomial
time. We let I = Refine(Isolate(I ′, kinit)) where I ′ is the interval partition of
J1, B − 1K in the representation of σ. Lemma 18.3 guarantees that I can be
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computed in polynomial time and has a polynomial-size representation with
respect to I ′, and that CσI is well-defined (cf. Assumption 18.1). It follows
from Theorem 18.11 that the transition probabilities of CσI can be computed in
polynomial time.

We have Pσ
M≤B(Q),sinit

(Ω) = PCσ
I ,sinit

(Reach(TΩ)) by Theorems 18.4 and 18.5.
It follows that Pσ

M≤B(Q),sinit
(Ω) can be computed in polynomial time by solving

a linear system for Markov chain reachability probabilities (with |SI | ≤ 2 · |I| ·
|Q| · log2(B) variables) and then can be compared to θ in constant time. We
conclude that the OEIS verification problem for Ω can be solved in polynomial
time in the BSS model and thus lies in PPosSLP [ABKM09].

19.2 Open-ended interval strategies

We describe a co-ETR algorithm for the OEIS verification problem. This
algorithm applies both in the bounded and unbounded settings. Recall that
co-ETR is the class of decision problems that can be reduced (in polynomial
time) to checking whether a universal sentence holds in the theory of the reals
and that co-ETR is included in PSPACE [Can88]. The algorithm of Section 19.1
provides a finer bound when dealing with bounded OC-MDPs.

We construct logic formulae in the signature of ordered fields to decide
the verification problem. We also use these formulae in the interval strategy
realisability algorithms presented in Chapter 20. Therefore, we provide formulae
that depend only on Q and the structure of σ, i.e., a finite interval partition I
of J1, B − 1K with respect to which compressed Markov chains are well-defined.
This allows to build on these formulae to check the existence of well-performing
strategies based on the considered interval partition.

We fix a finite interval partition I of J1, B − 1K satisfying Assumption 18.1,
i.e., such that, for all I ∈ I, log2(|I|+ 1) ∈ N. We build a formula with respect
to Q and I and show that we can answer the verification problem via this
formula for all OEISs based on I from any initial configuration in SI . We
postpone the definition of a relevant partition for σ and sinit to the end of the
section.

Our formula uses three sets of variables. First, for all q ∈ Q, a ∈ A(q) and
I ∈ I, we introduce a variable zIq,a to represent τ(q,min I)(a) for any OEIS
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τ based on I. For all I ∈ I, we let zI = (zIq,a)q∈Q,a∈A(q) and let z = (zI)I∈I .
We let τz be the parametric OEIS based on I defined by τz(q,min I)(a) = zIq,a
for all q ∈ Q, a ∈ A(q) and I ∈ I. The notation τz allows us to refer to the
compressed Markov chain CτzI parameterised by z in the following. To lighten
notation, we write CzI instead of CτzI and δzI instead of δτzI .

The second set of variables comes from Theorems 18.6 and 18.9 for each
interval of I and are used to represent (and to characterise) the transition
probabilities of CzI from configurations in SI \ S⊥

I (recall that S⊥
I is the set of

absorbing states of CzI). We let x denote the vector of all of these variables. For
all configurations s = (q, k) ∈ SI \ S⊥

I and s′ = (p, k′) ∈ SI \ {⊥} such that k′

is a successor counter value of k, we let xs,s′ denote the variable corresponding
to δσI (s)(s

′). Some variables represent the outgoing probabilities from two
configurations of the compressed Markov chain (see Lemma 18.8).

The last set of variables represents the probability of the counterpart of
Ω in CzI from each configuration. For all s ∈ SI \ S⊥

I , we introduce a variable
ys where ys represents PCz

I ,s
(Reach(TΩ)). We let y denote the vector of these

variables.

We now construct, for all s ∈ SI \ S⊥
I , a quantifier-free formula such that

when substituting z by a vector z⋆ that yields a well-defined strategy τz⋆ and
quantifying the other variables universally, the resulting sentence holds if and
only if Pτz⋆

M≤B(Q),s
(Ω) ≥ θ. We rely on universal quantification because we do not

have a unique characterisation of the transition probabilities of CzI when B =∞.
We construct a quantifier-free conjunction (parameterised by the choices of the
strategy) that only holds for (some) over-estimations of Pτz⋆

M≤B(Q),s
(Ω). This

allows us to check that Pτz⋆
M≤B(Q),s

(Ω) exceeds θ by checking that all of its
over-estimations do.

Our formula has two major sub-formulae. First, we define a formula
depending on z such that the least vector satisfying it includes the transition
probabilities of CzI from configurations to other configurations (i.e., not to ⊥).
For each I ∈ I, we define ΦI

δ(x, z
I) as the conjunction of all the equations in

the system characterising the transition probabilities from SI ∩ (Q× I) in CzI
given by Theorems 18.6 and 18.9 (the invoked theorem depends on whether I
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is finite or not). We define

ΦI
δ (x, z) =

∧
x∈x

x ≥ 0 ∧
∧
I∈I

ΦI
δ(x, z

I) ∧
∧

s∈SI\S⊥
I

∑
xs,s′∈xs,·

xs,s′ ≤ 1, (19.1)

where for all s ∈ SI \ S⊥
I , xs,· denotes the set of well-defined variables of the

form xs,s′ (s′ ∈ SI). The first conjunction ensures that any vector satisfying ΦI
δ

is non-negative while the rightmost conjunction ensures that for all s ∈ SI \S⊥
I ,

s′ 7→ xs,s′ is a sub-probability distribution. It follows that, for all configurations
s ∈ SI \ S⊥

I and all vectors x⋆ and z⋆ such that ΦI
δ (x

⋆, z⋆) holds, we can
define a distribution δx⋆(s) ∈ D(SI) such that for s′ ∈ SI \ {⊥}, if xs,s′ is a
well-defined variable then δx⋆(s)(s′) = x⋆s,s′ and, otherwise, δx⋆(s)(s′) = 0. We
use these distributions in our correctness proof: they allow us to reason on
Markov chains over SI .

The second block of the formula describes the probability of reaching TΩ

in CzI . We consider the following formula, derived from a linear system for
reachability probabilities in the finite Markov chain CzI ,

ΦI
Ω(x,y) =

∧
s∈SI\S⊥

I

ys ≥ 0 ∧ ys =
∑

xs,s′∈xs,·

s′∈SI\S⊥
I

xs,s′ys′ +
∑

xs,s′∈xs,·
s′∈TΩ

xs,s′

 . (19.2)

We now state that for all well-defined instances τz⋆ of τz, the conjunction
ΦI
δ (x, z

⋆) ∧ ΦI
Ω(x,y) only holds for over-estimations of the values represented

by the variables. This mainly follows from the construction of the formulae (in
particular, by Theorems 18.6 and 18.9).

Lemma 19.2. Let z⋆ be a vector such that τz⋆ is a well-defined OEIS ofM≤B(Q)
based on I. Let x⋆,y⋆ be vectors such that R |= ΦI

δ (x
⋆, z⋆) ∧ ΦI

Ω(x
⋆,y⋆). Then,

for all s ∈ SI \ S⊥
I , we have y⋆s ≥ PCz⋆

I ,s(Reach(TΩ)), and, for all s′ ∈ SI \ {⊥}
such that xs,s′ is a well-defined variable, x⋆s,s′ ≥ δz

⋆

I (s)(s′).

Proof. For all s ∈ SI \ S⊥
I and all s′ ∈ SI \ {⊥} such that xs,s′ is defined, we

have x⋆s,s′ ≥ δz
⋆

I (s)(s′) by construction of ΦI
δ through Theorems 18.6 and 18.9.

It remains to show that y⋆s ≥ PCz⋆
I ,s(Reach(TΩ)) for all s ∈ SI \ S⊥

I .
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Our argument relies on the finite Markov chain Cx⋆ = (SI , δx⋆) where for
all s ∈ S⊥

I , we have δx⋆(s)(s) = 1 and for all s ∈ SI \ S⊥
I and all s′ ∈ SI \ {⊥},

we have δx⋆(s)(s′) = x⋆s,s′ whenever xs,s′ is defined and direct the probability
mass that is not assigned to a successor of s in the previous way to ⊥.

The least vector satisfying ΦI
Ω(x

⋆,y) is (PCx⋆ ,s(Reach(TΩ)))s∈SI\S⊥
I

. There-
fore, it suffices to show that for all s ∈ SI \ S⊥

I , we have PCx⋆ ,s(Reach(TΩ)) ≥
PCz⋆

I ,s(Reach(TΩ)) to end the proof. It suffices to establish that for all histories
h̄ ∈ Hist(Cz⋆I ) with last(h̄) ∈ TΩ and no prior configuration in TΩ, we have
PCz⋆

I ,first(h̄)(Cyl (h)) ≤ PCx⋆ ,first(h̄)(Cyl (h)). Let h̄ ∈ Hist(Cz⋆I ) be such a history.
We assume that first(h̄) /∈ TΩ, as otherwise the result is trivial. Since ⊥ is
absorbing (in both Markov chains), it follows that all states along h̄ are configu-
rations in SI . The desired inequality follows from δx⋆(s)(s′) = x⋆s,s′ ≥ δz

⋆

I (s)(s′)

holding for all s, s′ ∈ SI \ {⊥}.

The following theorem provides the formula we use to solve the OEIS
verification problem based on the intuition given above. Its correctness follows
from Lemma 19.2.

Theorem 19.3. Let z⋆ be a vector such that τz⋆ is a well-defined OEIS. For all
s ∈ SI \ S⊥

I , we have Pτz⋆
M≤B(Q),s

(Ω) ≥ θ if and only if R |= ∀x ∀y((ΦI
δ (x, z

⋆) ∧
ΦI
Ω(x,y)) =⇒ ys ≥ θ).

Proof. Let s ∈ SI \ S⊥
I . By Theorems 18.4 and 18.5, we have Pτz⋆

M≤B(Q),s
(Ω) =

PCz⋆
I ,s(Reach(TΩ)). First, we assume that PCz⋆

I ,s(Reach(TΩ)) ≥ θ. Let x⋆

and y⋆ such that R |= ΦI
δ (x

⋆, z⋆) ∧ ΦI
Ω(x

⋆,y⋆). By Lemma 19.2, we obtain
y⋆s ≥ PCz⋆

I ,s(Reach(TΩ)) ≥ θ. This shows the first implication.
Conversely, assume that R |= ∀x ∀y((ΦI

δ (x, z
⋆) ∧ ΦI

Ω(x,y)) =⇒ ys ≥ θ).
Let x⋆ be the least non-negative satisfying assignment of x in ΦI

δ (x, z
⋆). The

existence of x⋆ is guaranteed by Theorems 18.6 and 18.9, which also imply
that for all variables xs′,s′′ , we have x⋆s′,s′′ = δz

⋆

I (s′)(s′′). We then let y⋆ be the
least satisfying assignment of y in the formula with parameters ΦI

Ω(x
⋆,y). By

construction of ΦI
Ω, we conclude that y⋆ exists and that PCz⋆

I ,s(Reach(TΩ)) =

y⋆s ≥ θ.
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We now analyse the size of the formula of Theorem 19.3. We show that this
formula is of size polynomial in the encoding of Q and the natural representation
of I, i.e., as a finite set of intervals whose bounds are described in binary. We
use this to show that we can build a formula to solve the verification problem
in polynomial time. This analysis is also relevant to obtain complexity bounds
for realisability.

Lemma 19.4. The formula (ΦI
δ (x, z)∧ΦI

Ω(x,y)) =⇒ ys ≥ θ has a number of
variables and atomic sub-formulae polynomial in |Q|, |A|, |I| and the binary
encoding of the largest integer bound in I.

Proof. Let β = maxI∈I,|I|<∞ log2(|I| + 1) if there is a bounded interval in I
and, otherwise, let β = 1. We note that β ≤ log2(b

++1) where b+ is the largest
integer interval bound of I.

First, we have, by definition of z and y, |z| ≤ |I|· |Q| · |A| and |y| ≤ |SI \S⊥
I |.

By definition of SI , we have |SI \ S⊥
I | ≤ 2 · β · |I| · |Q|. Second, Lemmas 18.7

and 18.10 imply that |x| and the number and length of the atomic sub-formulae
of ΦI

δ (x, z) derived from Theorems 18.6 and 18.9 are polynomial in |Q|, |A|,
|I| and β. It follows from the above that the number and length of the atomic
sub-formulae of (ΦI

δ (x, z) ∧ΦI
Ω(x,y)) =⇒ ys ≥ θ is polynomial in |Q|, |A|, |I|

and β.

We now assume that σ is an OEIS and define the interval partition used to
construct a verification formula. Let I ′ be the interval partition of J1, B − 1K
given in the representation of σ. We let I = Refine(Isolate(I ′, kinit)). The
partition I satisfies Assumption 18.1 and we have sinit ∈ SI . Let zσ denote
the valuation of z defined by zIq,a = σ(q,min I)(a) for all q ∈ Q, a ∈ A(q) and
I ∈ I. To decide the verification problem, we check whether the formula of
Theorem 19.3 for sinit holds for this valuation zσ of z. We obtain the following
complexity result.

Theorem 19.5. The OEIS verification problem for selective termination and
state-reachability objectives is in co-ETR.
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Proof. We prove that the formula used to answer the verification problem
can be constructed in polynomial time. The structure of the formula is fixed.
Therefore, it can be constructed in time polynomial in its size. It follows from
Lemma 19.4 that we can construct our formula in polynomial time if I admits
a representation of size polynomial in the number of inputs to the verification
problem.

By definition of the Refine and Isolate operators, all interval bounds of I
are either dominated by a bound in the representation of σ or by kinit + 1.
Therefore, all bounds admit a polynomial-size representation. Furthermore,
Lemma 18.3 guarantees that when applying the refinement procedure to obtain
I, we obtain a partition of size polynomial in the size of the inputs to the
verification problem.

19.3 Cyclic interval strategies

We provide a co-ETR algorithm for the CIS verification problem that follows the
same ideas as in Section 19.2. We assume throughout this section that B =∞.
To analyse CISs, we compress their induced Markov chain twice. We first apply
the compression technique to the Markov chain induced by the strategy to be
verified (for a well-chosen periodic partition of N>0). We represent this infinite
compression as a one-counter Markov chain, as described in Chapter 18.5. We
then use the compression approach to analyse this one-counter Markov chain.

As in the previous section, we provide formulae that are used in the fixed-
interval and parameterised CIS realisability algorithms of Chapter 20: we design
formulae that apply to all strategies based on a given periodic partition of N>0.
We let ρ ∈ N>0 be a period, J be an interval partition of J1, ρK into intervals
and let I be the periodic partition generated by J . We fix a finite interval
partition K of N>0 for the second compression. For all intervals I ∈ J ∪ K, we
assume that log2(|I|+ 1) ∈ N to guarantee that compressed Markov chains are
well-defined with respect to these partitions (see Assumption 18.1). We design
formulae for all CISs based on I whose structure depends only on Q, J and K.
We let T̄ = (T × {ρ})× {0} denote the target of interest in the compression of
the one-counter Markov chain (see Theorems 18.4 and 18.5).

Our formula for the verification problem uses four sets of variables; we require
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a new set of variables comparatively to Section 19.2 for the additional compres-
sion. First, we introduce variables for the choices of strategies. For all q ∈ Q,
a ∈ A(q) and I ∈ J , we introduce a variable zIq,a to represent σ(q,min I)(a).
For all I ∈ J , we let zI = (zIq,a)q∈Q,a∈A(q) and let z = (zI)I∈J . We let τz be
the parametric CIS of period ρ based on I defined by τz(q,min I)(a) = zIq,a
for all q ∈ Q, a ∈ A(q) and I ∈ J . To lighten notation, we write CzI for
the compressed Markov chain CτzI associated to τz (parameterised by z) and
Rz

J = (RJ , δ
τz
J ) for the one-counter Markov chain Rτz

J inducing CzI in the sense
of Theorem 18.12. We let R⊤

J = RJ \{⊥}. We let CK(Rz
J ) = (SK(RJ ), δK[Rz

J ])

denote the compression of C≤∞(Rz
J ) with respect to K.

We then introduce a new set of variables v for the transitions probabilities
of Rz

J between configurations in R⊤
J ; these variables come from the system of

Theorem 18.9. For any two s, s′ ∈ R⊤
J and weight u ∈ {−1, 0, 1}, we let vs,s′,u

denote the variable corresponding to δτzJ (s)(s′, u) whenever this variable is well-
defined. Third, we consider a set of variables x for the transitions probabilities
of CK(Rz

J ) taken from the systems of Theorems 18.6 and 18.9. For all s̄, s̄′ ∈
SK(RJ ) such that s̄ ∈ R⊤

J × N>0, we write xs̄,s̄′ for the variable corresponding
to δK[Rz

J ](s̄)(s̄
′) whenever this variable is defined. Finally, we introduce a

variable ys̄ for all configurations s̄ ∈ SK(RJ ) ∩ (R⊤
J × N>0) to represent the

probability PCK(Rz
J ),s̄(Reach(T̄ )). We let y = (ys̄)s̄∈SK(RJ )∩(R⊤

J×N>0)
.

We now formulate three sub-formulae of the formula used in our decision
procedure. For all I ∈ J , we let ΨI

δ(v, z
I) be the conjunction of the equations

obtained by Theorem 18.9 for the outgoing transitions of RJ ∩ (Q× I) in Rτz
J .

Similarly to Equation (19.1), we define a formula for the transitions of Rz
J by

ΨJ
δ (v, z) =

∧
v∈v

v ≥ 0 ∧
∧
I∈J

ΨI
δ(v, z

I) ∧
∧

s∈RJ \{⊥}

∑
vs,s′,u∈vs,·,·

vs,s′,u ≤ 1. (19.3)

We then construct the counterpart ΦK
δ (x,v) of the formula of Equation (19.1)

for the compressed Markov chain CK(Rσ
J ). In this case, the sub-formulae derived

from the systems of Theorem 18.6 and Theorem 18.9 for each interval of K
depend on v instead of z. We also build a counterpart ΦK

Ω(x,y) of the formula
given in Equation (19.2) for CK(Rσ

J ) with respect to the target T̄ .
To decide the verification problem, we rely on a formula similar to that of

Theorem 19.3: we check that over-estimations of the probability of interest
exceed the threshold θ. To validate this approach, we establish a counterpart
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of Lemma 19.2 for the conjunction ΨJ
δ (v, z

⋆) ∧ ΦK
δ (x,v) ∧ ΦK

Ω(x,y) given a
vector z⋆ such that τz⋆ is a well-defined CIS based on I.

Lemma 19.6. Let z⋆ be a vector such that τz⋆ is a well-defined CIS ofM≤∞(Q)
based on I. Let v⋆, x⋆ and y⋆ be vectors such that R |= ΨJ

δ (v⋆, z⋆)∧ΦK
δ (x

⋆,v⋆)∧
ΦK
Ω(x

⋆,y⋆). Then, it holds that

(i) for all s̄ ∈ SK(RJ ) ∩ (R⊤
J × N>0), we have y⋆s̄ ≥ PCK(Rz⋆

J ),s̄(Reach(T̄ ));

(ii) for all s̄ ∈ SK(RJ ) ∩ (R⊤
J × N>0) and all s̄′ ∈ SK(RJ ) such that xs̄,s̄′ is

defined, we have x⋆s̄,s̄′ ≥ δK[Rz⋆

J ](s̄)(s̄′);

(iii) for all s, s′ ∈ RJ \ {⊥} and u ∈ {−1, 0, 1} such that vs,s′,u is defined, we
have v⋆s,s′,u ≥ δz

⋆

J (s)(s′, u).

Proof. Item (iii) follows from the construction of ΨJ
δ based on Theorem 18.9.

To prove (i) and (ii), we consider the one-counter Markov chain Rv⋆ = (RJ , δv⋆)

where for all s, s′ ∈ RJ and all u ∈ {−1, 0, 1}, δv⋆(s)(s′, u) = v⋆s,s′,u when-
ever the variable vs,s′,u is defined and any probability that is not assigned
in this way is attributed to δv⋆(s)(⊥, 0). We show that in the compression
CK(Rv⋆) = (SK(RJ ), δK[Rv⋆ ]) of Rv⋆ with respect to K, we have the two
following properties:

(a) for all s̄, s̄′ ∈ SK(RJ ) ∩ (R⊤
J × N>0), δK[Rv⋆ ](s̄)(s̄′) ≥ δz

⋆

J (s̄)(s̄′);

(b) for all s̄ ∈ SK(RJ ) ∩ (R⊤
J × N>0), we have PCK(Rv⋆ ),s̄(Reach(T̄ )) ≥

PCK(Rz⋆
J ),s̄(Reach(T̄ )).

These two properties along with Lemma 19.2 (with respect to the parameterised
formula ΦK

δ (x,v
⋆) ∧ ΦK

Ω(x,y)) yield Items (i) and (ii).
We first prove (a). Let s̄, s̄′ ∈ SK(RJ ) \ {⊥}. Let s, s ∈ RJ and k, k′ ∈ N

such that s̄ = (s, k) and s̄′ = (s′, k′). If k′ is not a successor counter value of k
with respect to K, then we have δK[Rv⋆ ](s̄)(s̄′) = δK[Rz⋆

J ](s̄)(s̄′) = 0. Otherwise,
δK[Rz⋆

J ](s̄)(s̄′) is the probability of reaching s̄′ from s̄ in C≤∞(Rz⋆

J ) without
visiting another configuration with a successor value of k beforehand. Along
the relevant plays for this probability, there are no ⊥ configurations. Since
δK[Rv⋆ ](s̄)(s̄′) is similarly defined, the desired inequality follows from (iii).
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Item (a) implies (b), as there are no ⊥ configuration that can occur on plays
ending in T̄ (of which all states are absorbing).

We obtain an adaptation of Theorem 19.3 for CISs via Lemma 19.6. We
use the correspondence between configurations of Rz

J and CK(Rz
J ) established

in Theorem 18.12 in this result.

Theorem 19.7. Let z⋆ be a vector such that τz⋆ is a well-defined CIS of
M≤∞(Q) based on I. For all s̄ = ((q, k), k′) ∈ SK(RJ )∩ (R⊤

J ×N>0), we have
Pτz⋆
M≤∞(Q),(q,(k′−1)·ρ+k)

(Reach(T̄ )) ≥ θ if and only if R |= ∀x ∀y∀v((ΨJ
δ (v, z⋆) ∧

ΦK
δ (x,v) ∧ ΦK

Ω(x,y)) =⇒ ys̄ ≥ θ).

Proof. Let s̄ = ((q, k), k′) ∈ SK(RJ ) ∩ (R⊤
J × N>0). By Theorems 18.12

and 18.4, we have Pτz⋆
M≤∞(Q),(q,(k′−1)ρ+k)

(Reach(T̄ )) = PC≤∞(Rz⋆
J ),s̄(Reach(T̄ )) =

PCK(Rz⋆
J ),s̄(Reach(T̄ ))

If PC≤∞(Rσ
J ),s̄(Reach(T̄ )) ≥ θ, then we have R |= ∀x ∀y∀v((ΨJ

δ (v, z
⋆) ∧

ΦK
δ (x,v) ∧ ΦK

Ω(x,y)) =⇒ ys̄ ≥ θ) by Lemma 19.6.
Conversely, assume that R |= ∀x ∀y∀v((ΨJ

δ (v, z
⋆) ∧ ΦK

δ (x,v) ∧
ΦK

Ω(x,y)) =⇒ ys̄ ≥ θ). Let v⋆ be the least vector satisfying ΨJ
δ (v, z

⋆),
x⋆ be the least vector satisfying ΦK

δ (x,v
⋆) and y⋆ be the least vector sat-

isfying ΦK
Ω(x

⋆,y). By construction of these three formulae (and Theo-
rems 18.6 and 18.9), these vectors are well-defined and we obtain y⋆s̄ =

PC≤∞(Rσ
J ),s̄(Reach(T̄ )) ≥ θ.

We now study the size of the formula of Theorem 19.7 for our complexity
analysis. We obtain a conclusion similar to that provided by Lemma 19.4.

Lemma 19.8. The formula (ΨJ
δ (v, z) ∧ ΦK

δ (x,v) ∧ ΦK
Ω(x,y)) =⇒ ys̄ ≥ θ has

a number of variables and atomic sub-formulae polynomial in |Q|, |A|, |J |, |K|,
the binary encoding of ρ and the binary encoding of the largest integer bound in
K. The length of its atomic sub-formulae is polynomial in the same parameters.
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Proof. Lemma 19.4 implies that the number of variables and atomic formulae of
ΦK
δ (x,v) ∧ ΦK

Ω(x,y), well as the length of these atomic formulae, is polynomial
in |R⊤

J |, |K| and the binary encoding of the largest bound in K (actions are not
relevant; remark that we deal with a Markov chain). By construction of R⊤

J ,
we have |R⊤

J | ≤ 2 · log2(ρ+ 1) · |J | · |Q| (interval bounds of J are at most ρ).
Regarding ΨJ

δ (v, z), it suffices to adapt the analysis performed in the proof of
Lemma 19.4 for the formula ΦI

δ to obtain the desired bounds.

We now assume that the input strategy σ is a CIS. We close the section by
explaining how to construct J and K in polynomial time from the representation
of σ and sinit to prove that the verification problem is in co-ETR via the
previous results of this section. Let J ′ denote the partition of J1, ρK given
in the representation of σ. We let J = Refine(Isolate(J , kinit mod ρ)). For
the partition for the second compression, we let K = Refine(J1, ⌊kinitρ ⌋K) ∪
{J⌊kinitρ ⌋+ 1,+∞K} of N>0. We observe that the counterpart of sinit in SK(RJ )

(in the sense of Theorem 18.12) is guaranteed to exist: if kinit mod ρ = 0, then
we have ((qinit, ρ),

kinit
ρ ) ∈ SK(RJ ), and, otherwise, we have ((qinit, kinit mod

ρ), ⌊kinitρ ⌋+ 1) ∈ SK(RJ ). We let zσ denote the substitution of z such that zIq,a
is set to σ(q,min I)(a) for all q ∈ Q, a ∈ A(q) and I ∈ J . With the partitions
J and K given above and the formula of Theorem 19.7 with respect to the
counterpart of sinit in SK(RJ ) and the parameter zσ , we can decide our instance
of the verification problem. We thus obtain the following complexity result.

Theorem 19.9. The CIS verification problem for selective termination and
reachability objectives is in co-ETR.

Proof. We observe, in the same way as in the proof of Theorem 19.5, that
Lemmas 18.3 and 19.8 imply that the formula of Theorem 19.7 can be constructed
in polynomial time for the partitions described above.



Chapter 20

Structurally-constrained interval
strategy realisability algorithms

We provide complexity upper bounds for the fixed-interval and parameterised
realisability problems for interval strategies. Our algorithms are built on the
verification techniques presented in Chapter 19. We first provide a technical
result for analysing the complexity of the parameterised realisability problem in
Section 20.1. In Section 20.2, we focus on the case of bounded OC-MDPs. We
consider OEISs in general, i.e., we provide an approach applicable for both the
bounded and unbounded setting, in Section 20.3. We close the chapter with
CISs in Section 20.4.

We use similar approaches for all settings. For fixed-interval realisability
for pure strategies, we non-deterministically construct strategies and verify
them. This approach is not viable for fixed-interval realisability for randomised
strategies; instead, we quantify existentially over strategy variables in the logical
formulae used for verification. For the parameterised realisability problem, we
build on our algorithms for the fixed-interval case. The main idea is use non-
determinism to find an interval partition compatible with the input parameters
and then use fixed-interval algorithms with this partition to answer our problem.
All complexity bounds provided in this chapter are in PSPACE.

We consider the following inputs for the whole section: an OC-MDP
Q = (Q,A, δ, w), a counter upper bound B ∈ N̄>0, an initial configura-
tion sinit = (qinit, kinit) ∈ Q × JBK, a set of targets T ⊆ Q, an objective
Ω ∈ {Reach(T ),Term(T )} and a threshold θ ∈ [0, 1] ∩Q. We specify the other

359
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inputs below. As in Chapter 19, we assume that we work with the modified
OC-MDP of Theorem 18.5 if Ω = Reach(T ) to allow for a uniform presentation.

Contents
20.1 Parameters and compatible interval partitions . . . 360
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20.1 Parameters and compatible interval partitions

We study the representation size of interval partitions that arise in the study
of the parameterised interval strategy realisability problems. We let d ∈ N>0

denote the parameter bounding the number of intervals in the partition and
n ∈ N>0 be the parameter bounding the size of bounded intervals of the
partition. We recall that d is assumed to be encoded in unary. Formally, we
say that an interval partition I of J1, kK (where k ∈ N>0) is compatible with d

and n if such that |I| ≤ d and, for all bounded I ∈ I, |I| ≤ n.
Our algorithms for the parameterised interval strategy realisability problems

rely on non-determinism to find an interval partition that is compatible with
the input parameters for which there exists a strategy based on it that ensures
Ω with probability at least θ. To guarantee a PSPACE complexity upper bound,
our approach requires that the interval partitions that are compatible with d

and n admit a representation that is polynomial in the unary encoding of d
and the binary encoding size of d. We show this below.
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Lemma 20.1. Let d ∈ N>0, n ∈ N>0 and k ∈ N̄. Let I be an interval partition
of J1, kK such that |I| ≤ d and for all bounded I ∈ I, |I| ≤ n. Then I can be
explicitly represented in space O(d · (log2(d) + log2(n))).

Proof. We can represent each interval Jb−, b+K ∈ I by the pair (b−, b+) (where
b+ can be +∞). We prove that each finite interval bound in these pairs is at
most n · d.

First, assume that k ∈ N. In this case, the interval J1, kK is the union of at
most d sets of at most n elements (by the assumption on I). It follows that
k ≤ d · n, and thus, that all finite interval bounds of I are no more than d · n.

Second, assume that k =∞. Let I∞ denote the unbounded interval in I.
It holds (by the same reasoning as above) that the bounds of all intervals in
I \{I∞} are no more than (d− 1) ·n. This implies that min I∞− 1 ≤ (d− 1) ·n.
We obtain that in this second case, all finite interval bounds in I are no more
than (d− 1) · n+ 1 ≤ d · n.

We conclude that, in both cases, we can represent I using no more than d

pairs of numbers whose binary encoding is in O(log2(d) + log2(n)).

Lemma 20.1 implies that, under the assumption that the parameter d for the
number of intervals is given in unary, the interval partitions that are compatible
with the parameters admit a polynomial-size representation with respect to the
inputs to the parameterised interval strategy realisability problems.

20.2 Realisability in bounded one-counter Markov
decision processes

Assume that B ∈ N>0. We provide algorithms for the fixed-interval and
parameterised OEIS realisability problems in bounded OC-MDPs. We first
discuss the variants of these problems for pure strategies in Section 20.2.1. We
then discuss the variants for randomised strategies in Section 20.2.2.
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20.2.1 Pure strategies

First, we consider the fixed-interval pure OEIS realisability problem. Fix an
input interval partition I ′ of J1, B − 1K. We obtain a straightforward non-
deterministic algorithm: we guess a pure interval strategy σ based on the parti-
tion I ′ and then use our verification algorithm for OEISs in bounded OC-MDPs
as a PPosSLP sub-procedure (Theorem 19.1) to check whether Pσ

M≤B(Q),sinit
(Ω) ≥

θ. This realisability algorithm runs in non-deterministic polynomial time with
a PosSLP oracle: we non-deterministically choose d · |Q| actions, i.e., one per
state-interval pair, and then run a deterministic polynomial-time algorithm
with a PosSLP oracle. This yields an NPPosSLP upper bound for this problem.

For the parameterised pure OEIS realisability problem in bounded OC-
MDPs, we proceed similarly. Let d ∈ N>0 and n ∈ N>0 respectively denote
the input parameters bounding the number and size of intervals. We non-
deterministically guess an interval partition I ′ of J1, B − 1K that is compatible
with d and n (these partitions can be represented in polynomial space by
Lemma 20.1), guess a pure strategy based on I ′ and verify it. In this case, by
adapting the analysis made above, we also obtain an NPPosSLP upper complexity
bound. We summarise the above upper bounds in the following theorem.

Theorem 20.2. The fixed-interval and parameterised pure OEIS realisability
problems for selective termination and state-reachability objectives in bounded
OC-MDPs are in NPPosSLP.

20.2.2 Randomised strategies

We now consider the fixed-interval and parameterised randomised OEIS re-
alisability problem and describe an NPETR algorithm. We start with the
fixed-interval realisability problem. Let I ′ = (Ij)j∈J1,dK denote an input inter-
val partition of J1, B − 1K. Prefacing the formula we used in our verification
algorithm (cf. Theorem 19.3) with existential quantifiers for the strategy prob-
abilities yields a polynomial-space procedure (cf. Section 20.3). We provide
an alternative approach for bounded OC-MDPs which yields a more precise
bound.

The key is to rely on a unique characterisation of the transition and reacha-
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bility probabilities in the compressed Markov chain that we consider. Theo-
rem 18.11 (Page 338) provides the means to do this: it provides systems whose
only solution contains the transition probabilities of a compressed Markov chain.
These systems also indicate which transitions have positive probability in the
compressed Markov chain. We can thus refine the reachability probability
system (described in the formula ΦI

Ω in Equation (19.2), Page 351) to have a
unique solution.

To adequately refine systems using Theorem 18.11, we must know the
supports of the distributions assigned by the considered strategy. For this, we
use non-determinism; we guess the action supports for each state-interval pair.
We then construct an existential formula that is dependent on these supports.
This formula holds if and only if there exists a strategy witnessing a positive
answer to the fixed-interval randomised OEIS realisability problem that uses
these supports.

We let TΩ = T ×{0} if Ω = Term(T ) and TΩ = T ×{0, B} if Ω = Reach(T ).
Let I = Refine(Isolate(I ′, kinit)). We note that sinit ∈ SI . For all j ∈ J1, dK, we
let Ij = {I ∈ I | I ⊆ Ij}. We use the same variables as the verification formula
of Theorem 19.3, Chapter 19.2. We briefly recall these variables. We have a
variable vector z for the probabilities assigned by strategies and a vector zI

for all I ∈ I for the strategy probabilities specific to I. We let τz denote a
parametric strategy given by τz(q,min I)(a) = zIq,a for all q ∈ Q, a ∈ A(q) and
I ∈ I. We also have variable vectors x for the transition probabilities of the
compressed Markov chain CzI and y for the probability of reaching TΩ from
each configuration in SI \ S⊥

I .

We call functions B : Q × J1, dK → 2A \ {∅} such that for all q ∈ Q and
j ∈ J1, dK, the inclusion B(q, j) ⊆ A(q) holds support-assigning functions. An
OEIS σ based on (Ij)j∈J1,dK is B-supported if for all q ∈ Q and j ∈ J1, dK, we
have supp(σ(q,min Ij)) = B(q, j).

We now define the required sub-formulae used in our algorithm. The first
formula checks that the substitution of z results in an interpretation of the
symbolic strategy τz that is based on I ′ and is B-supported. For each j ∈ J1, dK,
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we fix I⋆j ∈ Ij . We define the formula ΦI,I′,B
σ (z) as the conjunction of

∧
j∈J1,dK

∧
q∈Q

∑
a∈A(q)

z
I⋆j
q,a = 1 ∧

∧
I∈Ij

zI = zI
⋆
j

 . (20.1)

which requires that the interpretation of τz is a well-defined OEIS based on I ′,
and ∧

j∈J1,dK

∧
q∈Q

 ∧
a∈B(q,j)

z
I⋆j
q,a > 0 ∧

∧
a/∈B(q,j)

z
I⋆j
q,a = 0

 ,

which requires that the interpretation of τz be B-supported.
The other sub-formulae are built under the assumption that we consider

an interpretation of τz with the supports described by B. The second sub-
formula is a parallel of the formula of Equation (19.1), which describes the
transition probabilities of a compressed Markov chain. For each I ∈ I, we let
ΦI,I′,B
δ (x, zI) be the conjunction of the equations in the system with a unique

solution obtained from Theorem 18.11 for the transitions from SI∩(Q×I) in CzI .
We let ΦI,I′,B

δ (x, z) =
∧

I∈I Φ
I,I′,B
δ (x, zI). From these equations, we can deduce

the transition structure of CzI and construct a linear system with a unique
solution describing the probability of reaching TΩ in CzI ; we let ΦI,I′,B

Ω (x,y)

denote the conjunction of the equations of this system. Using the fact that
these last two formulae have unique satisfying assignments for a valuation of z
satisfying ΦI,I′,B

σ (z), we obtain the following theorem.

Theorem 20.3. Let B : Q× J1, dK→ 2A \ {∅} be a support-assigning function
and s ∈ SI \ S⊥

I . There exists a B-supported strategy σ based on I ′ such
that Pσ

M≤B(Q),s
(Ω) ≥ θ if and only if R |= ∃z∃x ∃y(ΦI,I′,B

σ (z) ∧ ΦI,I′,B
δ (x, z) ∧

ΦI,I′,B
Ω (x,y) ∧ ys ≥ θ).

Proof. Assume that there exists a B-supported strategy σ based on I ′ such
that Pσ

M≤B(Q),s
(Ω) ≥ θ. Let zσ denote the valuation of z given by zIq,a =

σ(q,min I)(a) for all q ∈ Q, a ∈ A(q) and I ∈ I. It is easy to see that
ΦI,I′,B

σ (zσ) because σ is B-supported. By construction of ΦI,I′,B
δ (x, z) (via

Theorem 18.11), there is a unique vector x⋆ such that ΦI,I′,B
δ (x⋆, zσ) holds

which contains the transition probabilities of CσI . In turn, this implies that
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there is a unique vector y⋆ such that ΦI,I′,B
Ω (x⋆,y⋆) holds, and this vector

is (PCσ
I ,s

′(Reach(TΩ)))s′∈SI\S⊥
I
. By Theorems 18.4 and 18.5, we obtain that

y⋆s = PCσ
I ,s

(Reach(TΩ)) = Pσ
M≤B(Q),s

(Ω) ≥ θ.
Conversely, let z⋆, x⋆ and y⋆ witnessing that the existential formula above

holds and define σ = τz⋆ . The strategy σ is well-defined and B-supported
because ΦI,I′,B

σ (z⋆) holds. Furthermore, by construction of the formulae ΦI,I′,B
δ

and ΦI,I′,B
Ω , we deduce that y⋆s = PCσ

I ,s
(Reach(TΩ)) ≥ θ. We conclude that

Pσ
M≤B(Q),s

(Ω) = PCσ
I ,s

(Reach(TΩ)) ≥ θ by Theorems 18.4 and 18.5.

To decide the fixed-interval randomised OEIS realisability problem, it
suffices to check that there exists a support-assigning function B (using non-
determinism) such that the formula of Theorem 20.3 for holds for sinit (by
construction of I, sinit ∈ SI). We thus obtain an NPETR upper bound for this
variant of the fixed-interval realisability problem.

For the parameterised realisability problem, we obtain an NPETR upper
bound by altering the fixed-interval algorithm slightly. In this case, we use non-
determinism to guess an interval partition I ′ that is compatible with the input
parameters and a support-assigning function. We then check the validity of the
formula of Theorem 20.3 for the interval partition I = Refine(Isolate(I ′, kinit))
and the initial configuration sinit. We obtain the following result.

Theorem 20.4. The fixed-interval and parameterised randomised OEIS real-
isability problems for selective termination and state-reachability objectives in
bounded OC-MDPs are in NPETR.

Proof. We present a unified argument for both the fixed-interval and param-
eterised realisability problems. The only difference between our complexity
analysis for these two problems is how the interval partition I ′ is obtained.
In the fixed-interval case, the interval partition I ′ is a part of the input. In
the parameterised case, I ′ is of size polynomial in the input parameters by
Lemma 20.1 (recall that the parameter bounding the number of intervals is
assumed to be given in unary).

We let I = Refine(Isolate(I ′, kinit)) and B : Q × J1, |I ′|K → 2A \ {∅} be a
support-assigning function. Lemma 18.3, which bounds the number of intervals
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generated by Refine, guarantees that I has a representation of size polynomial
in that of I ′ and kinit. The support-assigning function B can be explicitly
represented in space polynomial in |Q|, |A| and |I ′|. Therefore, to prove that
the NPETR upper bound holds, it remains to prove that the formula ΦI,I′,B

σ (z)∧
ΦI,I′,B

δ (x, z) ∧ ΦI,I′,B
Ω (x,y) ∧ ysinit ≥ θ can be constructed in deterministic

polynomial time from I ′, I, B and the other inputs to the considered realisability
problem.

Lemma 19.4 implies that the number of variables in this formula is polynomial
in |Q|, |A| and |I|, and that the formulae ΦI,I′,B

δ (x, z) and ΦI,I′,B
Ω (x,y) have

size polynomial in |Q|, |A| and |I|. Indeed, for these two formulae, we observe
that they can be derived from the original formulae ΦI

δ and ΦI
Ω for verification by

taking their conjunction with atomic propositions requiring that some variables
in x and y are equal to zero (these variables can be identified in polynomial time
through the algorithm of Theorem 18.11 and with a reachability analysis of the
compressed Markov chain). Finally, we observe that, in the formula ΦI,I′,B

σ (z),
there are no more than |I ′| · (2 · |Q|+ |I| · |A| · |Q|) atomic formulae of length
in O(|A|). We have thus shown that the formula ΦI,I′,B

σ (z) ∧ ΦI,I′,B
δ (x, z) ∧

ΦI,I′,B
Ω (x,y) ∧ ysinit ≥ θ can be constructed in polynomial time.

20.3 Open-ended interval strategies

We now consider the fixed-interval and parameterised realisability problems for
OEISs in general OC-MDPs. We first consider the variant for pure strategies,
then the variant for randomised strategies.

20.3.1 Pure strategies

For pure strategies, we adapt the approach of Section 20.2. In the fixed-interval
case, we guess a pure OEIS based on the input interval partition of the set of
counter values and verify it. In the parameterised case, we guess an interval
partition compatible with the input parameters (its representation is of size
polynomial in the representation of the parameters by Lemma 20.1) and a
pure OEIS based on it, then verify it. Theorem 19.5 thus implies that the
fixed-interval and parameterised realisability problems for pure OEISs can be
solved by a non-deterministic polynomial-time algorithm that uses a co-ETR
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oracle (which is the same as using an ETR oracle). We obtain the following
upper bound.

Theorem 20.5. The fixed-interval and parameterised pure OEIS realisability
problems for selective termination and state-reachability objectives are in NPETR.

20.3.2 Randomised strategies

We now consider the variant of our realisability problems for randomised OEISs.
First, we discuss the fixed-interval problem and let I ′ = (Ij)j∈J1,dK be an
input partition. Let I = Refine(Isolate(I ′, kinit)). We let, for all j ∈ J1, dK,
Ij = {I ∈ I | I ⊆ Ij}.

As we have done in Section 20.2.2 for realisability in the bounded setting,
we consider the sets of variables z, x and y and the formulae ΦI

δ (x, z) and
ΦI

Ω(x,y) from Chapter 19.2. We introduce a new formula to constrain the
variables z similarly to the formula of Equation (20.1): we let ΦI,I′

σ (z) be the
formula

∧
j∈J1,dK

∧
I∈Ij

∧
q∈Q

 ∧
a∈A(q)

zIq,a ≥ 0 ∧
∑

a∈A(q)

zIq,a = 1

 ∧ ∧
I′∈Ij

zI = zI
′

 . (20.2)

Any vector z⋆ satisfying ΦI,I′
σ (z⋆) defines a strategy τz⋆ based on I ′ and any

such strategy induces such a vector. From the formula and equivalence presented
in Theorem 19.3, we obtain the following result.

Theorem 20.6. Let s ∈ SI \S⊥
I . There exists an OEIS σ based on the partition

I ′ such that Pσ
M≤B(Q),s

(Ω) ≥ θ if and only if R |= ∃z∀x ∀y(ΦI,I′
σ (z)∧((ΦI

δ (x, z)∧
ΦI
Ω(x,y)) =⇒ ys ≥ θ)).

We obtain that the fixed-interval realisability problem for randomised OEISs
can be reduced to deciding a sentence in R with two blocks of quantifiers. This
shows that the problem is decidable in polynomial space [BPR06, Rmk. 13.10].
For the parameterised randomised OEIS realisability problem, we obtain an
NPSPACE = PSPACE [Sav70] upper bound through the following algorithm: we
use non-determinism to obtain a partition I ′ of J1, B − 1K compatible with the
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input parameters and then check the validity of the formula of Theorem 20.6
for this partition. We obtain the following.

Theorem 20.7. The fixed-interval and parameterised randomised OEIS realis-
ability problems for selective termination and state-reachability objectives are in
PSPACE.

Proof. Let I ′ denote the input interval partition of J1, B − 1K if we consider
the fixed-interval realisability problem or the partition obtained using non-
determinism if we consider the parameterised realisability problem. In the latter,
the representation of I ′ is of size polynomial in that of the input parameters by
Lemma 20.1.

Whether a formula with two blocks of quantifiers holds in the theory of the
reals can be decided in polynomial space [BPR06, Rmk. 13.10]. Therefore, to
obtain the claim of the theorem, it suffices to show that the formula ΦI,I′

σ (z) ∧
((ΦI

δ (x, z)∧ΦI
Ω(x,y)) =⇒ ys ≥ θ) can be constructed in polynomial time with

respect to the representation of Q, kinit and I ′.
Lemma 18.3 implies that I = Refine(Isolate(I ′, kinit)) admits a representa-

tion of size polynomial in the representation of I ′ and kinit. It follows from
Lemma 19.4 that the sub-formula (ΦI

δ (x, z) ∧ ΦI
Ω(x,y)) =⇒ ys ≥ θ can be

constructed in polynomial time. For ΦI,I′
σ (z), we observe that it is a conjunction

of no more than |I| · (|Q| · (|A|+ 1) + |I| · |Q| · |A|) atomic formulae of length
in O(|A|).

20.4 Cyclic interval strategies

We now consider the fixed-interval and parameterised realisability problems
for CISs. We assume that B =∞ for the remainder of the section. We adapt
the techniques of Section 20.3. We first discuss the problem variants for pure
strategies, then for randomised strategies.

20.4.1 Pure strategies

First, we provide non-deterministic algorithms for the variants of these problems
for pure CISs. In the fixed-interval case, it suffices to non-deterministically select
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an action for each state of the OC-MDP and interval from the input interval
partition and then verify the resulting CIS. We now consider the parameterised
case. Let d ∈ N>0 and n ∈ N>0 respectively denote the parameter bounding the
number of intervals and the size of intervals for the desirable interval partitions.
To solve the parameterised realisability problem, we guess a period ρ ≤ d · n,
an interval partition J ′ of J1, ρK that is compatible with d and n and actions
for all pairs in Q×J ′, then verify the obtained CIS. Our co-ETR upper bound
for the CIS verification problem of Theorem 19.9, along with Lemma 20.1 in
the parameterised case, imply that both of these problems can be solved in
non-deterministic polynomial time with an ETR oracle.

Theorem 20.8. The fixed-interval and parameterised pure CIS realisability
problems for selective termination and state-reachability objectives are in NPETR.

20.4.2 Randomised strategies

We now consider the problem variants for randomised strategies. As before,
we first focus on the fixed-interval case. Let ρ ∈ N>0 denote the input period
and J ′ = (Ij)j∈J1,dK denote the input interval partition of J1, ρK. We define
J = Refine(Isolate(J ′, kinit mod ρ)) of J1, ρK. We let, for all j ∈ J1, dK, Jj =

{I ∈ J | I ⊆ Ij}. We also let K = Refine(J1, ⌊kinitρ ⌋K)∪ {J⌊
kinit
ρ ⌋+1,∞K}. These

choices guarantee that the counterpart in the sense of Theorem 18.12 of sinit
in SK(RJ ) exists, where SK(RJ ) is the state space of the compression of the
compression, in the sense of Chapter 19.3.

Next, we reintroduce the sets of variables z, v, x and y and the formulae
ΨJ

δ (v, z), Φ
K
δ (x,v) and ΦK

Ω(x,y) from Chapter 19.3. We formulate an adapta-
tion of the formulae of Equations (20.1) and (20.2) with respect to J : we let
ΦJ ,J ′
σ (z) be the formula

∧
j∈J1,dK

∧
I∈Jj

∧
q∈Q

 ∧
a∈A(q)

zIq,a ≥ 0 ∧
∑

a∈A(q)

zIq,a = 1

 ∧ ∧
I′∈Jj

zI = zI
′

 . (20.3)

Once again, we obtain a natural correspondence between vectors z⋆ satisfying
ΦJ ,J ′
σ (z⋆) and the CISs considered for our realisability problem. The following

theorem is therefore implied by Theorem 19.7, which provides the formula used
in our CIS verification algorithm.
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Theorem 20.9. Let s̄ ∈ SK(RJ )∩ (RJ ×N>0). There exists a CIS σ based on
the periodic partition generated by J ′ such that PC≤∞(Rσ

J ),s̄(Reach(T̄ )) ≥ θ if

and only if R |= ∃z∀x ∀y∀v(ΦJ ,J ′
σ (z) ∧ ((ΨJ

δ (v, z) ∧ ΦK
δ (x,v) ∧ ΦK

Ω(x,y)) =⇒
ys̄ ≥ θ)).

We thus obtain that the fixed-interval realisability problem for randomised
CISs is reducible in polynomial time to deciding whether a sentence with
two quantifier blocks holds in the theory of the reals. We obtain a PSPACE
upper bound [BPR06, Rmk. 13.10]. For the parameterised case, we obtain an
NPSPACE = PSPACE [Sav70] upper bound; we non-deterministically guess an
interval partition J ′ as we have done for the parameterised pure CIS realisability
problem, then reduce to checking the validity of the formula of Theorem 20.9
as in the fixed-interval case. The following theorem summarises our complexity
bounds.

Theorem 20.10. The fixed-interval and parameterised randomised CIS realis-
ability problems for selective termination and state-reachability objectives are in
PSPACE.

Proof. This theorem follows from an adaptation of the proof of Theorem 20.7.
The major difference, in this case, is that we refer to Lemma 19.8 instead
of Lemma 19.4 for bounds on the size of the sentence used in to solve the
realisability problem.



Chapter 21

Hardness of interval strategy problems

We present lower complexity bounds for the interval strategy verification prob-
lem, the fixed-interval realisability problem and the parameterised realisability
problem. In Section 21.1, we prove the square-root-sum hardness of all vari-
ants of these problems. In Section 21.2, we show that our interval strategy
realisability problems are NP-hard when considering selective termination.
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21.1 Square-root-sum hardness

We establish the square-root-sum hardness of our interval strategy problems
via an existing reduction from the square-root-sum problem to (a variant of)
the verification for one-counter Markov chains from [EWY10].

We formalise the definition of the square-root-sum problem and discuss
our definition in Section 21.1.1. We adapt the reduction of [EWY10] to our
formalism) in Section 21.1.2, and derive square-root-sum hardness for our

371
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problems in unbounded OC-MDPs. In Section 21.1.3, we present an adaptation
of this reduction to the bounded setting: intuitively, we show that we can, in
polynomial time, compute a large enough counter bound so the bounded one-
counter Markov chain approximates the one used in the unbounded reduction
well enough for the reduction to still be valid. We present some additional
technical details for this second reduction separately in Section 21.1.4.

21.1.1 The square-root-sum problem

The square-root-sum problem consists in comparing a sum of square roots of
natural numbers to some integer bound. It is formalised as follows.

Definition 21.1. The square-root-sum problem asks, given integers x1, . . . , xn ∈
N and y ∈ N, whether

∑n
i=1

√
xi ≥ y.

The square-root-sum problem is not known to be solvable in polynomial
time in the Turing model of computation. It is known that the square-root-
sum problem can be solved in polynomial time in the BSS model [Tiw92]. In
particular, the square-root-sum problem is in PPosSLP [ABKM09] and thus in
the counting hierarchy.

We discuss our definition of the square-root-sum problem in the following.

Remark 21.2. The square-root-sum problem is typically formulated as having
to decide whether

∑n
i=1

√
xi ≤ y, i.e., with the opposite inequality. For the

sake of illustrating the hardness of a problem, both problems can be seen as
equally suitable.

We argue this by briefly showing that an efficient solution to either variant
of the problem yields an efficient solution to the other one. We observe that
these two variants are almost the complement of one another. The only case in
which the two problems have the same solution for the same inputs is when∑n

i=1

√
xi = y. Deciding whether

∑n
i=1

√
xi = y can be done in polynomial

time [BFHT85]. Therefore, an efficient decision procedure for one variant of
the square-root-sum problem would entail an efficient one for the other. ◁
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qinit qi q+i

q−it

a | 0 1
n

a | 0

a | −1
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21
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1− xi
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xi
m2

a | −1

Figure 21.1: A fragment of Qx. Transition probabilities are well-defined: qinit

has n successors and its outgoing transition share the same probabilities and,
for the states q−i , we have xi ≤ m.

21.1.2 Unbounded one-counter Markov decision processes

In this section, we adapt the reduction of [EWY10] from the square-root-sum to
a verification problem in one-counter Markov chains to our OC-MDP formalism.
We use this reduction to obtain lower-bounds for all of our interval strategy
problems.

We fix inputs x1, . . . , xn and y to the square-root-sum problem, and let
m = max1≤i≤n xi and x = (x1, . . . , xn). We define an OC-MDP Qx with
only one action (i.e., a one-counter Markov chain) based on x such that the
probability of terminating in a given state t is 1

nm

∑n
i=1

√
xi from a fixed initial

state qinit.

We depict the fragment of Qx that is associated with xi in Figure 21.1 for
i ∈ J1, nK. Formally, we define Qx = (Qx, {a}, δx, wx) where Qx = {qinit, t} ∪⋃n

i=1{qi, q
+
i , q

−
i } and, for all i ∈ J1, nK, transitions and weights to and from the

state qi, q+i , q−i and t match those in the illustration. For any B ∈ N̄>0, we let
C≤B(Qx) denote the Markov chain induced by the sole strategy ofM≤B(Qx).
We have the following theorem, which can also be seen as a corollary of
Theorem 18.6.

Theorem 21.3 ([EWY10]). We have PC≤∞(Qx),(qinit,1)
(Term(t)) = 1

nm

∑n
i=1

√
xi

and, for all 1 ≤ i ≤ n, PC≤∞(Qx),(qi,1)(Term(t)) = 1
m

√
xi.

Due to the structure of Qx, reaching t and terminating in t are equivalent.
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Thus, Theorem 21.3 implies that we can reduce the square-root sum instance
fixed above to the verification problem for selective termination and state-
reachability on Qx for the unique (counter-oblivious) strategy ofM≤∞(Qx),
which is both an OEIS and a CIS, and the threshold θ = y

nm . Furthermore,
as there is only a single strategy, the answer to the verification problem is
the same as the answer to the realisability problem for (pure or randomised)
counter-oblivious strategies, which is a special case of the fixed-interval and
parameterised interval strategy realisability problems for OEISs and CISs. We
obtain the following hardness result.

Theorem 21.4. The interval strategy verification, fixed-interval realisability
and parameterised realisability problems for state-reachability and selective ter-
mination are square-root-sum-hard in unbounded OC-MDPs.

Proof. The OC-MDP Qx and the threshold θ = y
nm can be computed in

polynomial time. Therefore, we need only comment on the correctness of the
reduction.

By Theorem 21.3 and due to the structure of Qx, we have
PC≤∞(Qx),(sinit,1)

(Reach(t)) = PC≤∞(Qx),(sinit,1)
(Term(t)) = 1

nm

∑n
i=1

√
xi. Let

Ω ∈ {Term(t),Reach(t)}. We clearly have PC≤∞(Qx),(sinit,1)
(Ω) ≥ θ if and only if∑n

i=1

√
xi ≥ y in light of the above, and thus the reduction is correct.

21.1.3 Bounded one-counter Markov decision processes

We now establish the square-root sum hardness for the interval strategy verifi-
cation, fixed-interval realisability and parameterised realisability problems in
bounded OC-MDPs. Intuitively, in most cases, the reduction consists in adding
a counter upper bound to the reduction of Section 21.1.2. However, we will see
that this does not always suffice.

We fix inputs x1, . . . , xn and y to the square-root-sum problem for the
remainder of the section and let m = max1≤i≤n xi and x = (x1, . . . , xn). Let
θ = y

nm denote the threshold used for the reduction. We assume that for all
i ∈ J1, nK, xi ̸= 0, and thus that m ≥ 1.
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We aim to determine a bound B ∈ N>0 such that

PC≤B(Qx),(qinit,1)
(Term(t)) ≥ θ if and only if

n∑
i=1

√
xi ≥ y.

For all B ∈ N>0, let εB = PC≤∞(Qx),(qinit,1)
(Reach(Q × {B})). Using Theo-

rem 21.3, we obtain that for all B ∈ N>0, we have

PC≤B(Qx),(qinit,1)
(Term(t)) = PC≤∞(Qx),(qinit,1)

(Term(t))− εB

=
1

nm

n∑
i=1

√
xi − εB.

Therefore, we require a bound B ∈ N>0 with a polynomial-size representation
such that the positive error term εB above is small enough to ensure the
correctness of the reduction.

There is a particular case for which it is clear that no suitable B exists:
whenever

∑n
i=1

√
xi = y holds. This is not an issue however: this equality can

be decided in polynomial time [BFHT85], and thus we consider a reduction
that is conditioned on it. First, we check if the equality holds in polynomial
time. If it does, we reduce to a fixed positive instance of the considered interval
strategy problem (in bounded OC-MDPs). Otherwise, we mirror the reduction
of the unbounded case with a well-chosen counter upper bound B.

We now state the two main results that we prove to establish the viability
of the approach described above. First, the following result provides a lower
bound on the distance between

∑n
i=1

√
xi and y whenever these two values

differ.

Lemma 21.5. Let λ be the sum of the bit-sizes of x1, . . . , xn and y. If∑n
i=1

√
xi ̸= y, then |

∑n
i=1

√
xi − y| > 2−2n(λ+1).

This bound is adapted to our formulation of the square-root-sum problem
from [Tiw92, Lem. 3]. We prove this result in the first half of Section 21.1.4
through field-theoretic reasoning.

Lemma 21.5 implies that our reduction is correct whenever we ensure that
n ·m · εB ≤ 2−2n(λ+1) where λ denotes the sum of bit-sizes of the inputs to the
square-root-sum problem. Choosing B = 2nm · (λ+ 1) + nm2 + 1 is sufficient
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to obtain the required bound on the approximation error due to the counter
upper bound. This value of B can be computed in polynomial time as n is the
number of inputs. We show that choosing this value of B is sufficient in the
second half of Section 21.1.4 by bounding the error εB from above. Formally,
we establish the following result.

Lemma 21.6. Assume that
∑n

i=1

√
xi ̸= y. Let λ denote the sum of bit-sizes

of x1, . . . , xn and y. For all B ≥ 2nm · (λ+ 1) + nm2 + 1, it holds that

n ·m · PC≤∞(Qx),(qinit,1)
(Reach(Q× {B})) ≤ 2−2n(λ+1).

By using Lemma 21.6, we can prove the square-root-sum hardness of our
interval strategy problems in OC-MDPs via the reduction sketched above.

Theorem 21.7. The interval strategy verification, fixed-interval realisability
and parameterised realisability problems for state-reachability and selective ter-
mination are square-root-sum-hard in bounded OC-MDPs.

Proof. The reduction only differs slightly between the three considered problem;
we discuss the verification problem and comment on the additional steps for
the other two problems below. The reduction is the same for state-reachability
and selective termination, and thus we only mention the target in the following
without specifying the objective. We consider inputs x1, . . . , xn and y to
the square-root-sum problem. We assume that for all i ∈ J1, nK, xi ̸= 0. Let
m = max1≤i≤n xi and x = (x1, . . . , xn). We describe the reduction and prove
its correctness.

First, we check in polynomial time whether
∑n

i=1

√
xi = y. If this equality

holds, we construct an OC-MDP Q with a single state q and a single action a

where the self-loop of q labelled by a has weight −1. We reduce our instance
of the square-root-sum problem to the verification problem on Q with counter
upper bound B = 2, initial configuration (q, 1), target {q} and threshold θ = 1.
The reduction is trivially correct in this case and is in polynomial time.

If
∑n

i=1

√
xi ̸= y, we construct the OC-MDP Qx. Let B = 2nm · (λ +

1) + nm2 + 1 where λ is the sum of bit-sizes of the inputs of the square-root-
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sum instance. We reduce our instance of the square-root-sum problem to the
verification problem on Qx with counter upper bound B, initial configuration
(qinit, 1), target {t} and threshold θ = y

nm . This reduction is in polynomial time,
and thus it remains to prove its correctness.

Let εB = PC≤∞(Qx),(qinit,1)
(Reach(Q× {B})). It follows from Theorem 21.3

that we must show that 1
nm

∑n
i=1

√
xi − εB ≥ θ if and only if

∑n
i=1

√
xi ≥ y.

It is direct that 1
nm

∑n
i=1

√
xi − εB ≥ θ implies

∑n
i=1

√
xi ≥ y. We prove the

converse implication. Assume that
∑n

i=1

√
xi ≥ y. By Lemmas 21.5 and 21.6,

it holds that εB ≤ 1
nm |

∑n
i=1

√
xi − y| = 1

nm(
∑n

i=1

√
xi − y). We obtain that

1
nm

∑n
i=1

√
xi − εB ≥ 1

nm · y = θ. This shows that the reduction is correct.
It remains to comment on how to adapt the above reduction to the fixed-

interval and parameterised realisability problems. Instead of specifying the
strategy as an input, we specify the interval partition I = J1, B − 1K for the
fixed-interval case, and the parameters d = 1 for the number of intervals and
n = B − 1 for the size of intervals in the parameterised case. These inputs are
such that we check the existence of a well-performing counter-oblivious strategy
(with respect to the threshold θ specified above).

21.1.4 Details for bounded one-counter Markov decision pro-
cesses

The goal of this section is to prove Lemma 21.5 and Lemma 21.6. The proof
of the former uses field-theoretic tools whereas the proof of the latter consists
mainly of computations used to derive an upper bound. We split this section
into two parts, one for each result.

We let x1, . . . , xn ∈ N and y ∈ N be fixed for the remainder of this section.

Proof of Lemma 21.5

The goal of this section is to prove Lemma 21.5. This section has three parts.
First, we recall some field-theoretic notions that are required for the proof. We
refer the reader to [Lan02] for a reference on field theory. Second, we show that
all roots of the minimal polynomial of

∑n
i=1

√
xi − y are of a certain form. We

end with a proof of Lemma 21.5.
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Field-theoretic background. A complex number is algebraic (over Q) if
it is the root of a polynomial with rational coefficients. An algebraic extension
of Q is a field K such that Q ⊆ K ⊆ C (where C denotes the set of complex
numbers) such that all elements of K are algebraic. Let K ⊆ L ⊆ C be algebraic
extensions of Q. We write L/K as shorthand to mean that L is an extension of
K. The minimum polynomial of α ∈ L over K is the unique monic polynomial
with coefficients in K of minimum degree that has α as a root. An algebraic
number is an algebraic integer if its minimal polynomial over Q has integer
coefficients. Algebraic integers form a sub-ring of the algebraic closure of Q.

Given algebraic numbers α1, . . . , αℓ, we let K(α1, . . . , αℓ) be the smallest
algebraic extension of K containing α1, . . . , αℓ. The degree of the extension
L/K, denoted by [L : K], is the dimension of L as a vector space over K, and
if L = K(α), [L : K] is the degree of the minimal polynomial of α over K.
Degrees of successive extensions multiply, in the sense that, given F/L, it holds
that [F : K] = [F : L] · [L : K].

An extension L/K is Galois if and only if any embedding of K in the
algebraic closure of Q induces an automorphism of K. Given a polynomial
P ∈ K[X], the splitting field of P is the smallest algebraic extension of K

that contains all of the complex roots of P . If L/K is of finite degree, then
L/K is Galois if and only if it is the splitting field of a polynomial in K[X].
If L/K is Galois, the Galois group Gal(L/K) of L/K is the group formed by
the (field) automorphisms of L whose restriction to K is the identity function
over K. The order of the Galois group of a Galois extension is the degree of
the extension.

Minimal polynomials. The following lemma provides a set that is
guaranteed to contain all roots of the minimal polynomial of

∑n
i=1

√
xi − y.

Through this lemma, we can bound the coefficients of the minimal polynomial
of
∑n

i=1

√
xi − y, which is the crux of the proof of Lemma 21.5.

Lemma 21.8. Let β =
∑n

i=1

√
xi − y. The minimal polynomial of β over

Q has at most 2n roots and all are included in the set {
∑n

i=1(−1)bi
√
xi − y |

(b1, . . . , bn) ∈ {0, 1}n}.
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Proof. Let Pβ denote the minimum polynomial of β and let K =

Q(
√
x1, . . . ,

√
xn). To bound the number of roots of Pβ , it suffices to bound its

degree, i.e., [Q(β) : Q]. We have Q(β) ⊆ K because β ∈ K by definition of K.
It follows that [Q(β) : Q] is a divisor of [K : Q]. We have that [K : Q] is at
most 2n because

[K : Q] =
∏

0≤i≤n−1

[Q(
√
x1, . . . ,

√
xi+1) : Q(

√
x1, . . . ,

√
xi)]

and the degrees in the product are one or two; for all 1 ≤ i ≤ n,
√
xi is a root

of X2 − xi.
We now show that all roots of Pβ are in {

∑n
i=1(−1)bi

√
xi−y | (b1, . . . , bn) ∈

{0, 1}n}. First, we note that K is the splitting field of the polynomial
∏n

i=1(X
2−

xi). Therefore, K/Q is Galois (as its degree is finite).
We determine the Galois group of K/Q. Let R ⊆ {√x1, . . . ,

√
xn} be a

minimal set such that K = Q(R). Assume that R = {√x1, . . . ,
√
xn′}. For all

1 ≤ i ≤ n′, [K : Q(R \ {√xi})] = 2 and K/Q(R \ {√xi}) is Galois. It follows
that the group Gal(K/Q) contains, for all 1 ≤ i ≤ n′, the automorphism of K in
Gal(K/Q(R \{√xi})) that is such that

√
xi 7→ −

√
xi that leaves other elements

of R unchanged. These different automorphisms commute. It follows that these
automorphisms generate the Galois group Gal(K/Q) whose order is 2n

′ .
Let L denote the splitting field of Pβ (thus L/Q is Galois). It holds that

L ⊆ K, because K/Q is Galois and Pβ has a root in K. On the one hand,
elements of Gal(L/Q) are the restrictions of elements of Gal(K/Q). On the other
hand, the action of Gal(L/Q) on the set of roots of Pβ is transitive (because Pβ

is irreducible in Q[X]). It follows that the roots are all of the claimed form.

Proof of Lemma 21.5. We now provide a proof of Lemma 21.5.

Lemma 21.5. Let λ be the sum of the bit-sizes of x1, . . . , xn and y. If∑n
i=1

√
xi ̸= y, then |

∑n
i=1

√
xi − y| > 2−2n(λ+1).

Proof. Assume that
∑n

i=1

√
xi ̸= y. Let Pβ denote the minimal polynomial

of β =
∑n

i=1

√
xi − y. It has integer coefficients, because β is an algebraic

integer. Indeed, square roots of integers are algebraic integers and algebraic
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integers are a sub-ring of the algebraic closure of Q. We bound the coefficients
of Pβ to conclude via the following result: the non-zero roots of a non-zero
polynomial with k-bit integer coefficients are greater than 2−k in absolute value
[Hou70, Tiw92].

Let d denote the degree of Pβ. We have d ≤ 2n by Lemma 21.8. By
the same result, it follows that the roots of Pβ are of absolute value at most∑n

i=1 xi + y < 2λ. From the decomposition of Pβ in linear factors, we obtain
that its coefficients are sums of at most 2d products of roots of Pβ, and thus
are strictly less than 2d · (2λ)d = 2d(λ+1) in absolute value, i.e., their bit-size is
at most d(λ+ 1). We obtain that |β| > 2−d(λ+1) ≥ 2−2n(λ+1).

Proof of Lemma 21.6

The goal of this subsection is to prove Lemma 21.6. For all B ∈ N>0, we let
εB = PC≤∞(Qx),(qinit,1)

(Reach(Q× {B})).
First, we provide an explicit upper bound on the sequence (εB)B∈N>0 that

depends on m and B.

Lemma 21.9. For all B ∈ N>0, εB ≤ ( m
m+1)

B−1.

Proof. All probability notation P in this proof refers to the Markov chain
C≤∞(Qx), and thus we omit the Markov chain from the notation to lighten it.

We have ε1 = 1 = ( m
m+1)

0, and thus the inequality holds trivially for B = 1.
To obtain the general result, we prove properties that hold for all B ≥ 2.

For all B ≥ 2 and i ∈ J1, nK, let ε
(i)
B = P(qi,1)(Reach((qi, B))) denote the

probability of hitting counter value B from (qi, 1). For all B ≥ 2, we have
εB = 1

n

∑n
i=1 ε

(i)
B due to the structure of Qx. To obtain the lemma, it suffices

to show that for all i ∈ J1, nK, we have ε
(i)
B ≤ ( m

m+1)
B−1. We fix i ∈ J1, nK.

For all B ≥ 2, we let η
(i)
B = P(qi,B−1)(Reach((qi, B))) denote the probability

of reaching counter value B from (qi, B−1). To conclude this proof, we establish
three statements. First, we show that for all B ≥ 2, we have ε

(i)
B+1 = ε

(i)
B · η

(i)
B+1.

Second, we show that for all B ≥ 2, we have η
(i)
B ≤

m
m+1 . Finally, we combine

these two properties to conclude using an inductive argument.
For all B ∈ N>0 and k ∈ J1, BK, we let Hk→B denote the set of histories of
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M≤∞(Qx) starting in (qi, k) and ending in (qi, B) with only one occurrence of
this last configuration. The sets Hk→B are prefix-free; the cylinders of their
elements are pairwise disjoint.

We now show the first claim. Let B ≥ 2. All histories of H1→B can be
written as the concatenation of a history of H1→B−1 and a history of HB−1→B .
We obtain

ε
(i)
B = P(qi,1)(Cyl (H1→B))

=
∑

h1∈H1→B−1

∑
h2∈HB−1→B

P(qi,1)(Cyl (h1 · h2))

=

 ∑
h1∈H1→B−1

P(qi,1)(Cyl (h1))

 ·
 ∑

h2∈HB−1→B

P(qi,B−1)(Cyl (h2))


= ε

(i)
B−1 · η

(i)
B .

This proves the first claim.
For the second claim, we show that the sequence (η

(i)
B )B≥2 is increasing and

convergent, and that limB→∞ η
(i)
B ≤

m
m+1 . Let us prove that (η(i)B )B≥2 is increas-

ing. Let B ≥ 2. We consider the mapping f+1 : HB−1→B → HB→B+1 that in-
creases all counter values along a history by 1. This mapping is injective. Further-
more, for all h ∈ HB−1→B, we have P(qi,B−1)(Cyl (h)) = P(qi,B)(Cyl (f+1(h))).
It follows that

η
(i)
B = P(qi,B−1)(Cyl (HB−1→B)) ≤ P(qi,B)(Cyl (HB→B+1)) = η

(i)
B+1.

This shows that (η
(i)
B )B≥2 is increasing.

The sequence (η
(i)
B )B≥2 is bounded and increasing, thus it converges. We

prove that limB→∞ η
(i)
B = m

m+
√
xi

. To this end, we establish an inductive
relation on the elements of this sequence: we prove that for all B ≥ 2, we have
η
(i)
B+1 = 1

2 + (1− xi
m2 )η

(i)
B · η

(i)
B+1. Let B ≥ 2. By separating histories for which a

counter increment occurs first from those for which a counter decrement occurs
first, we obtain that

η
(i)
B+1 =

1

2
+

1

2
·
(
1− xi

m2

)
· P(qi,B−1)(Cyl (HB−1→B+1)).
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We obtain η
(i)
B+1 = 1

2+(1− xi
m2 )η

(i)
B−1·η

(i)
B by observing that elements ofHB−1→B+1

can be written as concatenations of elements of HB−1→B and HB→B+1 and
following the same reasoning as for ε

(i)
B above.

By taking the limits on both sides of the above inductive relation, we obtain
that limB→∞ η

(i)
B = 1

2 +(1− xi
m2 ) · (limB→∞ η

(i)
B )2. If m = 1, then xi = 1 (inputs

are positive) and we directly obtain limB→∞ η
(i)
B = 1

2 = m
m+

√
xi

. Otherwise,
if m ≥ 2, we have xi

m2 < 1 and we can solve a quadratic equation to deduce
that limB→∞ η

(i)
B ∈ {

m
m+

√
xi
, m
m−√

xi
}. It follows from m

m−√
xi

> 1 and (η
(i)
B )B≥2

being a sequence of probabilities that limB→∞ η
(i)
B = m

m+
√
xi

. To end the proof

of the second claim, we observe that since (η
(i)
B )B≥2 is increasing and xi ≥ 1,

we have, for all B ≥ 2, η(i)B ≤
m

m+
√
xi
≤ m

m+1 .

We now combine the two claims to provide an inductive proof that ε
(i)
B ≤

( m
m+1)

B−1 for all B ≥ 2. For B = 2, we have ε
(i)
2 = 1

2 ≤
m

m+1 (because m ≥ 1).

We now assume that ε
(i)
B ≤ ( m

m+1)
B−1 holds. Via the two claims, we conclude

that ε
(i)
B+1 = ε

(i)
B · η

(i)
B+1 ≤ ( m

m+1)
B.

The following result is a technical inequality required to show that the
candidate for B for the reduction is well-chosen. We separate it from the main
proof for the sake of clarity.

Lemma 21.10. It holds that 1
log2(

m+1
m

)
≤ m.

Proof. The inequality above is equivalent to 1 + 1
m ≥ 2

1
m . To prove this

equivalent formulation, we show that the function f : [1,+∞[ → R : z 7→
1 + 1

z − 2
1
z is non-negative. Let z0 = − log2(ln(2))

−1 > 1. We show that f is
increasing on [1, z0] and decreasing on [z0,+∞[. This property implies that f

is non-negative. Indeed, on the one hand, we have f(1) = 0, implying that f

is non-negative on [1, z0]. On the other hand, because limz→+∞ f(z) = 0, f is
necessarily non-negative on the interval [z0,+∞[.

We study the sign of the derivative of f to determine its intervals of
monotonicity. We define g : [1,+∞[ → R such that, for all z ∈ [1,+∞[,
g(z) = ln(2) · 2

1
z − 1. For all z ∈ [1,+∞[, we have f ′(z) = 1

z2
g(z). We obtain
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that for all z ∈ [1,+∞[, the sign of f ′(z) depends only on the sign of g(z). The
function g is a decreasing function, because ]1,+∞[→ R : z 7→ 2

1
z is a restric-

tion of the composition of the decreasing function ]0,+∞[→ R : z 7→ 1
z and the

increasing function ]0,+∞[→ R : z 7→ 2z. Because g(1) = 2 ln(2)− 1 > 0 and
g(z0) = 0, it follows that f ′ is positive on the interval ]1, z0] and negative on the
interval ]z0,+∞[. This implies the desired property for f , ending the proof.

We can now show that choosing B = 2nm · (λ+ 1) + nm2 + 1 (where λ is
the sum of bit-sizes of the inputs to our square-root sum instance) is sufficient
to achieve the precision given by Lemma 21.5 that ensures the validity of the
reduction.

Lemma 21.6. Assume that
∑n

i=1

√
xi ̸= y. Let λ denote the sum of bit-sizes

of x1, . . . , xn and y. For all B ≥ 2nm · (λ+ 1) + nm2 + 1, it holds that

n ·m · PC≤∞(Qx),(qinit,1)
(Reach(Q× {B})) ≤ 2−2n(λ+1).

Proof. We claim that it is sufficient to show that, for all B ≥ 2nm · (λ+ 1) +

nm2 + 1, (
m

m+ 1

)B−1

≤ 2−2n(λ+1)−nm. (21.1)

We observe that m, n ∈ N>0 implies that 2−nm ≤ 1
nm . Combining this with

Lemma 21.9 implies that, for all B ∈ N>0 such that Equation (21.1) holds,

εB ≤
(

m

m+ 1

)B−1

≤ 2−2n(λ+1)−nm ≤ 1

nm
2−2n(λ+1).

This guarantees that establishing Equation (21.1) for the relevant upper bounds
B is sufficient.

For all B ∈ N>0, Equation (21.1) is equivalent (by applying log2 on both
sides then using algebraic manipulations) to

B − 1 ≥ 2n(λ+ 1) + nm

log2
(
m+1
m

) . (21.2)

By Lemma 21.10, Equation (21.2) is guaranteed to hold whenever B − 1 ≥
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m(2n(λ+ 1) + nm), and thus the same applies to Equation (21.1). This ends
the proof of this lemma.

21.2 NP-hardness for interval strategy realisability

We now prove that the realisability problem for counter-oblivious strategies is
NP-hard for the selective termination objective. This implies the NP-hardness
of the fixed-interval and parameterised realisability problems: counter-oblivious
strategies are single-interval OEISs and are also CISs with a period of one.
We prove this hardness result by a reduction from the problem of deciding if
a directed graph has a Hamiltonian cycle. Formally, a Hamiltonian cycle is
defined as follows.

Definition 21.11. Let G = (V,E) denote a directed graph where V is a finite
set of vertices and E ⊆ V 2 is a set of edges. A Hamiltonian cycle of G is a
simple cycle v0v1 . . . vr such that r = |V |, i.e., a cycle that passes through all
vertices exactly once, except the first vertex which is visited twice.

Deciding whether a finite graph has a Hamiltonian cycle is NP-complete
(e.g., [GJ79]).

We sketch a reduction from the problem of deciding if a graph has a
Hamiltonian cycle to the counter-oblivious strategy realisability problem for
selective termination. Let G = (V,E) be a finite directed graph. We fix an
initial vertex vinit. We derive an OC-MDP Q with deterministic transitions from
G by adding vertices and redirecting transitions. We add a copy v′init /∈ V of the
initial vertex and a fresh absorbing state q /∈ V . All incoming transitions of vinit
are redirected to v′init and the only successor of v′init is set to be q. All transitions
are given a weight of −1. We assume a counter upper bound B ∈ {|V |+ 1,∞}
that exceeds the initial counter value chosen below.

We claim that there is a Hamiltonian cycle in G if and only if there
is a strategy guaranteeing (almost-)sure termination in v′init from the initial
configuration (vinit, |V |). Intuitively, all cycles of G from vinit with k edges
(i.e., k + 1 vertices) are equivalent to a history from (vinit, |V |) to (v′init, |V | − k)

in M≤B(Q). If there is a Hamiltonian cycle in G, because it is simple, we
obtain a history of length |V | in M≤B(Q) that can be obtained via a pure



21.2 – NP-hardness for interval strategy realisability 385

counter-oblivious strategy, and this strategy provides a positive answer to the
realisability problem. For the converse, we observe that any other simple cycle
from vinit of G yields a history terminating in the additional state q. Therefore, if
there is no Hamiltonian cycle in G, all (randomised) counter-oblivious strategies
have a history consistent with them that either terminates in q if v′init is reached
in under |V | steps or terminates in V .

Theorem 21.12. The problem of deciding whether there exists a counter-
oblivious (pure or randomised) strategy ensuring almost-sure selective termina-
tion is NP-hard. In particular, the fixed-interval and parameterised realisability
problems for selective termination are NP-hard.

Proof. We provide a reduction from the NP-complete problem of deciding
whether a finite directed graph contains a Hamiltonian cycle. We fix a finite
directed graph G = (V,E) and an initial vertex vinit ∈ V for the remainder of
the proof.

We consider Q = (Q,A, δ, w) such that Q = V ∪{v′init, q} (where v′init, q /∈ V )
and A = V . The transition function is deterministic: we view it as a function
δ : Q × A → Q. We formalise δ as follows. First, for all (v, v′) ∈ E such that
v′ ≠ vinit, we let δ(v, v′) = v′. Second, for all v ∈ V such that (v, vinit) ∈ E, we
let δ(v, vinit) = v′init. Finally, for all v ∈ V , we let δ(v′init, v) = δ(q, v) = q. All
weights are −1. Recall that counter-oblivious strategies can be seen as functions
σ : Q→ A.

We show that the three following assertions are equivalent:

(i) there exists a Hamiltonian cycle of G;

(ii) there exists a pure counter-oblivious strategy σ of Q such that
Pσ
(vinit,|V |)(Term(v′init)) = 1;

(iii) there exists a counter-oblivious strategy σ of Q such that
Pσ
(vinit,|V |)(Term(v′init)) = 1;

We prove that (i) implies (ii) and that (iii) implies (i). The implication from (ii)
to (iii) is direct.
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We assume that there exists a Hamiltonian cycle v0v1 . . . v|V | of G. Assume
without loss of generality that v0 = vinit. It is easy to see that the pure counter-
oblivious strategy σ such that σ(vℓ) = vℓ+1 for all ℓ ∈ J|V | − 1K ensures that
Pσ
(vinit,|V |)(Term(v′init)) = 1. The strategy σ is well-defined because v0v1 . . . v|V |−1

is a simple path. This shows that (i) implies (ii).
We now prove the contrapositive of the implication from (iii) to (i). As-

sume that there is no Hamiltonian cycle in G. Let σ be a counter-oblivious
strategy. We show that termination occurs in a state other than v′init with
positive probability. If Pσ

(vinit,|V |)(Term(v′init)) = 0, then the claim is direct.
We assume that Pσ

(vinit,|V |)(Term(v′init)) > 0. Thus, there exists a history
h = (v0, |V |)v1(v1, |V | − 1) . . . (v|V |−1, 1)vinit(v

′
init, 0) consistent with σ such

that v0 = vinit. Since there are no Hamiltonian cycles in G and h induces a
cycle of G, there must be a state other than vinit (due to the structure of Q)
that is repeated in this induced cycle. Let 0 < ℓ < ℓ′ < |V | such that vℓ = vℓ′ .
It is easy to see that the history starting in (v0, |V |) that follows h up to index
ℓ′ and then loops in the cycle between vℓ and vℓ′ until termination is consistent
with σ and therefore Pσ

(vinit,|V |)(Term(v′init)) < 1. This ends the proof that (iii)
implies (i).

To conclude, we note that Q can be constructed in polynomial time. This
ends our NP-hardness proof.
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Chapter 22

Conclusion

We close this manuscript with a conclusion and a discussion of future works. We
do not provide a summary in this chapter; we refer the reader to Chapter 3 for
an extended overview of our contributions. Summaries of each parts can also be
found in the first chapter of each part: see Chapter 4 for our results regarding
Nash equilibria, Chapter 8 for our classification of finite-memory strategies,
Chapter 12 for our results on the structure of payoff sets in multi-objective
MDPs and Chapter 16 for interval strategies in one-counter MDPs.

Contents
22.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . 389

22.2 Future works . . . . . . . . . . . . . . . . . . . . . . . 393

22.1 Conclusion

We circle back to one of the key questions highlighted in Chapter 1: what
makes a strategy complex? Our results lead us to believe that there are several
dimensions to strategy complexity. In this manuscript, we have explored three
faces of strategy complexity. We first focused on the classical notion of memory
measured by the size of Mealy machines implementing strategies. We have then
moved on to randomisation, exploring both the differences in expressiveness of
randomised strategies and randomisation requirements in multi-objective MDPs.
Finally, we have considered concise representations of strategies in one-counter
MDPs and provided verification and realisability algorithms for them. From a

389
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strategy complexity standpoint, this suggests that alternative representations
of strategies can provide insight into the structure of their memory and how
they make decisions. We briefly comment on each of these measures.

Memory. We first focus on memory via Mealy machines, the complexity
measure considered in Part II. Before we discuss strategy complexity, let us take
a brief step back and highlight why we believe that Mealy machines constitute a
natural model for memory, without referring to their well-established relevance.
Each state of a Mealy machine represents a piece of information summarising
the past of the ongoing play. The update function of the Mealy machine
models how this information progresses throughout the play: given the current
knowledge and the latest observation, it combines them into a summary of the
new history. Finally, the next-move function models the idea that decisions
should depend only on the current knowledge and the latest observation. In
fact, all strategies follow this scheme: for an infinite-memory strategy, it suffices
to keep track of the entire history of the ongoing play.

The above suggests that Mealy machines can be used to model all strategies
that conform to the intuitive idea of a finite-memory strategy. In a Mealy
machine, each memory state corresponds to a set of histories after which the
strategy behaves in the same way. Therefore, the memory of a strategy quantifies
the number of different (long-term) behaviours that the strategy exhibits from
some point on. The amount of memory of a strategy is a natural way of
quantifying strategy complexity. It is particularly useful from a theoretical
standpoint, as it enables the formulation of general results that hold for all
arenas (in a given class), regardless of their specific traits.

Nonetheless, memory by itself does not fully describe the complexity of a
strategy. This is due to this measure attributing the same complexity to all
strategies that can be implemented with the same amount of memory. This
can lead to an underestimation or an overestimation of strategy complexity
for practical applications. On the one hand, when reasoning with memory,
memoryless strategies are the base unit, and all are considered to be equally
simple. However, this is not necessarily the case: constant strategies are
simpler than injective strategies in general. On the other hand, even if a
large memory state space is required, it may admit a concise well-structured
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representation. Let us consider winning strategies in zero-sum energy-parity
games on deterministic arenas for the sake of illustration [CD12a]. Winning
strategies in these games require an exponential memory. However, it suffices to
use strategies that alternate between increasing a counter value up to a threshold
and reaching a good state. In other words, with our interval strategy terminology,
one can win in these games with two-interval OEISs. Therefore, there is a gap
between the complexity given by memory and a practical implementation of the
strategy. Such observations motivate our multi-dimensional vision of strategy
complexity, to complement the information given by memory measured through
Mealy machines.

Randomised strategies. We now move on to randomisation. We have
seen that there exist several ways of integrating randomisation in strategic
decision making. We can distinguish various classes of randomised strategies,
some of which appear more simple than others. The most general classes are
the classical mixed and behavioural strategies. Beyond these strategies, several
classes of randomised strategies can be defined through variants of stochastic
Mealy machines, the expressiveness of which we studied in Part III. Finally, we
can define subclasses of randomised strategies independently of Mealy machines.
In particular, in Part IV, we showed that finite-support mixed strategies often
suffice in multi-objective MDPs.

These different classes highlight that the randomisation requirements to
win, reach an equilibrium or achieve a vector in a game do not boil down
to simply evaluating whether randomisation is necessary or not, and can be
studied in a finer way. A finer understanding of randomisation requirements can
help in understanding why it is required, i.e., its purpose in the game, and to
what extent. It can also be useful to minimise randomness in decision making
if randomness is best avoided; think, e.g., of medical applications in which
randomness is undesirable.

Randomisation can fulfil several roles depending on the application at hand.
For multi-objective MDPs, we saw that the only interest of randomisation is
to balance different objectives. In the rock paper scissors game in Example 2.3
(Page 46), randomisation is necessary to make oneself unpredictable. In games
with imperfect information, randomisation can prove useful to compensate a
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lack of information (see, e.g., [RCDH07]). In the latter two cases, randomisation
is used to optimise the performance of the strategy, and thus a natural question
is to understand how little randomisation suffices to this end.

Alternative strategy representations. As explained above, Mealy
machine representations may obscure the structure of the memory of a strategy;
this is undesirable when it is well-structured, e.g., based on counters. Further-
more, finite memory does not guarantee the existence of a finite representation
of the strategy if the state space is infinite. This latter observation motivates
and justifies our restriction to interval strategies in one-counter MDPs in Part V.

We believe that it is a worthwhile endeavour to understand when Mealy
machines are well-structured and to take advantage of this structure to obtain
more compact representations of strategies. Having a small representation
of the elements of the memory state space, e.g., as vectors of numbers that
can be represented concisely in binary (e.g., as in multi-dimensional energy
games [CRR14, JLS15]), is not sufficient in general to be able to concisely
represent strategies: it is also imperative that the next-move function can also
be concisely represented. This additional constraint increases the challenge of
identifying relevant models.

Nonetheless, representing strategies through approaches other than Mealy
machines can provide more concise strategy representations. Another advantage
that can be obtained through such representations is explainability, i.e., the abil-
ity to explain the decisions made by a strategy. Understanding the structure
of the memory of a strategy also benefits us from an explainability stand-
point. Explainability constitutes another motivation of works on decision tree
representations of memoryless strategies (e.g., [BCC+15, BCKT18, JKW23]).

We remark that conciseness and explainability are two different distinct
aspects of strategy complexity. For instance, neural networks are used in
reinforcement learning to learn and represent strategies in (discounted-sum)
MDPs (e.g., [SB18]). While neural networks yield relatively small strategies,
their behaviour can be quite opaque due to their numerous parameters.

The many faces of strategy complexity. Strategy complexity has
many different components and finding simple strategies can be seen as a
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multi-objective optimisation problem. This is highlighted by the trade-offs that
can arise between different aspects of strategy complexity. For instance, in
some games, memory can be traded for randomisation, i.e., we can reduce
memory requirements by increasing the randomisation power of the strategy
(e.g., [CdH04, Hor09, CRR14, MPR20]), or there can be a trade-off between
explainability and conciseness. Measures of strategy complexity can be quanti-
tative, e.g., the amount of memory required or the size of a representation, or
qualitative, e.g., the randomisation model or the level of explainability.

More generally, we believe that we would benefit from a comprehensive
theory of strategy complexity based on this multi-dimensional vision. A refined
understanding of strategy complexity is key to design simpler controllers for
practical applications. Through the work presented in this thesis, we provide a
first step in the direction of a general theory of strategy complexity.

22.2 Future works

We briefly comment on some future works that arise from each part of this
thesis.

Memory requirements for constrained equilibria. A natural varia-
tion of the main question tackled in Part II is to transpose it to other classes
of equilibria than Nash equilibria. We briefly comment on the challenges that
arise for a classical alternative to NEs: subgame perfect equilibria (SPE) [Sel65]
in non-zero-sum reachability games on deterministic arenas. Intuitively, an
SPE from an initial state is a strategy profile such that, for all histories starting
in the initial state, there is no profitable deviation from the profile when we
assume that the history has taken place (i.e., in the subgame starting from the
history). SPEs are a refinement of NEs that avoid the issue of non-credible
threats, i.e., it forbids players from threatening something that would negatively
impact their payoff.

In Part II, we constructed finite-memory NEs from NE outcome. For SPEs,
instead of a single outcome, we have to deal with a tree-like structure [BBGR21]
that accounts for all histories. This makes it more challenging to obtain finite-
memory SPEs in infinite arenas, and to obtain arena-independent memory
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upper bounds for reachability, even when considering move-dependent Mealy
machines. An avenue to establishing such results would be to prove that the
tree-like description of SPEs can be simplified as we have done for NE outcomes
(e.g., by removing redundancies between branches of the tree), in such a way
that we can derive small strategies from it.

The power of randomised strategies. In Part III, we have investigated
the expressiveness of different models of stochastic Mealy machines. Outcome-
equivalence is specification-agnostic: two outcome-equivalent strategies induce
the same behaviour. Therefore, a variant of the problem would be to identify
classes of specifications and arenas for which there are additional inclusions or
equalities in our lattice. We are currently investigating one of these variants: we
study how our lattice is affected when considering the value of a one-dimensional
payoff in zero-sum turn-based stochastic games.

It is crucial that some restrictions are made on the setting and range of
considered specifications. Indeed, for multi-objective specifications on subclasses
of finite concurrent stochastic two-player arenas, the examples presented in
Chapter 11 imply that our lattice in finite perfect information arenas would
remain unchanged with this comparison criterion.

Memory in multi-objective Markov decision processes. The results
of Part IV provide insight into randomisation requirements in multi-objective
MDPs: finite-support mixed strategies can match the expectation of any strategy
when dealing with universally integrable payoffs, and these strategies can be used
to approximate any expected payoff for universally unambiguously integrable
payoffs. These results assume strategies with possibly infinite memory. This
leads to the question of understanding when finite memory suffices in multi-
objective MDPs to achieve vectors. In general, such questions are addressed by
devising sufficient conditions on payoffs or through characterisations of such
payoffs (see, e.g., [GZ05, Gim07, BLO+22, BORV23] for such results for similar
questions). In addition to this question, one can also ask when RDD strategies
are as powerful as general strategies; this would yield a natural finite-memory
analogue of our result for universally integrable payoffs.
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Structure of strategies in finite-horizon MDPs. In Part V, we have
defined and studied interval strategies in OC-MDPs. In general, optimal strate-
gies need not exist in OC-MDPs. However, there is a special subclass of
OC-MDPs in which there are uniformly optimal strategies for state-reachability:
finite-horizon MDPs, i.e., OC-MDPs in which all weights are negative. Optimal
actions for all states with a given counter value can be determined via value
iteration (see Appendix A.2.2). Since uniformly optimal strategies are guaran-
teed to exist in this setting, one can ask whether they have any regular structure.
Examples 17.2 and 17.3 can be adapted to illustrate that OEISs and CISs are
not sufficient to play optimally in finite-horizon MDPs. These examples do not
exclude the possibility that strategies built on an ultimately periodic partition
suffice to play optimally from all configurations in a finite-horizon MDP; it is
open whether this is the case or not. This question can be generalised to the
study of the structure of optimal strategies in unbounded OC-MDPs whenever
optimal strategies exist.

Going further. As mentioned in the previous section, there is value in
a general theoretical framework for strategy complexity, e.g., to enable the
design of simple controllers. Developing such a framework can be done through
different lines of work. For instance, identifying relevant measures of strategy
complexity, both for theory and practice, appears necessary to thoroughly
grasp complexity. This also requires understanding the relationships between
these different measures, e.g., how they affect one another. For individual
specifications, determining ad hoc models that yield small controllers also falls
within the scope of this line of work: they can yield insight into the structure
of the memory (in the general sense) of strategies. We believe in the interest of
these questions, and intend to continue studying them.
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Chapter A

Additional preliminaries

This chapter complements Chapter 2. In Section A.1, we recall some topological
notions, which are of particular usefulness for Chapter 15, in which we study
continuous payoffs in multi-objective MDPs. We recall classical results regarding
maximal probabilities of reachability objectives in Markov chains and MDPs in
Section A.2. Sections A.3–A.7 contain proofs that were omitted from Chapter 2.
In Section A.8, we show that the downward closure of a compact subset of R̄d

is compact. Finally, we establish the continuity of some payoff functions in
Section A.9.
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A.1 Topology

This section recalls topological definitions as well as some classical results,
mainly used above and in Chapter 15. We refer the reader to [Mun97] for a
reference on topology.

A.1.1 Topology

Let X be a non-empty set. A topology over X is a set T ⊆ 2X of subsets of X
such that (i) ∅, X ∈ T , (ii) for any family (Ui)i∈I such that Ui ∈ T for all i ∈ I,⋃

i∈I Ui ∈ T and (iii) if U , U ′ ∈ T , then U ∩ U ′ ∈ T . The pair (X, T ) is called
a topological space. Elements of T are open sets. A set F ⊆ X is closed if it is
the complement of an open set, i.e., if there exists U ∈ T such that F = X \U .

We say that (X, T ) is a Hausdorff space when for any two distinct elements
x and y ∈ X, there exists disjoint open sets Ux and Uy such that x ∈ Ux and
y ∈ Uy. We assume that all topological spaces below are Hausdorff.

Simple examples of topologies include the discrete topology Tdis = 2X and
the trivial topology {∅, X}. The discrete topology is Hausdorff. The trivial
topology is not Hausdorff whenever X has at least two elements.

A set N ⊆ X is a neighbourhood of x ∈ X if there exists an open set Ux ∈ T
such that x ∈ Ux ⊆ N . A set is open if and only if it is a neighbourhood of all
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of its elements. A point x ∈ X is an isolated point if {x} is a neighbourhood of
x.

Let Y ⊆ X. The closure cl(Y ) of Y is the smallest closed set in which Y is
included. An element x ∈ X is in cl(Y ) if and only if all (open) neighbourhoods
of x intersect Y . The interior int(Y ) of Y is the greatest open set that is
included in Y . An element x ∈ X is in int(Y ) if and only if there exists an
open neighbourhood Nx of x such that Nx ⊆ Y . A set is closed (resp. open) if
and only if it is equal to its closure (resp. interior).

A base of T is a set B ⊆ T such that all elements of T are (arbitrary)
unions of elements of B. For instance, a topology is a base of itself. A base of
the discrete topology is the set of all singleton sets. Another example is the
usual topology of the extended real line R̄; a base of this topology is given by
the set of intervals

{]α, β[ , [−∞, α[ , ]α,+∞] | α, β ∈ R, α < β}.

This topological space is Hausdorff.
Given a non-empty set Y ⊆ X, we define the induced (or subspace) topology

Tind on Y as the topology defined by Tind = {U ∩ Y | U ∈ T }. An element
x ∈ Y is an isolated point of Y if it is an isolated point in (Y, Tind).

A.1.2 Metric and normed spaces

Let X be a non-empty set. A metric over X is a function dist : X×X → [0,+∞[

such that, for all x, y, z ∈ X, (i) dist(x, y) = 0 if and only if x = y, (ii)
dist(x, y) = dist(y, x) and (iii) dist(x, z) ≤ dist(x, y) + dist(y, z). The last
condition is called the triangle inequality. An open ball centred in x ∈ X of
radius ε > 0 is the set B(x, ε) = {y ∈ X | dist(x, y) < ε}. A base of the
topology induced by a metric is the set of open balls. A topological space
(X, T ) is metrisable if there exists a metric that induces T . We remark that all
metrisable spaces are necessarily Hausdorff.

For instance, the usual topology of R is metrisable and is induced by the
metric dist defined by dist(x, y) = |x − y| for all x, y ∈ R. The extended
real line R̄ with its usual topology is also metrisable; it is homeomorphic (i.e.,
topologically isomorphic) to [0, 1] with the induced topology inherited from
R. Topological spaces X with the discrete topology are also metrisable; the
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discrete metric distdisc defined by distdisc(x, y) = 1 whenever x ̸= y induces the
discrete topology (observe that all singleton sets are open balls).

Let d ∈ N>0. Any norm ∥ ·∥ on Rd induces a topology via the metric
dist(v,w) = ∥v −w∥ for all v, w ∈ Rd. All norms of Rd are equivalent, i.e.,
induce the same topology, which is the usual topology of Rd. For infinite-
dimensional spaces, which we do not consider here, some norms may not be
equivalent, and can induce different topologies.

A.1.3 Convergence

Let (X, T ) be a Hausdorff topological space. A sequence (xn)n∈N of elements
of X is said to converge to x ∈ X if for all open neighbourhoods Ux of x, there
exists n0 ∈ N such that for all n ≥ n0, xn ∈ Ux. It is equivalent to universally
quantify only over open neighbourhoods of x in a fixed base of T instead of
all open neighbourhoods. The uniqueness of the limit is guaranteed by the
Hausdorff assumption. We note that in general spaces, sequences can have
several limits: e.g., for the trivial topology {∅, X}, all sequences converge to all
elements of the set.

In a metric space (X, dist), this definition of convergence is equivalent to
the usual definition recalled hereafter: for all ε > 0, there exists some n0 ∈ N
such that for all n > n0, dist(xn, x) < ε (i.e., xn ∈ B(x, ε)).

Convergence of (real) sequences in R̄ in the above sense is equivalent to the
classical definitions for convergence to a real limit, +∞ or −∞.

A.1.4 Continuity

A function f : (X, T )→ (Y, T ′) is continuous at x ∈ X if for all neighbourhoods
Nf(x) ⊆ Y of f(x), f−1(Nf(x)) is a neighbourhood of x. If BY is a basis of
(Y, T ′), continuity can be checked by looking only at elements of the basis in
the following sense: f is continuous at x if and only if for all Uf(x) ∈ BY such
that f(x) ∈ Uf(x), f−1(Uf(x)) is a neighbourhood of x. The function f is said
to be continuous if it is continuous at x for all x ∈ X.

If f : (X, distX) → (Y, distY ) is a function between metric spaces, the
definition above is directly equivalent to the usual ε-δ definition of continuity:
f is continuous at x ∈ X if for all ε > 0, there exists δ > 0 such that for all



A.1 – Topology 403

x′ ∈ X, distX(x, x′) < δ implies that distY (f(x), f(x
′)) < ε.

For functions between metric spaces, there exists a stronger variant of
continuity, called uniform continuity. A function f : (X, distX) → (Y, distY )

is uniformly continuous if for all ε > 0, there exists some δ > 0 such that
for all x, x′ ∈ X, distX(x, x′) < δ implies that distY (f(x), f(x

′)) < ε. The
difference with continuity is the quantification order. For continuity, δ may
depend on both ε and the point at which we check continuity, whereas for
uniform continuity, δ may only depend on ε and must work for all points.

For instance, the function [0,+∞[ → [0,+∞[ : x 7→
√
x is uniformly con-

tinuous. This can be shown via the observation that errors at a neighbourhood
of some x ≥ 0 can be bounded independently of x, i.e., we have that for
all x ≥ 0 and |h| ≤ x (this ensures that

√
x+ h is well-defined), we have

|
√
x+ h −

√
x| ≤

√
|h|. On the other hand, the function R → R : x 7→ x2 is

not uniformly continuous. For any x ∈ R and h ∈ R, we have |(x+ h)2 − x2| =
|h2 − 2xh|, and thus, intuitively, we cannot choose δ independently of x in the
definition of continuity because errors depend on x (which cannot be bounded).

For functions from a metric space to another, continuity at x is equivalent
to sequential continuity at x. A function f : (X, T ) → (Y, T ′) is sequentially
continuous at x ∈ X if for all sequences (xn)n∈N that converge to x, the
sequence (f(xn))n∈N converges to f(x).

We now prove a result implying that the non-negative and non-positive
parts of a continuous function are continuous (for later use).

Lemma A.1. Let (X, T ) be a topological space, x ∈ X, f : X → R̄ be a function
that is continuous at x and M ∈ R. Then the functions min(f,M) : y 7→
min{f(y),M} and max(f,M) : y 7→ max{f(y),M} are continuous at x.

Proof. We provide a proof only for min(f,M) as the argument is analogous for
max(f,M). We distinguish three cases.

First, assume that f(x) < M . Let Nf(x) be a neighbourhood of f(x) =

min(f,M)(x). We must show that min(f,M)−1(Nf(x)) is a neighbourhood of
x. By continuity of f at x, since Nf(x) ∩ [−∞,M [ is a neighbourhood of f(x),
f−1(Nf(x)∩ [−∞,M [) is a neighbourhood of x. To close the first case, it suffices
to establish that f−1(Nf(x) ∩ [−∞,M [) ⊆ min(f,M)−1(Nf(x)). This inclusion
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follows from the fact that for all y ∈ X, if f(y) < M , then f(y) = min(f,M)(y).
This ends the proof of the first case.

Second, assume that f(x) > M . Let NM be a neighbourhood of
M = min(f,M)(x). By definition of min(f,M), we obtain that for all
y ∈ f−1(]M,+∞]), min(f,M)(y) = M . It follows that f−1(]M,+∞]) ⊆
min(f,M)−1(NM ). By continuity of f at x, f−1(]M,+∞]) is a neighbourhood
of x. We conclude from the above that min(f,M)−1(NM ) is a neighbourhood
of x.

Finally, assume that f(x) = M and let NM be a neighbourhood of
M = min(f,M)(x). It suffices to show that f−1(NM ) ⊆ min(f,M)−1(NM ) by
continuity of f at x. Let y ∈ X such that f(y) ∈ NM . If f(y) ≤ M , then
min(f,M)(y) = f(y) ∈ NM . Otherwise, min(f,M)(y) = M ∈ NM . This shows
the required inclusion and ends the proof.

A.1.5 Compactness

A topological space (X, T ) is compact if for any open cover (Ui)i∈I of X (i.e.,
for all i ∈ I, Ui is open and

⋃
i∈I Ui = X), one can extract a finite open cover

of X, i.e., there exists I ′ ⊆ I finite such that
⋃

i∈I′ Ui = X. A subset Y of a
topological space (X, T ) is compact if (Y, Tind) is compact, where Tind is the
induced topology. A compact subset of a Hausdorff topological space is closed.
For instance, any finite set with the discrete topology is compact. Any closed
bounded interval of R is also compact. This can be used to show that the
extended real line R̄ is compact (without relying on the fact that R̄ and [0, 1]

are homeomorphic).
In metrisable spaces, there is an equivalent characterisation of compactness

based on sequences. A topological space (X, T ) is sequentially compact if for all
sequences (xn)n∈N of X, there exists a convergent subsequence. A metrisable
space is compact if and only if it is sequentially compact.

For subsets of Rd (and more generally, of finite-dimensional normed vector
spaces), there is yet another equivalent formulation of compactness. A set
D ⊆ Rd is compact if and only if it is closed and bounded.

Let (X, T ) and (Y, T ′) be topological spaces and let f : X → Y . If (X, T ) is
compact and f is continuous, then f(X) is compact. Furthermore, if (X, distX)

is a compact metric space and (Y, distY ) is a metric space, f is continuous if
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and only if f is uniformly continuous.

A.1.6 Product topology

The product topology is a topology defined over Cartesian products of topological
spaces. Let I be an arbitrary non-empty set. For all i ∈ I, let (Xi, Ti) be a
topological space. A base of open sets for the product topology over

∏
i∈I Xi

consists of the open sets
∏

i∈I Ui where for all i ∈ I, Ui ∈ Ti and Ui = Xi for all
but finitely many i ∈ I. Such sets are called cylinder sets. The product topology
is the coarsest topology for which the projections

∏
i′∈I Xi′ → Xi : (xi′)i′∈I 7→ xi

are continuous for all i ∈ I.
A simple example of the product topology is Rd; the usual topology of Rd

corresponds to the product topology of d copies of R with its usual topology.
A sequence in a product of topological spaces converges with respect to the

product topology if and only if it converges component-wise. This is formalised
in the following result.

Lemma A.2. Let I be a non-empty set. For all i ∈ I, let (Xi, Ti) be a topological
space. Let TΠ denote the product topology on

∏
i∈I Xi. Let (x(n))n∈N be a

sequence of elements of
∏

i∈I Xi and x = (xi)i∈N ∈
∏

i∈I Xi. Then (x(n))n∈N

converges to x if and only if for all i ∈ I, (x(n)i )n∈N converges to xi.

A product of metrisable spaces need not be metrisable in general. However,
countable products of metrisable spaces are metrisable. This can be shown in
the same way that [Mun97, Chap 2, Thm. 9.5] proves that Rω with the product
topology is metrisable (where the usual topology is assumed on R).

Finally, we show that countable products of compact metrisable spaces are
compact. In full generality, arbitrary products of compact topological spaces
are compact; this result is known as Tychonoff’s theorem. Tychonoff’s theorem
is equivalent to the axiom of choice. Because of this, we provide an alternative
proof below for the case of countable products.

Theorem A.3. For all i ∈ N, let (Xi, Ti) be a sequentially compact topological
space. Then (

∏
i∈NXi, TΠ) is sequentially compact, where TΠ denotes the product

topology. In particular, countable products of compact metrisable spaces are
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compact.

Proof. The second claim of the theorem follows from the first and the fact that,
in metrisable spaces, compactness and sequential compactness are equivalent.
We thus focus on the first claim of the theorem. Let (x(n))n∈N be a sequence
of elements of

∏
i∈NXi. Our goal is to show that (x(n))n∈N has a convergent

subsequence.
First, for all i ∈ N, we construct a subsequence (x(n))n∈Ii of (x(n))n∈N such

that for all j < i, (x(n)j )n∈Ii converges in Xj . We proceed by induction. We
let I0 = N for the base case. For the induction step, we assume that Ii is
defined. By compactness of Xi+1, there exists Ii+1 ⊆ Ii such that (x

(n)
i )n∈Ii+1

converges. The induction hypothesis holds by construction because (x(n))n∈Ii+1

is a subsequence of (x(n))n∈Ii .
We now construct a convergent subsequence of (x(n))n∈N. Let n0 = min I1

and, for all i > 0, let ni be the least element of Ii+1 strictly greater than ni−1.
It is easy to check that (x(ni))i∈N converges via Lemma A.2.

A.2 Reachability in Markov chains and Markov deci-
sion processes

In this section, we recall properties of reachability objectives in Markov chains
and Markov decision processes. We first describe a linear system characterising
reachability probabilities in Markov chains. We use such linear systems in
Chapters 18 and 19 to analyse memoryless strategies of MDPs induced by
one-counter MDPs. We then describe a value iteration scheme to approximate
the maximum reachability probabilities in MDPs. We use this scheme in
Chapter 17.3.2 to analyse an example. We refer a reader to [BK08, Chap. 10]
for details regarding the contents of this section.

A.2.1 Probabilities in Markov chains

Let C = (S, δ) be a finite Markov chain and let T ⊆ S be a set of targets.
The probabilities (Ps(Reach(T )))s∈S are the least solution of a system of linear
equations. We recall this system.
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Theorem A.4. Assume that C is finite. Let {S=0, S=1, S?} be a partition of
S such that S=0 ⊆ {s ∈ S | Ps(Reach(T )) = 0} and T ⊆ S=1 ⊆ {s ∈ S |
Ps(Reach(T )) = 1}. We consider the system defined by xs = 0 for all s ∈ S=0,
xs = 1 for all s ∈ S=1 and xs =

∑
s′∈S δ(s)(s′) · xs′ for all s ∈ S?. The least

non-negative solution of this system is obtained by letting xs = Ps(Reach(T ))

for all s ∈ S. Furthermore, this system has a unique solution when S=0 = {s ∈
S | Ps(Reach(T )) = 0}.

In the previous statement, the set {s ∈ S | Ps(Reach(T )) = 0} only depends
on the topology of the Markov chain, i.e., which states are connected by a
transition. The transition probabilities do not matter: a state is in this set if
and only if there are no histories starting in this state and ending in T .

A.2.2 Optimal probabilities in Markov decision processes

We now letM = (S,A, δ) be a finite MDP and let T ⊆ S. The maximum reach-
ability probability vector (maxσ∈Σ(M) Pσ

s (Reach(T )))s∈S can be approximated
by computing, for each state, the maximum probability of reaching T in no
more than k ∈ N steps for increasing values of k. This maximum step-bounded
reachability probability can be computed through an inductive technique called
value iteration.

We introduce some notation for step-bounded reachability objectives. For
all k ∈ N, we let Reach≤k(T ) = {s0a0s1 . . . ∈ Plays(M) | ∃ ℓ ≤ k, sℓ ∈ T}
denote the set of plays in Reach(T ) such that T is reached in no more than k

transitions.

Theorem A.5. Assume that M is finite and let T ⊆ S. For all k ∈ N, let
v(k) = (v

(k)
s )s∈S = (maxσ∈Σ(M) Pσ

s (Reach
≤k(T )))s∈S. For all s ∈ T and k ∈ N,

v
(k)
s = 1 and for all s ∈ S \ T , v(0)s = 0 and, for all k ∈ N,

v(k+1)
s = max

a∈A(s)

∑
t∈S

δ(s, a)(t) · v(k)t . (A.1)

To play optimally with respect to a step-bounded reachability objective, it is
necessary and sufficient to choose an action in the argument of the maximum
in Equation (A.1) in s when k + 1 steps remain.
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A.3 Convex hulls of compact sets

We provide a proof of Lemma 2.2, which states that the convex hull of a compact
subset of Rd is itself compact.

Lemma 2.2. Let d ∈ N>0. Let D ⊆ Rd. If D is compact, then conv(D) is also
compact.

Proof. Assume that D is compact. We assume that D is non-empty, as otherwise
the result is direct.

We first show that conv(D) is bounded. Let q ∈ conv(D). Let α1, . . . ,
αn be convex combination coefficients and let p1, . . . , pn ∈ D such that
q =

∑n
m=1 αmpm. By triangulation, we obtain that ∥q∥2 ≤

∑n
m=1 αm∥pm∥2 ≤

sup{∥p∥2 | p ∈ D} ∈ R, where the second inequality is a consequence of∑n
m=1 αm = 1. It follows that conv(D) is bounded.
We now show that conv(D) is closed. Let q ∈ Rd such that there exists a

sequence (q(n))n∈N ⊆ conv(D) such that limn→∞ q(n) = q. By Carathéodory’s
theorem for convex hulls (Theorem 2.1), all elements of the sequence (q(n))n∈N

are a convex combination of no more than d + 1 elements of D. For all
n ∈ N, let α

(n)
1 , . . . , α(n)

d+1 be convex combination coefficients and let p
(n)
1 , . . . ,

p
(n)
d+1 such that q(n) =

∑d+1
j=1 α

(n)
j p

(n)
j . By compactness of [0, 1] and D, we

obtain an increasing sequence of natural numbers (nm)m∈N, convex combination
coefficients α1, . . . , αd+1 and p1, . . . , pd+1 ∈ D such that for all 1 ≤ j ≤ d+ 1,
limm→∞ α

(nm)
j = αj and limm→∞ p

(nm)
j = pj . It follows (from the uniqueness

of the limit) that q =
∑d+1

j=1 αjpj . This shows that q ∈ conv(D) and ends the
proof that conv(D) is closed.

A.4 Details regarding the topology over plays

Let n ∈ N>0 and A = (S, (A(i))i∈J1,nK, δ) be an N-player arena. In this section,
we present proofs of Lemma 2.9, which states that the set of history cylinders
is a base of the topology of Plays(A) and Lemma 2.10, which implies that
Plays(A) is compact whenever A is finite. We start with Lemma 2.9.
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Lemma 2.9. The set {Cyl (h) | h ∈ Hist(A)} of history cylinders is a base of
the topology of Plays(A).

Proof. It suffices to show that any intersection of a (general) cylinder of (SĀ)ω

and Plays(M) can be written as a union of cylinders of histories.
Let U =

(∏r
ℓ=1 U

(ℓ)
S × U

(ℓ)

Ā

)
×U (r+1)

S ×(ĀS)ω be a cylinder of (SĀ)ω, where

U
(1)
S , . . . , U (r+1)

S are (open) subsets of S and U
(1)

Ā
, . . . , U (r)

Ā
are (open) subsets of

Ā (all cylinders of (SĀ)ω can be written this way). We obtain that U ∩Plays(A)
is given by

Cyl

(
Hist(A) ∩

(
r∏

ℓ=1

U
(ℓ)
S × U

(ℓ)

Ā

)
× U

(r+1)
S

)
,

which shows that U ∩ Plays(A) is a union of history cylinders.

We now prove Lemma 2.10.

Lemma 2.10. The set Plays(A) is a closed subset of (SĀ)ω. In particular,
Plays(A) is a compact space whenever A is finite.

Proof. The first part of the statement implies the second, because all closed
subsets of compact spaces are themselves compact [Mun97, Chap. 3, Thm. 5.2].

For all w ∈ (SĀ)∗, the set of continuations of w in (SĀ)ω is an open set (it
is a cylinder). Furthermore, any u ∈ (SĀ)ω \Plays(A) has a prefix wu ∈ (SĀ)∗S

that is not a history. We obtain that, for all u ∈ (SĀ)ω \ Plays(A), the set of
continuations of wu does not intersect Plays(A). Therefore, (SĀ)ω \ Plays(A)
can be written as the union of the sets of continuations of each wu, thus is an
open set. We have shown that Plays(A) is closed.

A.5 Distributions and mixed strategies

In this section, we prove two results. First, we prove Lemma 2.16, which
states that the function mapping pure strategy profiles to the probability of a
measurable set of plays is measurable. Second, we prove Lemma 2.17, which
states that the probability of a measurable set of plays under a mixed strategy
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profile can be written as an integral over the probability of this set under pure
strategies profiles.

Lemma 2.16. Let Ω ⊆ Plays(A) be measurable and let s ∈ S. The function
PΩ :

∏n
i=1Σ

i
pure(A)→ [0, 1] : σ → Pσ

s (Ω) is measurable.

Proof. We prove the above property in three steps. We first establish it directly
for history cylinders. We extend the result to open subsets Ω of Plays(A)
showing that PΩ can be written as a sum or series of the form

∑
h∈H PCyl(h) for

a countable set of histories H. Finally, we generalise to all measurable sets by
induction on the Borel hierarchy (described below), by writing the function as
a pointwise limit of measurable functions.

Let h ∈ Hist(A) and let Ω = Cyl (h). We assume that s = first(h), as
otherwise PΩ is the constant zero function and the result is direct. By definition
of probability measures over plays for pure strategies, there exists a constant θ

such that, for all strategies profiles σ ∈
∏n

i=1Σ
i
pure(A) such that h is consistent

(resp. inconsistent) with σ, we have PΩ(σ) = θ (resp. PΩ(σ) = 0). For each
i ∈ J1, nK, the set of pure strategies of Pi with which h is consistent is a generator
of FΣi

pure(A). It follows that PΩ is a linear combination of two indicators of
measurable sets, and is therefore measurable.

We now assume that Ω is an open subset of Plays(A). By Lemma 2.9, we
can write Ω as a countable union of histories, i.e., Ω = Cyl (H) for a countable
set of histories H. We assume that the cylinders of histories in H are pairwise
disjoint, as two cylinder sets have a non-empty intersection if and only if one is
included in the other. It follows that PΩ =

∑
h∈H PCyl(h) (by sigma-additivity

of Pσ
s for all pure strategy profiles σ. This shows that PΩ is the pointwise limit

of a sequence of measurable functions and is thus measurable.
We now introduce the Borel hierarchy to handle general Borel sets. We refer

the reader to [Kec95] for an extended exposition. Borel subsets of a metrisable
topological space can be arranged in a hierarchy. Let ω1 be the first uncountable
ordinal. For Plays(A), this hierarchy is as follows. We let Σ0

1 be the open subsets
of Plays(A). For each ordinal 1 ≤ ξ < ω1, we let Π0

ξ = {Plays(A) \ U | U ∈ Σ0
ξ}
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be the complements of the sets in Σ0
ξ , and if ξ > 1, we let

Σ0
ξ =

{⋃
ℓ∈N

Uℓ | Uℓ ∈ Πξℓ , ξℓ < ξ, ℓ ∈ N

}

be the set of countable unions of sets in
⋃

ξ′<ξ Π
0
ξ′ . Every Borel set is in one of

the sets Σ0
ξ for some ξ < ω1 and for all 1 < ξ′ ≤ ξ < ω1, we have Σ0

ξ′ ⊆ Σ0
ξ and

Π0
ξ′ ⊆ Π0

ξ .
In the previous point, we have shown that PΩ is measurable if Ω ∈ Σ0

1. This
is our base case. For all ordinals 1 ≤ ξ < ω1, by showing that PΩ is measurable
for all Ω ∈ Σ0

ξ , we obtain that PΩ = 1−PPlays(A)\Ω is measurable for all Ω ∈ Π0
ξ .

Let 1 < ξ < ω1. We assume by induction that for all 1 ≤ ξ′ < ξ and for
all Ω ∈ Π0

ξ′ , PΩ is measurable. Let Ω ∈ Π0
ξ . We show that PΩ is measurable.

Let (Ωℓ)ℓ∈N be a sequence of elements of
⋃

ξ′<ξ Π
0
ξ′ such that Ω =

⋃
ℓ∈NΩℓ.

We let Ω≤ℓ =
⋃

ℓ′≤ℓΩℓ′ . Since the sequence of sets (Ω≤ℓ)ℓ∈N increases to Ω, it
follows from the continuity of probability measures that PΩ is the pointwise
limit of (PΩ≤ℓ

)ℓ∈N. Thus, to conclude, it remains to show that for all ℓ ∈ N,
Ω≤ℓ ∈

⋃
ξ′<ξ Π

0
ξ′ to conclude with the induction hypothesis. This property

follows from the fact that for each ξ′ < ξ, Π0
ξ′ is stable by finite unions [Kec95,

Prop. 22.1]. We have shown that PΩ is measurable, which ends the inductive
argument and the overall proof.

Lemma 2.17. Let µ = (µi)i∈J1,nK be a mixed strategy profile and sinit ∈ S be
an initial state. Let µ1 × · · · × µn denote the (unique) product measure over∏n

i=1Σ
i
pure(A) obtained from µ1, · · · , µn. For all measurable Ω ⊆ Plays(A), we

have

Pµ
A,sinit

(Ω) =

∫
σ∈

∏n
i=1 Σ

i
pure(A)

Pσ
A,sinit

(Ω)d(µ1 × · · · × µn)(σ).

Proof. Let ν ∈ D(Plays(A),FA) be such that for all measurable Ω ⊆ Plays(A),

ν(Ω) =

∫
σ∈

∏n
i=1 Σ

i
pure(A)

Pσ
A,sinit

(Ω)d(µ1 × · · · × µn)(σ).

The above integral is well-defined: we integrate a non-negative measurable
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function (see Lemma 2.16). It is easily checked that ν is a well-defined element
of D(Plays(A),FA) (σ-additivity follows from linearity of the Lebesgue integral
together with the monotone convergence theorem).

It suffices to show that Pµ
sinit(Ω) agree over cylinders of histories starting

in sinit to end the proof. Let h ∈ Hist(A, sinit). For any pure strategy profile
σ = (σi)i∈J1,nK, it follows from the definition of Pσ

sinit
(Cyl (h)) that

Pσ
sinit

(Cyl (h)) =
n∏

i=1

1Σi
h
(σi) ·

r−1∏
ℓ=0

δ(sℓ, āℓ)(sℓ+1),

where, for all i ∈ J1, nK, Σi
h is the set of pure strategies of Pi that is consistent

with h. We obtain that ν(Cyl (h)) = Pµ
sinit(Cyl (h)) by injecting the above in the

definition of ν and applying Fubini’s theorem.

A.6 Distributions over memory states of Mealy ma-
chines

The goal of this section is to prove Equation (2.1), which describes how the
distribution over memory states of a Mealy machine changes from one step of
a play to the next. To lighten notation, we only consider the two-player case.
The argument is analogous if there are more than two players. We thus assume
that A is a two-player arena, i.e., A = (S,A(1), A(2), δ), for the remainder of
the section.

We establish Equation (2.1) for a Mealy machine of P1. We fix a Mealy
machine M = (M,µinit, nxtM, upM) of P1 for the remainder of the section. We
must first formalise what we mean by the distribution over M after w ∈ (SĀ)∗

occurs. We do this via the Markov chain over Hist(A)×M obtained when P1
plays according to M and P2 plays according to a strategy σ2 from an initial
state sinit. We then prove Equation (2.1) by analysing this same Markov chain.

A.6.1 Induced Markov chain

We fix a strategy σ2 of P2 and sinit ∈ S an initial state. We describe the
Markov chain induced by playing M and σ2 from sinit in A. The state space
of this Markov chain is Hist(A) ×M . Transitions connect pairs of the form
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(h,m) ∈ Hist(A)×M to pairs of the form (hās,m′); such a transition occurs
with probability

δ(last(h), ā)(s) · upM(m, last(h), ā)(m′)·
nxtM(m, last(h))(a(1)) · σ2(h)(a(2)).

A play of this Markov chain from (sinit,m) is of the form

(s0,m0)(s0ā0s1,m1)(s0ā0s1ā1s2,m2) . . .

and, therefore, we view it as a pair (π,m) ∈ Plays(A)×Mω where π = s0ā0s1 . . .

and m = m0m1 . . .. We write P for the probability over Plays(A) × Mω

induced by the above Markov chain with respect to the initial distribution
νinit ∈ D(Hist(A)×M) defined by νinit(sinit,m) = µinit(m) for all m ∈M (and
0 elsewhere).1

We now introduce some random variables over Plays(A) ×Mω to use in
our derivation of Equation (2.1). Let (π,m) = (s0ā0s1 . . . ,m0m1 . . .). We
use the following random variables. For all ℓ ∈ N, we let Sℓ((π,m)) = sℓ,
Āℓ((π,m)) = āℓ, Mℓ((π,m)) = mℓ. We let A

(1)
ℓ and A

(2)
ℓ be the random

variables such that Āℓ = (A
(1)
ℓ , A

(2)
ℓ ). We write Wℓ for the random variable

describing the sequence Wℓ = S0Ā0S1Ā1 . . . Sℓ−1Āℓ−1 which is the sequence
read by M prior to step ℓ. Similarly, we write Hℓ for the random variable
Hℓ = WℓSℓ that describes the history at step ℓ.

Next, we introduce some convenient notation. Let B denote a set. For any
random variable X : Plays(A) ×Mω → B and b ∈ B, we write {X = b} for
X−1({b}) and omit the braces when evaluating P over such sets, e.g., we write
P(X = b) for P({X = b}).

We now list three properties of the above random variables that are useful
to formally derive Equation (2.1). First, we note that memory updates and
state updates are independent. In particular, we have the following.

Claim A.6. Let h = s0ā0 . . . āℓ−1sℓ ∈ Hist(A) such that P(Hℓ = h) > 0. For

1Given a Markov chain C′ = (S′, δ′), the distribution over plays of C′ following an initial
distribution νinit ∈ D(S′) is defined by PC′,νinit(Ω) =

∑
s∈S′ νinit(s) ·PC′,s(Ω) for all measurable

Ω ⊆ Plays(C′).
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all m ∈M , we have

P(Mℓ = m | Hℓ = h) = P(Mℓ = m |Wℓ = w),

where w denotes s0ā0 . . . sℓ−1āℓ−1.

Proof. By definition of a conditional probability, it suffices to show that for all
m ∈M ,

P(Mℓ = m ∧Hℓ = h) = P(Mℓ = m ∧Wℓ = w) · δ(sℓ−1, āℓ−1)(sℓ) (A.2)

and that
P(Hℓ = h) = P(Wℓ = w) · δ(sℓ−1, āℓ−1)(sℓ).

We remark that the second equation can be obtained from Equation (A.2)
by summing over all m ∈ M . Therefore, we focus on Equation (A.2) for
the remainder of the proof. The result follows directly from the definition of
probabilities in Markov chains.

We let mℓ ∈M . Let s⋆ ∈ S and hs⋆ = ws. We note that, hsℓ = h. We can
write P(Mℓ = mℓ ∧Hℓ = hs⋆) as the sum

∑
(m0,...,mℓ−1)∈Mℓ

P

 ∧
j∈JℓK

Mj = mj ∧Hℓ = hs⋆

 .

The sets described in the summed probabilities are cylinder sets of our Markov
chain over Hist(A) ×M . Therefore, we can rewrite P(Mℓ = mℓ ∧ Hℓ = hs⋆)

as the following sum of products, by definition of distributions over plays of
Markov chains:∑

(m0,...,mℓ−1)∈Mℓ

(
P
( ∧

j∈Jℓ−1K

Mj = mj ∧Hℓ−1 = h≤ℓ−1

)
·

nxtM(m, sℓ−1)(a
(1)
ℓ−1) · σ2(h≤ℓ−1)(a

(2)
ℓ−1)·

δ(sℓ−1, āℓ−1)(s⋆) · upM(mℓ−1, sℓ−1, āℓ−1)(m
′)

)
.

The term δ(sℓ−1, āℓ−1)(s⋆) can be factorised in front of the above sum. Equa-
tion (A.2) follows from the above equation and from the equality P(Mℓ =

mℓ ∧Wℓ = w) =
∑

s⋆∈S P(Mℓ = mℓ ∧Hℓ = hs⋆).
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Second, we have the following fact regarding memory updates.

Claim A.7. Let w = s0ā0 . . . sℓāℓ be a history prefix and m′ ∈ M such that
P(Wℓ = w ∧Mℓ = m′) > 0. Then, for all m ∈M ,

P(Mℓ+1 = m |Wℓ+1 = w ∧Mℓ = m′) = upM(m′, sℓ, āℓ)(m).

Proof. Let m ∈M . We directly compute the above conditional probability to
obtain the result. We first study P(Mℓ+1 = m∧Wℓ+1 = w∧Mℓ = m′). We can
write this probability as follows:

∑
(m0,...,mℓ−1)∈Mℓ

∑
s∈S

P

 ∧
j∈Jℓ+1K

Mj = mj ∧Hℓ+1 = ws

 ,

where mℓ = m′ and mℓ+1 = m. Fix (m0, . . . ,mℓ−1) ∈ M ℓ and s ∈ S. Let
h′ = s0ā0 . . . sℓ be the prefix of w obtained by removing its last action profile.
By definition of P, we obtain that

P

 ∧
j∈Jℓ+1K

Mj = mj ∧Hℓ+1 = ws


= P

 ∧
j∈JℓK

Mj = mj ∧Hℓ = h′

 · nxtM(m′, sℓ)(a
(1)
ℓ ) · σ2(h′)(a(2)ℓ )·

δ(sℓ, āℓ)(s) · upM(m′, sℓ, ā)(m).

The factor upM(m′, sℓ, ā)(m) in this last equation does not depend on
(m0, . . . ,mℓ−1) nor on s. It thus follows (from all of the above) that P(Mℓ+1 =

m ∧Wℓ+1 = w ∧Mℓ = m′) can be factorised as an expression of the form
upM(m′, sℓ, ā)(m) · P (m′, w) for some function P that only depends on m′ and
w, not on m.

Because the argument above can be adapted by replacing m by any m′′ ∈M ,
we obtain that P(Wℓ+1 = w ∧Mℓ = m′) can be written as the sum∑

m′′∈M
upM(m′, sℓ, ā)(m

′′) · P (m′, w) = P (m′, w).

This yields the desired result.
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Finally, we observe the following equality regarding action choices of the
two players.

Claim A.8. Let h = s0ā0 . . . sℓ ∈ Hist(A) and m ∈ M such that P(Hℓ =

h ∧Mℓ = m) > 0. For all action profiles ā = (a(1), a(2)) ∈ Ā(last(h)),

P(Āℓ = ā | Hℓ = h ∧Mℓ = m) = nxtM(m, last(h))(a(1)) · σ2(h)(a(2)).

Proof. We can rewrite P(Āℓ = ā | Hℓ = h ∧Mℓ = m) as the sum∑
s∈S

∑
m′∈M

P(Āℓ = ā ∧ Sℓ+1 = s ∧Mℓ+1 = m′ | Hℓ = h ∧Mℓ = m).

By definition of the transitions in our Markov chain, we can rewrite this sum as

∑
s∈S

∑
m′∈M

(
nxtM(m, sℓ)(a

(1)) · σ2(h)(a(2))·

δ(sℓ, ā)(s) · upM(m, sℓ, ā)(m
′)

)
.

By rearranging this sum and recalling that δ(sℓ, ā) and upM(m, sℓ, ā) are distri-
butions, we obtain the claim.

A.6.2 Establishing Equation (2.1)

For any m ∈ M and w = s0ā1s1 . . . sℓ−1āℓ−1 ∈ (SĀ)∗, the probability µw(m)

over memory states after w occurs when P1 follows M is formalised by the
conditional probability P(Mℓ = m | Wℓ = w). This formulation suggests
that this probability depends on σ2. However, a by-product of the inductive
relationship expressed by Equation (2.1) (recalled in Equation (A.3) below), is
that it does not depend on σ2. We now prove Equation (2.1).

Lemma A.9. Let w′ = s0ā0s1ā1 . . . sℓ−1āℓ−1 and w = w′sℓāℓ ∈ (SĀ)∗ such
that P(Wℓ+1 = w) > 0. For any m ∈ M , let µw′(m) = P(Mℓ = m | Wℓ = w′)
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and µw(m) = P(Mℓ+1 = m |Wℓ+1 = w). For all m ∈M , we have:

µw(m) =

∑
m′∈M µw′(m′) · upM(m′, sℓ, āℓ)(m) · nxtM(m′, sℓ)(a

(i)
ℓ )∑

m′∈M µw′(m′) · nxtM(m′, sℓ)(a
(i)
ℓ )

. (A.3)

In particular, µw is independent of σ2.

Proof. We fix m ∈M for the whole proof.
It follows from the law of total probability (formulated for conditional

probabilities) that

µw(m) = P(Mℓ+1 = m |Wℓ+1 = w)

=
∑

m′∈M
P(Mℓ+1 = m |Wℓ+1 = w ∧Mℓ = m′) · P(Mℓ = m′ |Wℓ+1 = w)

Therefore, Claim A.7 implies that

µw(m) =
∑

m′∈M
upM(m′, sℓ, āℓ)(m) · P(Mℓ = m′ |Wℓ+1 = w). (A.4)

We note that, for any m′ ∈ M , the probability P(Mℓ = m′ | Wℓ+1 = w)

is not µw′(m′) = P(Mℓ = m′ | Wℓ = w′). Using Bayes’ theorem, we obtain a
relation between P(Mk = m′ |Wk+1 = w) and µw′(m′). We let h′ = w′sℓ, i.e.,
h′ is the history obtained by removing the last action pair of w. We note that
{Wℓ+1 = w} and {Hℓ = h′} ∩ {Āℓ = āℓ} both denote the same set. We obtain
the following chain of equations:

P(Mℓ = m′ |Wℓ+1 = w)

= P(Mℓ = m′ ∧Hℓ = h′ |Wℓ+1 = w)

=
P(Wℓ+1 = w |Mℓ = m′ ∧Hℓ = h′) · P(Mℓ = m′ ∧Hℓ = h′)

P(Wℓ+1 = w)

=
P(Āℓ = āℓ |Mℓ = m′ ∧Hℓ = h′) · P(Mℓ = m′ | Hℓ = h′)

P(Āℓ = āℓ | Hℓ = h′)
.

The first equality is a consequence of Wℓ+1 = w implying Hℓ = h′. Bayes’
theorem is used between lines two and three. To go from the third to the fourth
line, both the numerator and denominator of the fraction have been multiplied
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by P(Hℓ = h′) and the definition of conditional probabilities has been used to
rewrite the denominator and the rightmost factor of the numerator.

We now analyse the three terms of the fraction above. First, by Claim A.6,
we have P(Mℓ = m′ | Hℓ = h′) = P(Mℓ = m′ |Wℓ = w′) = µw′(m′). Second, it
follows from Claim A.8 that

P(Āℓ = āℓ |Mℓ = m′ ∧Hℓ = h′) = nxtM(m′, sℓ)(a
(1)) · σ2(h′)(a(2)).

We now rewrite P(Āℓ = āℓ | Hℓ = h′) as∑
m′′∈M

P(Mℓ=m′′|Hℓ=h′)>0

P(Āℓ = āℓ |Mℓ = m′′ ∧Hℓ = h′) · P(Mℓ = m′′ | Hℓ = h′)

By Claim A.8, this is equal to

σ2(h
′)(a

(2)
ℓ ) ·

∑
m′′∈M

nxtM(m′′, sℓ)(a
(1)
ℓ ) · µw′(m′′).

By injecting all of the above in Equation (A.4), we directly obtain Equa-
tion (A.3) (note that any term appearing in a denominator is non-zero by the
assumption P(Wℓ+1 = w) > 0).

A.7 Pure Nash equilibria in deterministic arenas

Let n ∈ N>0 and A = (S, (A(i))i∈J1,nK, δ) be a deterministic n-player arena. We
provide a proof of Lemma 2.41, which states that in a multi-player game on A,
a player has a profitable deviation from an initial state with respect to a pure
strategy profile if and only if they have a pure profitable deviation.

Lemma 2.41. Assume that A is deterministic and that, for all i ∈ J1, nK, fi is
a cost function. Let sinit ∈ S and σ = (σi)i∈J1,nK be a pure strategy profile. Let
i ∈ J1, nK and write σ = (σi, σ−i). The following statements are equivalent:

(i) Pi has a profitable deviation with respect to σ from sinit;

(ii) there exists a play π from sinit consistent with σ−i such that fi(π) <

fi(OutA(σ, sinit)).
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(iii) Pi has a pure profitable deviation with respect to σ from sinit;

In particular, σ is an NE from sinit if and only if no player has a pure profitable
deviation.

Proof. We observe that (iii) implies (i). It suffices to show that (i) implies (ii)
and that (ii) implies (iii) to prove the lemma.

We first assume that there exists a profitable deviation τi of Pi. By definition,
we have that Eτi,σ−i

sinit (fi) < fi(OutA(σ, sinit)). It follows (from the compatibility
of the Lebesgue integral with the order) that the set of plays {π ∈ Plays(A) |
fi(π) < fi(OutA(σ, sinit))} has positive Pτi,σ−i

sinit probability. Since the set of plays
that do not start in sinit or that are inconsistent with σ−i have zero Pτi,σ−i

sinit -
probability (see Remark 2.13), it follows that there exists a play π starting in
sinit that is consistent with σ−i such that fi(π) < fi(OutA(σ, sinit)). This proves
that (i) implies (ii).

We now prove that (ii) implies (iii). Let π = s0ā0s1ā1 . . . be a play from sinit

consistent with σ−i such that fi(π) < fi(OutA(σ, sinit)). We let τi : Hist(A)→ Ā

be a pure strategy such that τi(π≤ℓ) = a
(i)
ℓ for all ℓ ∈ N. We obtain that (τi, σ−i)

is a pure strategy profile and it is each to check that OutA((τi, σ−i), sinit) = π.
By our assumption on π, we conclude that τi is a profitable deviation of Pi with
respect to σ from sinit. This ends the proof.

A.8 Downward closures of compact sets

We prove that the downward closure of a closed set of R̄d is a compact subset
of R̄d. The main tool used in the following proof is sequential compactness.

Lemma A.10. Let D ⊆ R̄d be closed (i.e., compact) with respect to the topol-
ogy of R̄d. Then down(D) is compact with respect to the topology of R̄d and
down(D) ∩ Rd is closed with respect to the topology of Rd.

Proof. Recall that R̄d is a compact metrisable space. Thus, it suffices to show
that down(D) is closed with respect to the topology of R̄d to end the proof.

Let q ∈ Rd and (qn)n∈N a sequence of elements of down(D) such that
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qn → q when n→∞. We must show that q ∈ down(D). The idea of the proof
is to bound q from above by a vector that is the limit of some sequence of
elements of D.

For all n ∈ N, we let pn ∈ D such that pn ≥ qn. By (sequential) compactness
of D, (pn)n∈N has a convergent subsequence. Let p ∈ D denote the limit of one
such subsequence. It follows that q ≤ p. This shows that q ∈ down(D), and
thus down(D) is a closed subset of R̄d. Since the topology of Rd can be seen as
the topology induced on Rd by that of R̄d, it follows that down(D) ∩ Rd is a
closed subset of Rd.

Remark A.11 (Assumption of Lemma A.10). The subsets of Rd that are closed
with respect to the topology of R̄d are the compact subsets of Rd. Therefore,
the assumption of Lemma A.10 does not apply to all closed subsets of Rd.

We present a closed subset of R2 the downward-closure of which is not a
closed subset of R2. We consider D = {(− 1

n , n) | n ∈ N0}. To see that D is
R2-closed, consider a convergent sequence of elements of D. As it is a Cauchy
sequence, from some point on, all subsequent elements of the sequence are at
a distance of at most 1

2 from one another. Because the distance between two
different elements of D is at least 1, it follows the sequence that is considered
is ultimately constant, thus its limit lies in D. This shows that D is R2-closed.

We now argue that down(D) and down(D) ∩ R2 are not closed: (0, 0) is in
the closure of these sets, but not in them. To show that (0, 0) ∈ cl(down(D)), we
observe that the sequence ((− 1

n , 0))n∈N0 is a sequence of elements of down(D)

that converges to (0, 0). On the other hand, we see that for all n ∈ N0,
(0, 0) ≤ (− 1

n , n) does not hold, i.e., (0, 0) /∈ down(D). ◁

A.9 Examples of continuous payoffs

We present examples of continuous payoffs in this section. First, we show that (a
generalisation of) the discounted-sum payoff is continuous. Second, we show that
the shortest-path payoff is continuous whenever the considered weight function
bounded from below by a positive constant. Finally, we provide characterisations
in finite arenas of objectives whose indicator is continuous, and of prefix-
independent payoffs that are continuous. We fix an arenaA = (S, (A(i))i∈J1,nK, δ)
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for the remainder of the section.

A.9.1 Discounted-sum payoff

In the main text, we defined the discounted-sum payoff with a fixed discount
factor. Certain authors study a variant of this payoff where the discount factor
changes at each step of the play depending on the current state. We define
a generalisation of such discounted-sum payoffs in which both the discount
factor and the weights depend not only on the current state-action pair, but on
the history and current action at each step. We provide sufficient conditions
ensuring that this generalisation is well-defined and continuous.

We consider a history-dependent weight function w : (SĀ)+ → R and a
history-dependent discount factor function λ : (SĀ)+ → [0, 1[. We assume that
w is no more than W ∈ R in absolute value and that λ is bounded away from
1, i.e., there exists λ⋆ ∈ [0, 1[ such that λ(u) ≤ λ⋆ for all u ∈ (SĀ)+. We define
the generalised discounted-sum payoff as the function GDSumλ

w defined, for all
π = s0ā0s1 . . . ∈ Plays(A), by

GDSumλ
w(π) =

∞∑
r=0

(
r−1∏
ℓ=0

λ(s0ā0 . . . sℓāℓ)

)
w(s0ā0 . . . srār).

This function is well-defined for all plays: the defining series is absolutely
convergent by the assumptions on w and λ. We now prove that GDSumλ

w is
continuous.

Lemma A.12. Let w : (SĀ)+ → R be a history-dependent weight function such
that w is no more than W ∈ R in absolute value and λ : (SĀ)+ → [0, 1[ be a
history-dependent discount factor function such that there exists λ⋆ ∈ [0, 1[ such
that λ(u) ≤ λ⋆ for all u ∈ (SĀ)+. Then GDSumλ

w is a continuous payoff.

Proof. Let π = s0ā1s1 . . . ∈ Plays(A) and ε > 0. Let ℓ ∈ N such that 2·W ·λℓ
⋆

1−λ⋆
< ε

(whose existence is guaranteed by λ⋆ ∈ [0, 1[). Let π′ = t0b̄0t0 . . . ∈ Cyl (π≤ℓ).
For all r ∈ N, let ur = s0ā0 . . . srār and u′r = t0b̄0 . . . tr b̄r. By definition of
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GDSumλ
w, we obtain that∣∣GDSumλ

w(π)− GDSumλ
w(π

′)
∣∣

=

∣∣∣∣∣
∞∑
r=ℓ

((
r−1∏
n=0

λ(un)

)
w(ur)−

(
r−1∏
n=0

λ(u′n)

)
w(u′r)

)∣∣∣∣∣
≤ 2 ·

∞∑
r=ℓ

λr
⋆ ·W

=
2 ·W · λℓ

⋆

1− λ⋆

< ε.

We have shown that GDSumλ
w is continuous in π.

A.9.2 Shortest-path payoff

We consider a weight function w : S × Ā → R and a target T ⊆ S. The
shortest-path payoff SPathTw is continuous over Reach(T ), since the payoff of a
play depends only on its prefix prior to the first visit to T . However, without
imposing any conditions on w, the shortest-path payoff SPathTw is not necessarily
continuous everywhere.

Example A.1. Consider a two-state MDP M = ({s, t}, {a}, δ) (in fact, M
is a Markov chain) such that δ(s, a) is the uniform distribution on {s, t} and
δ(t, a)(t) = 1. Let w be a the constant zero weight function and consider the
target T = {t}. The payoff SPathTw is not continuous at π = (sa)ω. Indeed, for
all ℓ ∈ N, the play π′ = (sa)ℓ+1(ta)ω is such that π≤ℓ = π′

≤ℓ and SPathTw(π
′) = 0.

Therefore, for SPathTw to be continuous, 0 would have to be in all neighbourhoods
of SPathTw(π) = +∞, which is not the case.

The same example can be used to show that 1Reach(T ) is not continuous in
general. ◁

The problem occurring in the previous example is that there is a play with
an infinite payoff that can be approached (in the sense of convergence) by plays
that have a bounded payoff. A sufficient condition to avoid this phenomenon is
to require that all weights are bounded from below by some positive constant;
in finite arenas, this is equivalent to assuming that all weights are positive.
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Under this condition, the payoff of a play is no less than the smallest weight
multiplied by the number of actions occurring before the first visit to T . We
show that this condition implies the continuity of SPathTw.

Lemma A.13. Let w : S × Ā→ R be a weight function and T ⊆ S be a target.
Assume that there exists η > 0 such that w(s, ā) ≥ η for all s ∈ S and all ā ∈ Ā.
Then SPathTw is continuous.

Proof. Let π = s0ā0s1 . . . ∈ Plays(A). First, assume that SPathTw(π) ∈ R, i.e.,
π ∈ Reach(T ). Let r ∈ N such that sr ∈ T . By definition of SPathTw, for all
π′ ∈ Cyl (π≤r), we have SPathTw(π) = SPathTw(π

′). This implies that SPathTw is
continuous in π.

Now, assume that SPathTw(π) = +∞. Let M ∈ R. Let r ∈ N such that
M ≤ r · η. We claim that for all π′ ∈ Cyl (π≤r), SPathTw(π

′) ≥ M . Let
π′ ∈ Cyl (π≤r). If π′ /∈ Reach(T ), the sought inequality is direct. We now
assume that π′ ∈ Reach(T ). Because no state of T occurs in π≤r and all weights
are non-negative, we obtain that

SPathTw(π
′) ≥

r∑
ℓ=0

w(sℓ, āℓ) ≥ r · η ≥M.

We have shown that SPathTw is continuous.

A.9.3 Objectives and indicators

We now characterise objectives that have a continuous indicator function in a
finite arena. Let Ω be an objective. The co-domain of an indicator function is
{0, 1}. This implies that 1Ω is continuous if and only if, for all plays π, there
exist ℓ ∈ N such that, for all plays π′ ∈ Cyl (π≤ℓ), we have π′ ∈ Ω if and only if
π ∈ Ω. Furthermore, if A is finite, it follows from uniform continuity that ℓ

can be chosen independently of the play in the previous statement. Therefore,
in finite arenas, 1Ω is continuous if and only if membership in Ω depends only
on a bounded prefix of plays. We show below that this is also equivalent to Ω

being both open and closed.
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Lemma A.14. Assume that A is finite. Let Ω be an objective. The three
following statements are equivalent:

(i) 1Ω is continuous;

(ii) there exists ℓ ∈ N such that for all π ∈ Plays(A), Cyl (π≤ℓ) is either
included in or disjoint from Ω;

(iii) Ω is open and closed, i.e., there exist finitely many histories h1, . . . , hn

such that Ω =
⋃n

m=1 Cyl (hm).

Proof. We show that (i) and (ii) are equivalent, then that (ii) and (iii) are
equivalent. In the interest of this proof being self-contained, we also show that
the two properties in (iii) are equivalent at the end of the proof.

We first prove that (i) and (ii) are equivalent. Since 1Ω is real-valued and A is
finite, the payoff 1Ω is uniformly continuous, i.e., for all ε > 0 there exists ℓ ∈ N
such that for all plays π, π′ ∈ Plays(A), if π≤ℓ = π′

≤ℓ, then |1Ω(π)−1Ω(π
′)| < ε.

It follows from the co-domain of 1Ω being {0, 1} that 1Ω is continuous if and only
if there exists ℓ ∈ N such that for all plays π, π′ ∈ Plays(A), if π′ ∈ Cyl (π≤ℓ),
then 1Ω(π) = 1Ω(π

′) (the non-trivial direction follows by choosing ε = 1
2), i.e.,

Cyl (π≤ℓ) is included in or disjoint from Ω. This establishes the equivalence
of (i) and (ii).

Next, we establish that (ii) and (iii) are equivalent. First, assume
that (ii) holds and let ℓ ∈ N be given by this property. We obtain that
Ω =

⋃
π∈Ω Cyl (π≤ℓ). There are finitely many histories of the form π≤ℓ

(π ∈ Plays(A)) because A is finite. This shows that (iii) holds. Conversely, as-
sume that (iii) holds and let h1, . . . , hn ∈ Hist(A) such that Ω =

⋃n
m=1 Cyl (hm).

Property (ii) follows by letting ℓ be the greatest number of states in the histories
h1, . . . , hn or zero if there are no histories.

For the sake of completeness, we close the proof by showing that the two
properties given in (iii) are equivalent. First, assume that Ω is open and closed.
A base of the topology of Plays(A) is the set of history cylinders (Lemma 2.9),
therefore Ω is a union of history cylinders. Since Plays(A) is compact and Ω is
closed, it follows that Ω is compact. We conclude that Ω can be written as a
finite union of cylinder sets by compactness.
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Conversely, assume that Ω =
⋃n

m=1 Cyl (hm) for some histories h1, . . . , hn.
It suffices to show that Cyl (h) is open and closed for all h ∈ Hist(A). Let
h = s0ā0 . . . ār−1sr ∈ Hist(A). By definition of the product topology, Cyl (h) is
open. To show that Cyl (h) is closed, we consider π ∈ cl(Cyl (h)) and show that
π ∈ Cyl (h). By definition of closure, the cylinder Cyl (π≤r) intersects Cyl (h),
i.e., there exists a play with the prefixes π≤r and h. It follows that π≤r = h, and
thus π ∈ Cyl (h). We have shown that Cyl (h) is both open and closed, ending
the proof.

A.9.4 Prefix-independent payoffs

Prefix-independent functions assign the same payoff to any two plays that share
a common suffix. Formally, a payoff f : Plays(A)→ R̄ is prefix-independent if
for any play π ∈ Plays(A) and any r ∈ N, f(π) = f(π≥r). The goal of this
section is to characterise prefix-independent payoffs in finite arenas. We thus
assume that A is finite for the remainder of the section.

We first introduce some notation. For any play π = s0ā0s1 . . . ∈ Plays(A),
we let inf(π) = {s ∈ S | ∀r ∈ N, ∃ ℓ ≥ r, sℓ = s} denote the set of states that
occur infinitely often in π.

Let f : Plays(A) → R̄ be a prefix-independent payoff. Assume that f is
continuous. We claim that the payoff of a play π is uniquely determined by
inf(π). Let π and π′ be two plays such that inf(π) = inf(π′). To prove that
f(π) = f(π′), it suffices to show that in all neighbourhoods of π, there is a play
whose payoff is f(π′). Indeed, this property together with the continuity of f
implies that f(π′) is in all neighbourhoods of f(π). By prefix-independence
of f , we need only establish that in all neighbourhoods of π, there is a play
that shares a common suffix with π′. Let ℓ ∈ N such that last(π≤ℓ) ∈ inf(π).
We construct a play π′′ in Cyl (π≤ℓ) such that f(π′′) = f(π) as follows. Since
inf(π) = inf(π′), there exists r ∈ N such that the first state of π′

≥r is last(π≤ℓ).
We thus define π′′ = π≤ℓ · π′

≥r. By prefix-independence of f , we obtain that
f(π′′) = f(π′

≥r) = f(π′). This shows that all neighbourhoods of π contain a
play whose payoff is f(π′) and this closes our argument.

This argument above can be adapted to establish a more general property
of continuous prefix-independent payoffs: for any two plays π and π′, if inf(π)
is reachable from inf(π′), then both plays have the same payoff. We show that
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this property characterises continuous prefix-independent payoffs.
To formalise our characterisation, we define the strongly connected compo-

nents (SCCs) of (the graph induced by) A. An SCC is a maximal set of states
C ⊆ S such that, for all s, t ∈ C there exists a history of A with at least one
action starting in s and ending in t. An SCC C is reachable from an SCC C ′ if
there exists a history starting in C ′ and ending in C.

We obtain the following characterisation. For the sake of conciseness, we
apply the convention 0 · (+∞) = 0 · (−∞) = 0 below.

Lemma A.15. Assume that A is finite. Let f be a prefix-independent payoff
function. Let C1, . . . , Ck be the SCCs of A. Then f is continuous if and only
if there exist constants α1, . . . , αk ∈ R̄ such that f =

∑k
i=1 αi · 1Büchi(Ci) and,

for all i, i′ ∈ J1, kK, αi = αi′ whenever Ci′ is reachable from Ci.

Proof. We first observe that the set of states visited infinitely often along a play
is a subset of an SCC. In other words, for all plays π ∈ Plays(A), there exists a
unique SCC C such that π ∈ Büchi(C); we say that π stabilises in C for short.

We first assume that f is continuous. Let π, π′ ∈ Plays(A). We show that if
π stabilises in an SCC C and π′ stabilises in an SCC C ′ such that C is reachable
from C ′, then f(π) = f(π′). Let r ∈ N such that π≥r starts in a state of C.
For all ℓ ∈ N, since C is reachable from C ′, there exists a play π(ℓ) ∈ Cyl

(
π′
≤ℓ

)
such that π≥r is a suffix of π(ℓ). By prefix-independence of f , for all ℓ ∈ N, we
have f(π(ℓ)) = f(π). Furthermore, all neighbourhoods of π′ contain at least one
play π(ℓ) by construction. It follows from the continuity of f that f(π) is in all
neighbourhoods of f(π′), i.e., f(π) = f(π′).

The previous argument implies that the payoff of a play depends only on the
SCC in which the play stabilises. For all 1 ≤ i ≤ k, let αi be the payoff of any
play that stabilises in Ci. From the above, we obtain that f =

∑k
i=1 αi ·1Büchi(Ci)

and that the coefficients αi satisfy the required conditions. This ends the proof
of the first implication.

We now let α1, . . . , αk ∈ R̄ such that f =
∑k

i=1 αi · 1Büchi(Ci) and, for all
i, i′ ∈ J1, kK, αi = αi′ whenever Ci′ is reachable from Ci. We show that f is
continuous. Let π ∈ Plays(A). It suffices to show that f is constant over a
neighbourhood of π. Let 1 ≤ i ≤ k such that π stabilises in Ci and let r ∈ N
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such that all states of π≥r are in Ci. Let π′ ∈ Cyl (π≥r). Then π′ stabilises in
an SCC that is reachable from Ci, thus f(π′) = αi = f(π). We have shown that
f is constant over Cyl (π≥r), ending the proof of the second implication.





Chapter B

Details of Section 14.1

In this section, we formally prove the statements made with respect to the
example presented in Chapter 14.1. We recall the MDP and its payoff set in
Figures B.1a and B.1b. Throughout this sectionM refers to the MDP depicted
in Figure B.1a and w denotes the two-dimensional weight function from the
illustration. Recall that we consider the two-dimensional payoff f̄ = (f1, f2)

given by the discounted-sum payoffs f1 = DSum
3/4
w1 and f2 = DSum

1/2
w2 .

First, we prove that the description of Paypures0 (f̄) given in Chapter 14.1 is
accurate. Second, we establish that all pure payoffs are extreme points and
that all of these points except (0, 2) are Pareto-optimal. Finally, we close the
section by proving that all payoffs of pure strategies can only be obtained by
playing without randomisation, and comment on the consequences in terms of
strategy complexity.

Throughout this section,M refers to the MDP of Figure 14.1a.

Determining the set of payoffs of pure strategies

We provide the computations necessary to obtain the description of Paypures0 (f̄) of
Chapter 14.1. The argument is based on the fact that there are no randomised
transitions in the MDP we consider. Therefore, the payoff of a pure strategy
from s0 is the payoff of a single play. In the following proof, we directly compute
the payoff of each play from s0.

429
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s0

s1

s2

s3

c (0, 1)

a (1, 1)

b

(2, 0)

b

(1, 0)

a

(0, 1)

a

(0, 1)

a

(1, 0)

(a) An MDP with deterministic transi-
tions. Pairs next to actions represent two-
dimensional weights.

E(f1)

E(f2)

1

1

(1, 2)

(b) The set of expected payoffs for the
MDP of Figure B.1a for the payoff f1 =

DSum3/4
w1

and f2 = DSum1/2
w2

.

Figure B.1: An MDP with a two-dimensional discounted-sum payoff f̄ such
that extr(Pays0(f̄)) is infinite.

Lemma B.1. We have

Paypures0 (f̄) = {(0, 2), (1, 2)} ∪
{(

1 +
3r

4r−1
, 2− 1

2r−1

)
| r ∈ N

}
.

Proof. There are no randomised transitions in M. For this reason, any pure
strategy induces a single play inM from any starting state. We compute the
payoff of all plays ofM from s0 to obtain the desired result.

We first consider the three plays s0c(s1a)
ω, s0a(s2a)ω and s0b(s3a)

ω that
never leave their second state once it is reached. By definition of discounted-sum
payoff functions, we have f̄(s0c(s1a)

ω) = (0,
∑∞

ℓ=0
1
2ℓ
) = (0, 2), f̄(s0a(s2a)ω) =

(1,
∑∞

ℓ=0
1
2ℓ
) = (1, 2) and f̄(s0b(s3a)

ω) = (1 +
∑∞

ℓ=0(
3
4)

ℓ, 0) = (5, 0) = (1 +
30

40−1 , 2− 1
20−1 ).

It remains to deal with the plays that move from s0 to s2 and then eventually
move to s3. It suffices to show that for all r ≥ 1, we have f̄(s0(as2)

rb(s3a)
ω) =

(1 + 3r

4r−1 , 2 − 1
2r−1 ). Let r ≥ 1. We obtain, by definition of discounted-sum

payoff functions, that

f1(s0(as2)
rb(s3a)

ω) = 1 +

∞∑
ℓ=r

3ℓ

4ℓ
= 1 +

3r

4r
·

∞∑
ℓ=0

3ℓ

4ℓ
= 1 +

3r

4r−1
,
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and

f2(s0(as2)
rb(s3a)

ω) =
r−1∑
ℓ=0

1

2ℓ
=

1− 1
2r

1− 1
2

= 2− 1

2r−1
.

This proves the required equality to end the proof.

Extreme points and Pareto-optimality

We now show that extr(Pays0(f̄)) = Paypures0 (f̄) in the context of this example
(this property does not hold in full generality). It follows from Pays0(f̄) =

conv(Paypures0 (f̄)) that all extreme points of Pays0(f̄) are the payoff of a pure
strategy. It remains to show that Paypures0 (f̄) ⊆ extr(Pays0(f̄)). We first observe
that (0, 2) ∈ extr(Pays0(f̄)) because it is with the least first component among all
elements of Paypures0 (f̄). The main difficulty lies with the elements of Paypures0 (f̄)\
{(0, 2)}.

We handle the remaining points with a two-part argument. First, we
show that any non-extreme element of the boundary of Pays0(f̄) is a convex
combination of two extreme points. This implies that all Pareto-optimal
elements of Pays0(f̄) are convex combinations of no more than two vectors.
Second, we prove that for all vectors q ∈ Paypures0 (f̄) \ {(0, 2)}, q is either
incomparable or strictly greater (with respect to the component-wise ordering)
to convex combinations of any two vectors of Pays0(f̄) \ {q}. We prove this by
reasoning on a strictly concave real function whose graph includes Paypures0 (f̄) \
{(0, 2)}. The graphical intuition is as follows: any segment joining two points
of the graph of a strictly concave function is beneath the curve, so any points
on the segment that are comparable to q must be smaller. This approach also
yields that all vectors of Paypures0 (f̄) \ {(0, 2)} are Pareto-optimal elements of
Paypures0 (f̄).

We now prove a generalisation of the first property formulated above: given
a compact set D ⊆ R2, any vector in the boundary of conv(D) is a convex
combination of no more than two elements of D. This can be seen as a refinement
of Carathéodory’s theorem for convex hulls (Theorem 2.1) when considering
the boundary of the convex hull of a compact set in a two-dimensional setting.
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Lemma B.2. Let D ⊆ R2 be compact. For all q ∈ bd(conv(D)), either
q ∈ extr(conv(D)) or q is a convex combination of two vectors of D \ {q}.

Proof. If D is empty or a singleton set, the result is direct. We thus assume
that D has at least two elements. Let q ∈ bd(conv(D)). Because D is compact,
conv(D) is closed (Lemma 2.2) and thus bd(conv(D)) ⊆ conv(D). We let
p(1), . . . , p(n) ∈ D and α1, . . . , αn ∈ ]0, 1] be non-zero convex combination
coefficients such that q =

∑n
m=1 αnp

(m).
We first show that the vectors q, p(1), . . . , p(n) lie on a single line. If aff(D)

is a line, then this is direct. We thus assume that aff(D) is not a line. We obtain
that aff(D) = R2: it contains a line because D has at least two elements, and
therefore its dimension must be two. This implies that ri(D) = int(D), and thus
that q /∈ ri(D). By the supporting hyperplane theorem (Theorem 2.4), there
exists a non-zero linear form x∗ such that for all p ∈ conv(D), x∗(q) ≥ x∗(p). It
follows that for all 1 ≤ m ≤ n, we have x∗(p(m)) = x∗(q) (by linearity, because
α(m) ̸= 0). In other words, q and the p(m) lie on the line (x∗)−1(x∗(q)).

We have shown that q and the p(m) lie on a single line. There exists a
non-zero vector v ∈ R2 such that for all 1 ≤ m ≤ n, there exists βm ∈ R such
that p(m) = q + βm · v. There must exist 1 ≤ m,m′ ≤ n such that βm ≥ 0

and βm′ ≤ 0. We conclude that q ∈
[
p(m),p(m′)

]
. We have shown that q is a

convex combination of at most two elements of D.

We now introduce the strictly concave function F : [1, 5]→ R used in the
remainder of our argument. For all x ∈ [1, 5], we let

F(x) = 2−
(
x− 1

3

)log4/3(2)

We observe that F is well-defined in 0 because log4/3(2) > 0. We recall that
F is strictly concave if and only if for all x, x′ ∈ [1, 5] such that x < x′ and all
β ∈ ]0, 1[, we have βF(x) + (1− β)F(x′) < F(βx+ (1− β)x′). We now show
that F is decreasing and strictly concave.

Lemma B.3. The function F is decreasing and strictly concave.
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Proof. To prove that F is decreasing (resp. strictly concave), it suffices to
show that it is differentiable over ]1, 5[ and its derivative F ′ is strictly negative
(resp. decreasing). For the strict concavity of F , in practice, we show that the
second derivative F ′′ of F (defined over ]1, 5[) is negative. For all x ∈ ]1, 5[, we
have

F ′(x) = − log4/3(2) ·
(
x− 1

3

)log4/3(2)−1

and

F ′′(x) = − log4/3(2) ·
(
log4/3(2)− 1

)
·
(
x− 1

3

)log4/3(2)−2

.

To prove that F ′ and F ′′ are negative over ]1, 5[, it suffices to show that
log4/3(2) > 0 and log4/3(2) − 1 > 0. The second inequality implies the first
and can be shown to be equivalent to 2 > 4

3 . This ends the proof that F is
decreasing and strictly concave.

Next, we prove that Paypures0 (f̄) \ {(0, 2)} is included in the graph of F .

Lemma B.4. The graph of F includes Paypures0 (f̄) \ {(0, 2)}, i.e., for all (x, y) ∈
Paypures0 (f̄), F(x) = y.

Proof. First, we observe that F(1) = 2, i.e., (1, 2) is in the graph of F . It
remains to show that for all ℓ ∈ N, we have

F
(
1 +

3ℓ

4ℓ−1

)
= 2− 1

2ℓ−1
.

We let ℓ ∈ N. We obtain the following equalities:

F
(
1 +

3ℓ

4ℓ−1

)
= 2−

(
3ℓ−1

4ℓ−1

)log4/3(2)

= 2−
(
3

4

)(ℓ−1)·log4/3(2)

= 2−

((
4

3

)log4/3(2)
)−(ℓ−1)

= 2− 1

2ℓ−1
.
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We have shown that all elements of Paypures0 (f̄) \ {(0, 2)} are in the graph of
F .

We now prove that all vectors q ∈ Paypures0 (f̄) \ {(0, 2)} are not smaller than
convex combinations of two elements of Paypures0 (f̄) \ {q}.

Lemma B.5. Let q ∈ Paypures0 (f̄) \ {(0, 2)}. For all p1,p2 ∈ Paypures0 (f̄) \ {q}
and all α ∈ [0, 1], q is incomparable to or strictly greater than α ·p1+(1−α) ·p2.

Proof. Let q = (q1, q2). Let p1,p2 ∈ Paypures0 (f̄) \ {q}. We fix α ∈ ]0, 1[;
the above statement for α ∈ {0, 1} is covered by the cases p1 = p2. We let
p = α ·p1+(1−α) ·p2. In the first part of this proof, we assume that p1 ̸= (0, 2)

and p2 ̸= (0, 2) and discuss the case when this assumption is lifted at the end
of the proof.

By Lemma B.4, we have q2 = F(q1) and we can write p1 = (x1,F(x1))
and p2 = (x2,F(x2)) where x1 and x2 are the first components of p1 and p2

respectively. We assume without loss of generality that x1 ≤ x2. All elements
of Paypures0 (f̄) have different x-components, hence x1 ̸= q1 and x2 ̸= q1.

We first assume that x1 ≤ x2 < q1. In this case, by Lemma B.3 (F is
strictly decreasing), we have F(x1) ≥ F(x2) > q1. It follows that q and p are
incomparable: the first component of q is greater than that of p but the second
component of q is smaller than that of p. In the case that q1 < x1 ≤ x2, we
obtain in a similar fashion that q and p are incomparable.

We now assume that x1 < q1 < x2. We let β ∈ ]0, 1[ such that q1 =

β · x1 + (1− β)x2, which exists because q1 ∈ ]x1, x2[. If p is not comparable to
q, there is nothing to show. We assume that these two vectors are comparable
and show that p < q. We proceed by contradiction and assume that p ≥ q.

We consider the linear form x∗ : R2 → R defined by x∗(v) = −F(x2)−F(x1)
x2−x1

·
v1 + v2 for all v = (v1, v2) ∈ R2. We have x∗(p1) = x∗(p2) and thus
(x∗)−1(x∗(p1)) is the line carrying the segment [p1,p2]. Because F is decreasing
(Lemma B.3), we have F(x2)−F(x1)

x2−x1
< 0. This implies that x∗ is increasing in

the sense that for all v1,v2 ∈ R2, v1 < v2 implies that x∗(v1) < x∗(v2).
Let v = (q1, β · F(x1) + (1− β)F(x2)). We have v < q by strict concavity

of F (Lemma B.3). Furthermore, we have x∗(v) = x∗(p) because both of these
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vectors are in the segment [p1,p2]. We obtain, because x∗ is increasing and
v < q < p, that x∗(v) < x∗(q) < x∗(p) = x∗(v). This is a contradiction. This
ends the proof in the case that p1 ̸= (0, 2) and p2 ̸= (0, 2).

Next, we assume that p1 = p2 = (0, 2). We obtain that p = (0, 2), which is
smaller than (1, 2) and incomparable to all elements of Paypures0 (f̄)\{(1, 2), (0, 2)}.
Finally, we assume that only one of p1 or p2 are (0, 2). We assume without loss of
generality that p1 = (0, 2). If p > q, then we would have α ·(1, 2)+(1−α) ·p2 >

p > q, which would contradict the first part of the proof.

With Lemma B.2 and Lemma B.5, we directly obtain that all elements of
Paypures0 (f̄) \ {(0, 2)} are Pareto-optimal elements of Pays0(f̄): if they were not
Pareto-optimal, then they would be dominated by an element of the boundary
of Pays0(f̄) which would be the convex combination of two vectors in Paypures0 (f̄).

Lemma B.6. Let q ∈ Paypures0 (f̄) \ {(0, 2)}. Then q is a Pareto-optimal element
of Pays0(f̄).

Proof. Assume towards a contradiction that there exists p ∈ Pays0(f̄) such that
q < p. We show that there exists p′ ∈ bd(Pays0(f̄)) such that p′ > q. This
yields a contradiction with Lemma B.2 and Lemma B.5.

If p ∈ bd(Pays0(f̄)), then we let p′ = p. We thus assume that p ∈
int(Pays0(f̄)). Let α = sup{β ≥ 0 | p + β1 ∈ Pays0(f̄)}. We have α ∈ R
because p ∈ Pays0(f̄) (i.e., 0 ∈ {β ≥ 0 | p+ β1 ∈ Pays0(f̄)} thus α > −∞) and
Pays0(f̄) is bounded (thus α < +∞). Furthermore, because Pays0(f̄) is closed,
we have p + α1 ∈ bd(Pays0(f̄)). We obtain the announced contradiction by
letting p′ = p+ α1 > q.

We conclude this section by showing that the set of extreme points of
Pays0(f̄) is the set of pure payoffs.

Lemma B.7. We have extr(Pays0(f̄)) = Paypures0 (f̄).
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Proof. First, we show that extr(Pays0(f̄)) ⊆ Paypures0 (f̄). It suffices to show
that all vectors q ∈ Pays0(f̄) \ Pay

pure
s0 (f̄) are not extreme points of Pays0(f̄).

Let q ∈ Pays0(f̄) \ Pay
pure
s0 (f̄). By Theorem 14.4, we have q ∈ Pays0(f̄) =

conv(Paypures0 (f̄)). This implies that q ∈ conv(Pays0(f̄) \ {q}) because q /∈
Paypures0 (f̄), and thus q /∈ extr(Pays0(f̄)).

Conversely, let q ∈ Paypures0 (f̄). First, we assume that q = (0, 2). The first
coordinate of all other vectors of Paypures0 (f̄) is greater than or equal to 1. This
therefore also applies to any convex combination of vectors in Paypures0 (f̄)\{(0, 2)}.
It follows that q ∈ extr(Pays0(f̄)). Second, we assume that q ̸= (0, 2). Assume
towards a contradiction that q /∈ extr(Pays0(f̄)). By Lemma B.6, q is a Pareto-
optimal element of Pays0(f̄), and thus lies on the boundary of this set. We
obtain that q is the convex combination of two elements of Paypures0 (f̄) \ {q} by
Lemma B.2 (which is applicable because Pays(f̄) is closed) and the assumption
that q /∈ extr(Pays0(f̄)). This yields a contradiction with Lemma B.5, which
states that there is no convex combination of two vectors of Paypures0 (f̄) \ {q}
that is greater than or equal to q.

Memory cannot be traded for randomness

We prove that the only way to obtain an expected payoff in Paypures0 (f̄) is through
a strategy that induces a single play from s0 (i.e., intuitively, a strategy that is
pure in practice).

Lemma B.8. Let σ ∈ Σ(M) be a strategy such that at least two plays starting
in s0 are consistent with σ. Then Eσ

s0(f̄) /∈ Paypures (f̄).

Proof. We consider the following enumeration of the set of plays of M that
start in s0. We let π−2 = s0c(s1a)

ω, π−1 = s0a(s2a)
ω, and, for all r ∈ N, we

let πr = s0(as2)
rb(s3a)

ω. We have f̄(π−2) = (0, 2), f̄(π−1) = (1, 2) and, for all
r ∈ N, f̄(πr) =

(
1 + 3r

4r−1 , 2− 1
2r−1

)
(refer to the proof of Lemma B.1 for the

relevant computations). Due to the absence of randomised transitions in M,
Paypures0 (f̄) is the set of payoffs of the plays starting in s0. Therefore, to end the
proof, we must show that for all r ≥ −2, Eσ

s0(f̄) ̸= f̄(πr).
For all r ∈ {−1,−2} ∪ N, let αr = Pσ

s0({πr}). Through this notation, we
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obtain that
Eσ
s0(f̄) =

∑
r≥−2

αrf̄(πr). (B.1)

First, we show that Eσ
s0(f̄) /∈ {(0, 2), (1, 2)}. If there exists r ∈ N such that

αr > 0, then we have Eσ
s0(f2) < 2, which implies that Eσ

s0(f̄) /∈ {(0, 2), (1, 2)}.
Next, assume that αr = 0 for all r ∈ N. Then α−2 and α−1 must sum to one.
Furthermore, since σ has at least two outcomes, both α−2 and α−1 must be non-
zero. It follows that Eσ

s0(f1) ∈ ]0, 1[. We conclude that Eσ
s0(f̄) /∈ {(0, 2), (1, 2)}

in this case as well.
We now fix r ∈ N and show that Eσ

s0(f̄) ̸= f̄(πr). We proceed by contradic-
tion. Assume towards a contradiction that Eσ

s0(f̄) = f̄(πr). Our goal is to con-
tradict Lemma B.7, i.e., to show that f̄(πr) is not an extreme point of Pays0(f̄).
We do so in two steps. First, we show that Eσ

s0 ∈ cl(conv(Paypures0 (f̄) \ {f̄(πr)})).
Next, we prove that conv(Paypures0 (f̄) \ {f̄(πr)}) is closed. Together, these
statements imply that f̄(πr) ∈ conv(Paypures0 (f̄) \ {f̄(πr)}), which is the sought
contradiction.

We now establish that Eσ
s0 ∈ cl(conv(Paypures0 (f̄) \ {f̄(πr)})). It follows from

Eσ
s0(f̄) = f̄(πr) and Equation (B.1) that Eσ

s0(f̄) =
∑

ℓ ̸=r
αℓ

1−αr
f̄(πℓ). We obtain

from this last equality that Eσ
s0(f̄) ∈ cl(conv(Paypures0 (f̄) \ {f̄(πr)})).

It remains to show that conv(Paypures0 (f̄) \ {f̄(πr)}) is closed. The vector
f̄(πr) is an isolated point of Paypures0 (f̄): all other elements of Paypures0 (f̄) are at
distance at least 2−r of f̄(πr). Therefore, Paypures0 (f̄) \ {f̄(πr)} is closed (when
removing an isolated point from a closed set, the resulting set is still closed),
and thus conv(Paypures0 (f̄) \ {f̄(πr)}) is closed by Lemma 2.2.

We close this section by commenting on the significance of Lemma B.8 in
terms of memory requirements. When we only consider pure strategies, some
Pareto-optimal payoffs may require strategies with an arbitrarily large memory,
in the sense that we may need to count to some high (but finite) counter
value to enact a given number of loops in s2 to obtain certain expected payoffs.
Lemma B.8 implies that we cannot substitute this counting by randomisation,
even when only considering Pareto-optimal payoffs. In particular, for this
example, we obtain that although all expected payoffs can be obtained with
strategies that only count up to a finite number of steps (i.e., to count loops in
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s2), we cannot bound this number of steps uniformly for all expected payoff
vectors.
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lexicographically optimal, 233

M

Ma,b, 202
Markov chain, 31
Markov chain induced by a

memoryless strategy, see
induced Markov chain

Markov decision process (MDP), 28
Mealy machine, 38

move-independent, see
move-independent

observation-based, 55
measurable sets of plays, 31
memory update function, 38
memoryless, see strategy
metric over plays, 32
move-independent

Mealy machine, 98
strategy, 98

multi-dimensional payoff, 232



Index 465

N

Nash equilibrium (NE), 49
next-move function, 38

O

objective, 40
observation-based Mealy

machine, see Mealy
machine

observation-based strategy, see
strategy

One-counter MDP (OC-MDP), 56
bounded, 56
semantics, 57
unbounded, 56

optimal strategy, 46
outcome, 34
outcome equivalence, 54

criteria, 170, 172, 174

P

Pareto-optimal, 24
partially observable Markov

decision process
(POMDP), 52

partition induced by a periodic
partition, 302

payoff, 41
continuous, 42
uniformly continuous, 43
universally integrable, 42

characterisation, 238

universally unambiguously
integrable, 42

perfect recall, 54
periodic partition generated by a

finite partition, 302
play, 29

turn-based arena, 30
positively winning strategy, 47
posSLP, 59
prefix-free, 23
profitable deviation, 50
punishment mechanism for NE, 64
pure, see strategy

R

reachability objective, 43
Refine operator, 320

S

safety objective, 43
selective termination, 58
separating hyperplane theorem, 26
set of expected payoffs

(notation), 232
shortest-path cost, 45
square-root-sum problem, 372
state-reachability objective, 58
stochastic Mealy machine, see

Mealy machine
strategy

behavioural, 33
finite-memory, 40
memoryless, 33



466 Index

mixed, 36
observation-based, 53
pure, 33

strategy profile, 33
successor counter value, 319
supporting hyperplane theorem, 27

T

termination, 58
theory of the reals, 59

existential theory, 59
total reward payoff, 45

U

unambiguous integral, 42

uniformly optimal strategy, see
optimal strategy

V

value, 46

W

winning strategy, 47
uniformly winning, 47

Z

zero-sum, see game



Table of notations

Set-theoretic symbols

N set of natural numbers (non-negative integers)
N>0 set of positive natural numbers
N̄ set N ∪ {+∞}
N̄>0 set N>0 ∪ {+∞}
Q set of rational numbers
R set of real numbers
R̄ extended real line R ∪ {−∞,+∞}
C set of complex numbers
Jn, n′K set of natural numbers between n, n′ ∈ N̄
JnK shorthand for J0, nK, where n ∈ N̄
[x, y] closed interval (of R̄)
]x, y[ open interval (of R̄)
1A indicator of a set A

f−1(B) inverse image of set B by a function f

f−1(b) inverse image of a singleton {b} by f

Im(f) image of a function f

|A| cardinality of a set A

A∗ set of finite words over a set A

A+ set of non-empty finite words over a set A

Aω set of infinite words over a set A

ε empty word
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Probability symbols

D(A) set of distributions over a countable set A

supp(µ) support of a discrete distribution µ

D(B,F) set of distributions of a measurable space (B,F)

Topology notation

(X, T ) topological space
cl(D) closure of a set D

int(D) interior of a set D

bd(D) boundary of a set D

Vector space notation

v, w vectors
vj , wj vector components
α, β, αj , βj scalars
1d, 1 d-dimensional vector where all components are 1

0d, 0 d-dimensional vector where all components are 0

⟨v,w⟩ scalar product of vectors v and w

∥v∥2 Euclidean norm of vector v

ker(L) kernel of linear map L

x∗, y∗ linear forms
aff(D) affine span of a set D ⊆ Rd

ri(D) relative interior of a set D ⊆ Rd

≤lex, <lex non-strict and strict lexicographic order over Rd

down(D) downward-closure of a set D ⊆ Rd

[v,w], ]v,w[ closed/open segment from v ∈ Rd to w ∈ Rd

conv(D) convex hull of a set D ⊆ Rd

extr(D) set of extreme points of a convex set D ⊆ Rd

Arenas and Markov decision processes

General notation

n number of players (in multi-player arenas)
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Pi player i

A arena
S state space of an arena
s, t ∈ S states of an arena
δ transition function of an arena
Plays(A) set of plays of A
π ∈ Plays(A) play
Hist(A) set of histories of A
h ∈ Hist(A) history
w prefix of a history ending in an action (profile)
first(π), first(h) first state of a play π or a history h

last(h) last state of a history h

h1 · h2 concatenation of two histories h1, h2
h · π concatenation of a history h and a play π

CylA (h), Cyl (h) cylinder of a history h

CylA (H), Cyl (H) union of cylinders of histories in H ⊆ Hist(A)

Concurrent arenas

A(i) action space of Pi in a concurrent arena
a(i) ∈ A(i) action of Pi in a concurrent arena
Ā = A(1) × . . .×A(n) set of action profiles in a concurrent arena
ā = (a(1), . . . , a(n)) ∈ Ā action profile in a concurrent arena
A = (S, (A(i))i∈J1,nK, δ) n-player concurrent arena
A = (S,A(1), A(2), δ) two-player concurrent arena
π = s0ā0s1 . . . play of a concurrent arena
π≤ℓ prefix s0ā0s1 . . . āℓ−1sℓ of a play π = s0ā0s1 . . .

π≥ℓ suffix sℓāℓsℓ+1 . . . of a play π = s0ā0s1 . . .

h = s0ā0s1 . . . ār−1sr history of a concurrent arena

Turn-based arenas and Markov decision processes

Si set of states controlled by Pi
A action space of an MDP or a turn-based arena
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a ∈ A action of an MDP or a turn-based arena
M = (S,A, δ) Markov decision process (MDP)
A = ((Si)i∈J1,nK, A, δ) n-player turn-based arena
A = (S1, S2, A, δ) two-player turn-based arena
π = s0a0s1 . . . play of a turn-based arena
π≤ℓ prefix s0a0s1 . . . aℓ−1sℓ of a play π = s0a0s1 . . .

π≥ℓ suffix sℓaℓsℓ+1 . . . of a play π = s0a0s1 . . .

h = s0a0s1 . . . ar−1sr history of a turn-based arena
Histi(A) set of histories ending in a state of Pi

Markov chains

C = (S, δ) Markov chain
π = s0s1 . . . play of a Markov chain
h = s0s1 . . . sr history of a Markov chain

Strategies

σi, τi (pure or behavioural) strategies of Pi
σ = (σ1, . . . , σn) (pure or behavioural) strategy profile
σ = (σi, σ−i) strategy profile, highlighting the strategy of Pi
Σi(A) set of strategies of Pi in an arena A
Σi
pure(A) set of pure strategies of Pi in an arena A

σ, τ strategies of an MDP
Σ(M) set of strategies of an MDP
Σpure(M) set of pure strategies of an MDP
Σ subset of strategies of an MDP
Pσ
A,s, Pσ

s measure induced by strategy (profile) σ from s

PC,s, Ps measure over plays of a Markov chain C from s

OutA(σ, s) outcome of a pure profile σ with A deterministic
µi mixed strategy of Pi
µ = (µ1, . . . , µn) mixed strategy profile
µ mixed strategy of an MDP
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Mealy machines

M, N Mealy machine
M , N state space of a Mealy machine
m, n memory states
µinit, νinit initial distribution
minit, ninit initial memory state
nxtM, nxtN next-move function
upM, upN update function
(M,µinit, nxtM, upM),
(N, νinit, nxtN, upN)

Mealy machine tuple

(M,minit, nxtM, upM) tuple with deterministic initialisation
µw, νw distribution over memory states after w occurs
ûpM iterated deterministic update function

Objectives and payoffs

Ω objective
f payoff or cost function
Eσ
s (f) expectation of f when following σ from s

Reach(T ) reachability objective for target T ⊆ S

Reach(t) reachability objective for target {t}
Safe(U) safety objective for unsafe set U ⊆ S

Safe(t) safety objective for unsafe set {t}
Büchi(T ) Büchi objective for target T ⊆ S

Büchi(t) Büchi objective for target {t}
coBüchi(U) co-Büchi objective for unsafe set U ⊆ S

coBüchi(t) co-Büchi objective for unsafe set {t}
w : S × Ā→ R weight function
DSumλ

w discounted-sum payoff (weight w, discount λ)
TReww total-reward payoff (weight w)
SPathTw shortest-path cost (weight w, target T )
θ ∈ R̄ threshold to be ensured
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Games

G = (A, (fi)i∈J1,nK) n-player game on A with payoffs
G = (A, (Ωi)i∈J1,nK) n-player game on A with objectives
G = (A, f) two-player zero-sum game with a payoff/cost
G = (A,Ω) two-player zero-sum game with an objective
ValG(s) value of state s in zero-sum game G

Imperfect information

Zi observation space of Pi
Obsi observation function of Pi
P arena with imperfect information
(A, (Zi,Obsi)i∈J1,nK) tuple for an arena with imperfect information

One-counter MDPs

Q state space of an OC-MDP
q, p, t ∈ Q states of an OC-MDP
Q = (Q,A, δ, w) one-counter MDP (OC-MDP)
k ∈ N counter value in an OC-MDP
s = (q, k) configuration of an OC-MDP
B ∈ N̄>0 counter upper bound
M≤B(Q) MDP over configurations induced by Q
δ≤B transition function ofM≤B(Q)
Reach(T ) state-reachability objective for target T ⊆ Q

Term(T ) selective termination objective for target T ⊆ Q

Notation for the construction of Nash equilibria (Part II)

W1(Ω) winning region of P1 in a zero-sum game (A,Ω)
W2(Plays(A) \ Ω) winning region of P2 in a zero-sum game (A,Ω)
Ai derivative of A for a coalition game against Pi
Gi coalition game against Pi
Wi(Ωi) winning region of Pi in a coalition game (Ai,Ωi)

ValiG(s) value of state s in a coalition game Gi
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sg segment of a play
S segment decomposition of a play
VisPlG(π) players whose targets are visited (Reach, SPath)
VisPosG(π) positions of target visits in π (Reach, SPath)

Classification of randomised strategies (Part III)

XYZ Mealy machine X: initialisation; Y: outputs; Z: updates
XYZ strategies strategy induced by an XYZ Mealy machine
Σi
h set of pure strategies of Pi consistent with h

CFP
n,i fin. arenas with perfect recall for Pi
CIPn,i , inf. arenas with perfect recall for Pi
CFI
n,i fin. arenas with or without perfect recall for Pi
CIIn,i inf. arenas with or without perfect recall for Pi

Multi-objective MDPs (Part IV)

d number of payoff functions
f̄ = (fj)j∈J1,dK multi-dimensional payoff
f+ = max(f, 0) non-negative part of a one-dimensional payoff f

f− = max(−f, 0) non-positive part of a one-dimensional payoff f

q, p expected payoff vectors or achievable vectors
qj , pj components of expected payoff vectors
Pays(f̄) expectations of f̄ from s for all strategies
Achs(f̄) achievable vectors
Paypures (f̄) expectations of f̄ from s for all pure strategies
Achpures (f̄) purely achievable vectors
PayΣs (f̄) expectations of f̄ from s for all σ ∈ Σ

AchΣs (f̄) achievable vectors witnessed by some σ ∈ Σ

distproba metric over distributions in Chapter 15.1
E = (E,AE) end-component of an MDP
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Interval strategies in OC-MDPs (Part V)

General notation

I, J , K interval partition of set of counter values
I ∈ I interval of N̄
b+, b− upper and lower bounds of an interval
OEIS open-ended interval strategy
CIS cyclic interval strategy
ρ period of an interval partition or a CIS

Compressed Markov chains

CσI (Q), C
σ
I compressed Markov chain for σ on Q w.r.t. I

SI state space of CσI
S⊥
I absorbing states of CσI

δσI transition function of CσI
β, βI denotes log2(|I|+ 1) for some I ∈ I
α natural number smaller than β or βI

Hsucc(s, s
′) histories from s to s′ with no other CσI -successor

h̄ history of CσI
Rσ

J = (RJ , δ
σ
J ) one-counter Markov chain for CσI if σ is a CIS

Transition probabilities in compressed Markov chains

We refer the reader to the text prefacing Theorem 18.6 (unbounded case,
Page 326) and Theorem 18.9 (bounded case, Page 330) for a more precise
description of the notation described below. In the following, induced MC refers
to the induced Markov chain from which we derive a compressed Markov chain.

⟨q ↘ p⟩ variable in the unbounded case
Hα((q, k)↗ p) sets of histories for bounded case
[(q, k)↗ p]α probability of Hα((q, k)↗ p) in induced MC
⟨(q, k)↗ p⟩α variable for probability of Hα((q, k)↗ p)
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Hα((q, k)↘ p) sets of histories for bounded case
[(q, k)↘ p]α probability of Hα((q, k)↘ p) in induced MC
⟨(q, k)↘ p⟩α variable for probability of Hα((q, k)↘ p)

Verification and realisability (logical formulae)

boldface letter, e.g., z vector or set of variables
starred variable, e.g., z⋆ valuation of the variable (vector)
y, ys variables for probabilities of the objective
zIq,a, zI , z variables for strategy probabilities
τz interval strategy parameterised by z

CτzI , CzI compressed Markov chain for τz
δτzI , δzI transition function of CzI
x, xs,s′ variables for probabilities in CzI (OEIS)
ΦI
δ (x, z) formula for transition probabilities of CzI (OEIS)

ΦI
Ω(x,y) formula for objective probabilities in CzI (OEIS)
Rτz

J , Rz
J one-counter Markov chain inducing CzI (CIS)

δτzJ transition function of Rz
J

CK(Rz
J ) compression of C≤∞(Rz

J ) with respect to K
SK(RJ ) state space of CK(Rz

J )

s̄ element of SK(RJ )

δK[Rz
J ] transition function of CK(Rz

J )

v, vs,s′,u variables for probabilities in Rz
J

x, xs̄,s̄′ variables for probabilities in CK(Rz
J )

ΨJ
δ (v, z) formula for transition probabilities in Rz

J
ΦK
δ (x,v) formula for probabilities in CK(Rz

J ) (CIS)
ΦK
Ω(x,y) formula for objective probabilities in CK(Rz

J )

ΦI,I′,B
σ (z) formula for strategy probabilities (bounded)

ΦI,I′
σ (z) formula for strategy probabilities (OEIS)

ΦJ ,J ′
σ (z) formula for strategy probabilities (CIS)

Square-root-sum hardness

x1, . . . , xn, y inputs to the square-root-sum problem
x = (x1, . . . , xn) vector of square-root-sum inputs other than y
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m maxi∈J1,nK xi in a square-root-sum instance
Qx one-counter Markov chain used in our reduction
εB error on termination probability in C≤B(Qx)

NP-hardness

V (finite) set of vertices
v ∈ V vertex
E ⊆ V × V set of edges
G = (V,E) directed graph
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