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Synthesis via games
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A strategy is a formal blueprint for a controller of a reactive system.
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The simpler, the better

In general, we want simple strategies.
Main question

What makes a strategy complex ?

Strategy complexity is multifaceted.

Memory Randomisation Representations
A classical complexity Expressiveness and Concise counter-based
measure requirements strategies
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Arenas

Model: concurrent game on a graph
Two-player arena

m Countable state space S;
m Countable action spaces A A2).
m Transition function §: S x A — D(9).

Play: sequence in (SA)“ coherent with 4.
History: prefix of a play ending in a state.

Objective: measurable subset of Plays(.A).
Payoff: measurable function f: Plays(A) — R.
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Markov decision processes

James C. A. Main

Markov decision process = one-player arena
Markov decision process (MDP)

m Countable state space S,
m Countable action spaces A;
m Transition function §: S x A — D(S).

Play: sequence in (SA)“ coherent with 6.
meeting History: prefix of a play ending in a state.

Objective: measurable subset of Plays(M).
Payoff: measurable function f: Plays(M) — R.
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Strategies

Non-determinism in games is resolved through
strategies.

Pure strategies
A pure strategy is a function o;: Hist(A) — A®).

A memoryless strategy only looks at the current
state.

When fixing a strategy profile o and an initial
state s, we obtain a Markov chain over histories.

m Probability notation: PJ.

m Expectation notation: EY.
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Encoding strategies

Memoryless strategies may not suffice for some
specifications.

a b
How can we encode strategies with memory?
a b

Mealy machines for pure finite-memory strategies
m Finite set of memory states M;
o_ong S1:Q
m initial memory state mijnit;
m next-move function nxtoy: M x S — A®; —’ @
m memory update function upg,: M x S x A — M. 591 b

si1:a sy: b

Complexity measure: size of the memory state space. b
50+ Sp: a
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The study of finite memory

Key questions for finite-memory strategies

When does finite memory suffice?
~~ Characterisations of specifications for which finite-memory suffices (e.g., [GZ05; Bou+22]).

How much memory do we need to play optimally?
~» Computing memory bounds [Bou+23; CO25].
~~ Establishing improved bounds (e.g.,[JLS15; Mai24]).

Can we improve memory requirements by considering more general strategies?
~+ Trading memory for randomness (e.g., [CdH04; CRR14]).

Focus on the result of [Mai24]
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Memory requirements for Nash equilibria in reachability games

m Context: turn-based deterministic multi-player arenas.

m Solution concept: Nash equilibria.

Informal problem statement
How much memory do we need to implement a good enough Nash equilibrium?
Result for pure strategies and move-independent Mealy machines.

Theorem (M., STACS 2024)

m For reachability and shortest-path games, n> + 2n memory states suffice.

m for Biichi games, finite memory suffices.
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The limitations of pure strategies

How should P; play to reach win with

probability > % after one move?
— Pure strategies do not suffice!

Solution: randomisation.

James C. A. Main
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What is a randomised strategy?

01
S0 S1 S92 —

BB8 " .

ago a1 a2 03 «— > (o}
Behavioural strategy Mixed strategy
o Hist(A) — D(AM) D(o;: Hist(A) — AM)

How do these two classes of strategies compare?

Kuhn’s theorem: same expressiveness when perfect recall holds.

Expressiveness criterion: outcome-equivalence.
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What about finite-memory strategies?

Components of Mealy machines for pure strategies

m Initial memory state mijnj;
m next-move function nxtgy: M x S — A(i);
m memory update function upgy: M x S x A — M.

How can we extend Mealy machines to model randomised strategies?

Stochastic Mealy machines — behavioural version

m Initial memory state jnit;
m randomised next-move function nxtgy: M x S — D(AD);
m memory update function upgy: M x S x A — M.
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What about finite-memory strategies?

Components of Mealy machines for pure strategies

m Initial memory state mijnj;
m next-move function nxtgy: M x S — A(i);
m memory update function upgy: M x S x A — M.

How can we extend Mealy machines to model randomised strategies?

Stochastic Mealy machines — mixed version

m Initial memory distribution yiyix € D(M);
m next-move function nxtoy: M x S — A®;

m memory update function upgy: M x S x A — M.
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What about finite-memory strategies?

Components of Mealy machines for pure strategies

m Initial memory state mijnj;
m next-move function nxtoy: M x S — A®;
m memory update function upgy: M x S x A — M.

How can we extend Mealy machines to model randomised strategies?

Stochastic Mealy machines — full randomisation

m Initial memory distribution pinix € D(M);
m randomised next-move function nxtgy: M x S — D(A®);
m randomised memory update function upgy: M x S x A — D(M).
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Kuhn's theorem crumbles

Are all stochastic Mealy machine models equivalent?

Example: can P; ensure Blichi(win) almost-surely with a
m behavioural-like Mealy machine? Yes.

m mixed-like Mealy machine? No.

Main question

How do these different models compare?
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Randomisation and finite memory

Acronyms XYZ where X, Y, Z € {D, R} and D = deterministic and R = random, and
m X is for initialisation;
m Y is for the next-move function,
m Z is for updates.

Classification of Mealy machine expressiveness (M., Randour, Inf. Comp., 2024)

DRR = RRR = RDR

_— \

DDR RRD

|
DRD (behavioural)

|
RDD (mixed)

/

DDD
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Another use for randomisation

Randomisation can be used to balance multiple goals. For instance:
m reaching work under 40 minutes with high probability;
m minimising the expected time to reach work.

E(SPath,q) =095
! Obike
30 !
29 | $01t+b
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P(SPath,,, < 40)
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Randomisation requirements in multi-objective MDPs

Setting: MDPs with multi-dimensional payoffs.

In general, randomised strategies are necessary in multi-objective MDPs.

Main questions
m What is the relationship between expected payoffs of pure strategies and expected
payoffs of general strategies?

m What type of randomisation do we need for multi-objective queries?
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Applicability of our results

We want results that apply to a broad class of payoffs.
Which payoffs f do we consider?
m A payoff f is good (universally unambiguously integrable) if it has a well-defined
expectation under all strategies from all initial states.

m A payoff f is universally integrable if its expectation is finite under all strategies from all
initial states.

For a multi-dimensional payoff f = (fi,.
m Pay (f) = {EZ(f) | o strategy};
m Pay?'"®(f) = {EJ(f) | o pure strategy}.

.., f4) and s € S, we study:
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Universally integrable payoffs

Theorem (M., Randour, 2025)

Let f be universally integrable. Then for all s € S,

Pay,(f) = conv(PayZ""*(f)).

Proof idea: we reason on lexicographic multi-objective MDPs.
Lemma (M., Randour, 2025)

If f is universally integrable, then for all strategies o, there exists a pure strategy T such

that Eg(f) <lex E:er(f)
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Mixing for universally integrable payoffs
Proof

Let f be universally integrable and s € S. J1 = TReach(t) f2 = LReach(t2)

Goal: show that Pay,(f) C conv(PayP""®(f)). a m b

Fix a strategy o and q = EZ(f). t1 s to
Step 1: isolate q as much as possible with an \ﬁ

intersection of supporting hyperplanes. a

Example 1: q = (0,1).

m First hyperplane: © =0 ~ zi(z,y) = —=x. y=1
m Second hyperplane: y =1~ 25(z,y) =y
o is lexicographically optimal for (x3,z3%) o f

= q € Pay?""(f). 4
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Mixing for universally integrable payoffs
Proof

Let f be universally integrable and s € S.

Goal: show that Pay,(f) C conv(PayP""®(f)).

Fix a strategy o and q = EZ(f).

Step 1: isolate q as much as possible with an
intersection of supporting hyperplanes.

Example 2: q = (%, %)

We construct L linear such that:
mo Iexigographically optimal from s for
Lqo f;
m q € ri(Pay,(f) V) for V = Lz (Lq(a))

1= ]lReach(tl)

fo=1 Reach(t2)
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Mixing for universally integrable payoffs

Proof — continued

Goal: q € conv(PayP""®(f)).
Step 2: it suffices to prove:
cl(Pay,(f) NV) = cl(conv(Pay?'"s(f)) N V).

Proof by contradiction.
Let p € Pay,(f) NV \ cl(conv(Pay?""s(f)) N V).
Separate p and cl(conv(PayP"®(f)) N V) with z*.

There is a pure strategy 7 such that
EZ((Lg,z%) © f) Zlex (Lq(P), 2" (P))-

= 2*(El(f)) > 2*(p) (contradiction). cl(V N conv(Pay?""(f)))

James C. A. Main The Many Faces of Strategy Complexity 25 /41



Beyond universally integrable payoffs

What if f is not universally integrable?

Non-universally-integrable example

b|0 .
all C@—|>@D b|0 1 reaching t ~ f1 = IReach(s):

2 sum of weights ~» fo =32  w(cy).

The theorem does not generalise:

m Payf*"*(f) = {(0, +00)} U{(1,0) | £ € N}

= conv(Payf""*(f)) = ({1} x R>0) U ([0, 1] x {+00}),
m (1,+00) € Pay,(f).

Theorem (M., Randour, 2025)
Let f = (f1,..., f1) be a good payoff and s € S. Then

cl(Pay,(f)) = cl(conv(PayZ*™(f))).
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Other results

How many strategies do we have to mix?

Theorem (M., Randour, 2025)

m Payoffs of finite-support mixed strategies can be obtained by mixing d + 1 strategies.

m Payoffs of finite-support mixed strategies can be dominated by mixing d strategies.

When is a payoff set closed?
Theorem (M., Randour, 2025)

If f is continuous and universally square integrable, then Pay(f) is compact for all s € S.
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Memory does not tell the whole story (1/2)

Action choices influence simplicity
Memory and randomisation do not fully reflect the complexity of a strategy.
a a a
b ¢ d
— Strategy o1 is simpler to represent than o9

m The action choices can impact how concise the strategy can be made.
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Memory does not tell the whole story (2/2)

Counter-based strategies

Memory and randomisation do not fully reflect the complexity of a strategy.
m We consider a game with an energy-Biichi objective [CD12], where W € N.

a|-W
E=080
al|-W

m Need memory exponential in the binary encoding of W to satisfy the objective.
m Polynomial representation with a counter-based approach.
Related challenge
How to represent and analyse memoryless strategies when the state space is infinite?

James C. A. Main The Many Faces of Strategy Complexity 30 / 41



Memoryless strategies in one-counter MDPs

m We study one-counter Markov decision processes.
m We consider interval strategies: counter-based strategies with a compact

representation.
Our contribution (Ajdaréw, M., Novotny, Randour, ICALP 2025)

m PSPACE verification algorithms for interval strategies.

m PSPACE realisability algorithms for structurally-constrained interval strategies.

m Our algorithms are based on a finite abstraction of an infinite system.
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One-counter Markov decision processes

One-counter MDP (OC-MDP) Q MDP M=>(Q) induced by Q
m Finite MDP (Q, A4, 9). m Countable MDP over S = @ x N.
m Weight function m State transitions via 9.

w: Q@ x A—{-1,0,1}. m Counter updates via w.

DL O,

2

1
2 R
a|—1 al0 C.’

GG
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Objectives

m We study variants of reachability objectives.
m Let T C @) be a target.

3 OO0 00O 3 O000O0
2 OO0 00O 2 OO0 00O
1 OO 00O 1 OO0O00O0
0o OO0 00O 0o OO0 00O
— —
T T
State reachability Reach(7T") Selective termination Term(7)

James C. A. Main The Many Faces of Strategy Complexity 33 /41



Interval strategies

We study a restricted class of memoryless strategies of M=>(Q).

An open-ended interval strategy (OEIS) is a strategy over Q X N5 of the form:

Ny 1 2 ko—1 ko ko +1
Q 01 02 Oko—1 Tko Tko
Group counter values constant
in intervals
Inter. I I Ia = ko, ] | _ Finite partition of
0 - T T4 = O, N+ into intervals
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Verification

Interval strategy verification problem

Given an interval strategy o, an objective Q € {Reach(T'), Term(T")}, a threshold

6 € QN[0,1] and an initial configuration sj,ix € Q x N, decide whether PS

OC-MDP Q

—

Infinite ] Compression

induced MC J

\

Strategy o

!

Finite MC CZ
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Interval strategy verification problem

We construct a finite compressed Markov chain C7.

Solving the verification problem through compressed Markov chains

m To compress, we keep few configurations and adjust transitions.
m We have formulae (in the signature {0,1,+, —, -, <}):

m ®Z(x,2z7) for transition probabilities of CJ;
m ®%(x,y) for termination probabilities from configurations of C5.

We can solve the verification problem by checking if
R = VxVy (9% (x,27) A ®E(x,y)) = ys,, > 0.

Unbounded counter

Bounded counter

Upper bound

co-ETR

PPosSLP

Lower bound

Square-root-sum-hard [EWY10]

Square-root-sum-hard
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Synthesis of interval strategies

We have also studied the synthesis of structurally-constrained interval strategies.

Parameterised interval strategy synthesis problem

Given parameters d and n € Ny, does there exists an interval partition Z of N and an OEIS o

such that

1 |Z| < d and all bounded I € T satisfy |I| < n;

2 o is based on Z and
3 P2 (Q)>0.

Sinit

Unbounded counter

Bounded counter

Upper bound

PSPACE

NPETR

Lower bound

Square-root-sum-hard and NP-hard
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Summary

Multi-objective MDPs [MR25]

[ Randomisation ]

Classifying Mealy

machines [MR24] [ Strategy complexity ]
Memory } [ Representations
Nash equilibria [Mai24] OC-MDPs [AMNR25]
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Future work

Long-term goal

Developing an extensive and comprehensive framework of strategy complexity.

Other lines of work:
m Understanding memory requirements for equilibria in multiplayer games.

m Studying the power of (finite-memory) randomised strategies with respect to given
classes of payoffs.

m Extending our results on multi-objective MDPs to also refer to memory.

m Finding whether there exist well-structured optimal strategies in finite-horizon MDPs.
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Thanks!
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