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Synthesis via games

Controllable
system S

Uncontrollable
environment E

Specification

Game G Solver

S wins +
winning
strategy

S does
not win

A strategy is a formal blueprint for a controller of a reactive system.
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The simpler, the better

In general, we want simple strategies.

Main question

What makes a strategy complex ?

Strategy complexity is multifaceted.

Memory

A classical complexity
measure

Randomisation
Expressiveness and
requirements

Representations

Concise counter-based
strategies
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Arenas

play

win

lose

(r, s)
(s, p)
(p, r)

(s, r)
(p, s)
(r, p)

(r, r)
(p, p)
(s, s)

(∗, ∗)

(∗, ∗)

Model: concurrent game on a graph

Two-player arena

Countable state space S;
Countable action spaces A(1), A(2);
Transition function δ : S × Ā → D(S).

Play: sequence in (SĀ)ω coherent with δ.
History: prefix of a play ending in a state.
Objective: measurable subset of Plays(A).
Payoff: measurable function f : Plays(A) → R̄.
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Markov decision processes

bike 1

train

1
4 train

1

home

ride

work

3
4

meeting1

Markov decision process = one-player arena

Markov decision process (MDP)

Countable state space S;
Countable action spaces A;
Transition function δ : S ×A → D(S).

Play: sequence in (SA)ω coherent with δ.
History: prefix of a play ending in a state.
Objective: measurable subset of Plays(M).
Payoff: measurable function f : Plays(M) → R̄.
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Strategies

Non-determinism in games is resolved through
strategies.

Pure strategies

A pure strategy is a function σi : Hist(A) → A(i).

A memoryless strategy only looks at the current
state.

When fixing a strategy profile σ and an initial
state s, we obtain a Markov chain over histories.

Probability notation: Pσ
s .

Expectation notation: Eσ
s .

bike 1

train

1
4 train

1

home

ride

work

3
4

meet1

1
4

1
home ride work

3
4

1
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Encoding strategies

Memoryless strategies may not suffice for some
specifications.
How can we encode strategies with memory?

Mealy machines for pure finite-memory strategies

Finite set of memory states M ;
initial memory state minit;
next-move function nxtM : M × S → A(i);
memory update function upM : M × S × Ā → M .

Complexity measure: size of the memory state space.

s0s1 s2

a

a

b

b

m1 m2

s1 : a
s0 : b

s2 : b

s2 : b
s0 : a

s1 : a
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The study of finite memory

Key questions for finite-memory strategies

When does finite memory suffice?
⇝ Characterisations of specifications for which finite-memory suffices (e.g., [GZ05; Bou+22]).

How much memory do we need to play optimally?
⇝ Computing memory bounds [Bou+23; CO25].
⇝ Establishing improved bounds (e.g.,[JLS15; Mai24]).

Can we improve memory requirements by considering more general strategies?
⇝ Trading memory for randomness (e.g., [CdH04; CRR14]).

Focus on the result of [Mai24]
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Memory requirements for Nash equilibria in reachability games

Context: turn-based deterministic multi-player arenas.
Solution concept: Nash equilibria.

Informal problem statement

How much memory do we need to implement a good enough Nash equilibrium?

Result for pure strategies and move-independent Mealy machines.

Theorem (M., STACS 2024)

For reachability and shortest-path games, n2 + 2n memory states suffice.
For Büchi games, finite memory suffices.
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The limitations of pure strategies

How should P1 play to reach win with
probability ≥ 1

3 after one move?

→ Pure strategies do not suffice!

Solution: randomisation. play winlose

(r, s)
(s, p)
(p, r)

(s, r)
(p, s)
(r, p)

(r, r)
(p, p)
(s, s)

(∗, ∗)(∗, ∗)
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What is a randomised strategy?

s0

a0

s1

a1

s2

a2

. . .

δ δ δ

Behavioural strategy
σi : Hist(A) → D(A(i))

σ1 σ2

σ3 σ4

Mixed strategy
D(σi : Hist(A) → A(i))

How do these two classes of strategies compare?

Kuhn’s theorem: same expressiveness when perfect recall holds.

Expressiveness criterion: outcome-equivalence.
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What about finite-memory strategies?

Components of Mealy machines for pure strategies

Initial memory state minit;
next-move function nxtM : M × S → A(i);
memory update function upM : M × S × Ā → M .

How can we extend Mealy machines to model randomised strategies?

Stochastic Mealy machines – behavioural version

Initial memory state µinit;
randomised next-move function nxtM : M × S → D(A(i));
memory update function upM : M × S × Ā → M .
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Components of Mealy machines for pure strategies

Initial memory state minit;
next-move function nxtM : M × S → A(i);
memory update function upM : M × S × Ā → M .

How can we extend Mealy machines to model randomised strategies?

Stochastic Mealy machines – mixed version

Initial memory distribution µinit ∈ D(M);
next-move function nxtM : M × S → A(i);
memory update function upM : M × S × Ā → M .
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What about finite-memory strategies?

Components of Mealy machines for pure strategies

Initial memory state minit;
next-move function nxtM : M × S → A(i);
memory update function upM : M × S × Ā → M .

How can we extend Mealy machines to model randomised strategies?

Stochastic Mealy machines – full randomisation

Initial memory distribution µinit ∈ D(M);
randomised next-move function nxtM : M × S → D(A(i));
randomised memory update function upM : M × S × Ā → D(M).
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Kuhn’s theorem crumbles

Are all stochastic Mealy machine models equivalent?

Example: can P1 ensure Büchi(win) almost-surely with a
behavioural-like Mealy machine? Yes.
mixed-like Mealy machine? No.

Main question

How do these different models compare?

play

win

lose

(r, s)
(s, p)
(p, r)

(s, r)
(p, s)
(r, p)

(r, r)
(p, p)
(s, s)

(∗, ∗)

(∗, ∗)
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Randomisation and finite memory

Acronyms XYZ where X, Y, Z ∈ {D, R} and D = deterministic and R = random, and
X is for initialisation;
Y is for the next-move function,
Z is for updates.

Classification of Mealy machine expressiveness (M., Randour, Inf. Comp., 2024)

DRR = RRR = RDR

DDR RRD

DRD (behavioural)

RDD (mixed)

DDD
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Another use for randomisation

Randomisation can be used to balance multiple goals. For instance:
reaching work under 40 minutes with high probability;
minimising the expected time to reach work.

bike | 30 1

train | 5

1
4

train | 5

1

home

ride

work

3
4

meeting | 11

25

26

27

28

29

30

0.5 0.6 0.7 0.8 0.9 1

y = 27

x = 0.95

σtrain

σbike

σ1t+b

σ2t+b
σ3t+b

σ4t+b
σmix

P(SPathwork ≤ 40)

E(SPathwork)
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Randomisation requirements in multi-objective MDPs

Setting: MDPs with multi-dimensional payoffs.

In general, randomised strategies are necessary in multi-objective MDPs.

Main questions

What is the relationship between expected payoffs of pure strategies and expected
payoffs of general strategies?
What type of randomisation do we need for multi-objective queries?
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Applicability of our results

We want results that apply to a broad class of payoffs.

Which payoffs f do we consider?

A payoff f is good (universally unambiguously integrable) if it has a well-defined
expectation under all strategies from all initial states.
A payoff f is universally integrable if its expectation is finite under all strategies from all
initial states.

For a multi-dimensional payoff f̄ = (f1, . . . , fd) and s ∈ S, we study:
Pays(f̄) = {Eσ

s (f̄) | σ strategy};
Paypures (f̄) = {Eσ

s (f̄) | σ pure strategy}.
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Universally integrable payoffs

Theorem (M., Randour, 2025)

Let f̄ be universally integrable. Then for all s ∈ S,

Pays(f̄) = conv(Paypures (f̄)).

Proof idea: we reason on lexicographic multi-objective MDPs.

Lemma (M., Randour, 2025)

If f̄ is universally integrable, then for all strategies σ, there exists a pure strategy τ such
that Eσ

s (f̄) ≤lex Eτ
s(f̄).
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Mixing for universally integrable payoffs
Proof

Let f̄ be universally integrable and s ∈ S.
Goal: show that Pays(f̄) ⊆ conv(Paypures (f̄)).
Fix a strategy σ and q = Eσ

s (f̄).

Step 1: isolate q as much as possible with an
intersection of supporting hyperplanes.

Example 1: q = (0, 1).
First hyperplane: x = 0⇝ x∗1(x, y) = −x.
Second hyperplane: y = 1⇝ x∗2(x, y) = y

σ is lexicographically optimal for (x∗1, x
∗
2) ◦ f̄

=⇒ q ∈ Paypures (f̄).

st1 t2

f1 = 1Reach(t1) f2 = 1Reach(t2)

a b

ca a

1

1

x = 0

y = 1

x+ y = 1
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Mixing for universally integrable payoffs
Proof

Let f̄ be universally integrable and s ∈ S.
Goal: show that Pays(f̄) ⊆ conv(Paypures (f̄)).
Fix a strategy σ and q = Eσ

s (f̄).

Step 1: isolate q as much as possible with an
intersection of supporting hyperplanes.

Example 2: q = (12 ,
1
2).

We construct Lq linear such that:
σ lexicographically optimal from s for
Lq ◦ f̄ ;
q ∈ ri(Pays(f̄) ∩ V )) for V = L−1

q (Lq(q))

st1 t2

f1 = 1Reach(t1) f2 = 1Reach(t2)

a b

ca a

1

1

x = 0

y = 1

x+ y = 1
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Mixing for universally integrable payoffs
Proof – continued

Goal: q ∈ conv(Paypures (f̄)).
Step 2: it suffices to prove:
cl(Pays(f̄) ∩ V ) = cl(conv(Paypures (f̄)) ∩ V ).

Proof by contradiction.
Let p ∈ Pays(f̄) ∩ V \ cl(conv(Paypures (f̄)) ∩ V ).
Separate p and cl(conv(Paypures (f̄)) ∩ V ) with x∗.

There is a pure strategy τ such that
Eτ
s((Lq, x

∗) ◦ f̄) ≥lex (Lq(p), x
∗(p)).

=⇒ x∗(Eτ
s(f̄)) ≥ x∗(p) (contradiction).

V ∩ Pays(f̄)

cl(V ∩ conv(Paypures (f̄)))

p

x∗ = x∗(p)
Eτ
s(f̄)
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Beyond universally integrable payoffs

What if f̄ is not universally integrable?

s t
b | 0

a | 1 b | 0

Non-universally-integrable example

1 reaching t ⇝ f1 = 1Reach(t);
2 sum of weights ⇝ f2 =

∑∞
ℓ=0w(cℓ).

The theorem does not generalise:
Paypures (f̄) = {(0,+∞)} ∪ {(1, ℓ) | ℓ ∈ N}

=⇒ conv(Paypures (f̄)) = ({1} × R≥0) ∪ ([0, 1[× {+∞}),
(1,+∞) ∈ Pays(f̄).

Theorem (M., Randour, 2025)

Let f̄ = (f1, . . . , fd) be a good payoff and s ∈ S. Then

cl(Pays(f̄)) = cl(conv(Paypures (f̄))).
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Other results

How many strategies do we have to mix?

Theorem (M., Randour, 2025)

Payoffs of finite-support mixed strategies can be obtained by mixing d+1 strategies.
Payoffs of finite-support mixed strategies can be dominated by mixing d strategies.

When is a payoff set closed?

Theorem (M., Randour, 2025)

If f̄ is continuous and universally square integrable, then Pays(f̄) is compact for all s ∈ S.
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Memory does not tell the whole story (1/2)
Action choices influence simplicity

Memory and randomisation do not fully reflect the complexity of a strategy.

0 1 2 3

a

b

a

c

a

d

→ Strategy σ1 is simpler to represent than σ2

The action choices can impact how concise the strategy can be made.
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Memory does not tell the whole story (2/2)
Counter-based strategies

Memory and randomisation do not fully reflect the complexity of a strategy.
We consider a game with an energy-Büchi objective [CD12], where W ∈ N.

0 1

a | −W

a | −W

b | 1

Need memory exponential in the binary encoding of W to satisfy the objective.
Polynomial representation with a counter-based approach.

Related challenge

How to represent and analyse memoryless strategies when the state space is infinite?
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Memoryless strategies in one-counter MDPs

We study one-counter Markov decision processes.
We consider interval strategies: counter-based strategies with a compact
representation.

Our contribution (Ajdarów, M., Novotný, Randour, ICALP 2025)

PSPACE verification algorithms for interval strategies.
PSPACE realisability algorithms for structurally-constrained interval strategies.

Our algorithms are based on a finite abstraction of an infinite system.
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One-counter Markov decision processes

One-counter MDP (OC-MDP) Q

Finite MDP (Q,A, δ).
Weight function
w : Q×A → {−1, 0, 1}.

q p t
a | 1

1
2

1
2 b | −1

a | −1 a | 0

MDP M≤∞(Q) induced by Q

Countable MDP over S = Q× N.
State transitions via δ.
Counter updates via w.

q, 0 q, 1 q, 2 . . .

p, 0 p, 1 p, 2 . . .

t, 0 t, 1 t, 2 . . .

a

a, b

a

a a

a
1
2

1
2

a
1
2

1
2

a a a

b b b
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Objectives

We study variants of reachability objectives.
Let T ⊆ Q be a target.

0

1

2

3

...
...

...
...

...
...

T

State reachability Reach(T )

0

1

2

3

...
...

...
...

...
...

T

Selective termination Term(T )
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Interval strategies

We study a restricted class of memoryless strategies of M≤∞(Q).

An open-ended interval strategy (OEIS) is a strategy over Q× N>0 of the form:

N0 1 2 . . . k0 − 1 k0 k0 + 1 . . .

Q σ1 σ2 . . . σk0−1 σk0 σk0 . . .

constant

Inter. I1 I2 . . . Id = Jk0,∞K

Q τ1 τ2 . . . τd = σk0

Group counter values
in intervals

= Finite partition of
N>0 into intervals
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Verification

Interval strategy verification problem

Given an interval strategy σ, an objective Ω ∈ {Reach(T ),Term(T )}, a threshold
θ ∈ Q ∩ [0, 1] and an initial configuration sinit ∈ Q×N, decide whether Pσ

M≤∞(Q),sinit
(Ω) ≥ θ

OC-MDP Q

Strategy σ

Infinite
induced MC

Finite MC Cσ
I

Compression

James C. A. Main The Many Faces of Strategy Complexity 35 / 41



Interval strategy verification problem

We construct a finite compressed Markov chain Cσ
I .

Solving the verification problem through compressed Markov chains

To compress, we keep few configurations and adjust transitions.
We have formulae (in the signature {0, 1,+,−, ·,≤}):

ΦI
δ (x, z

σ) for transition probabilities of Cσ
I ;

ΦI
Ω(x,y) for termination probabilities from configurations of Cσ

I .

We can solve the verification problem by checking if

R |= ∀x∀y (ΦI
δ (x, z

σ) ∧ ΦI
Ω(x,y)) =⇒ ysinit ≥ θ.

Unbounded counter Bounded counter
Upper bound co-ETR PPosSLP

Lower bound Square-root-sum-hard [EWY10] Square-root-sum-hard
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Synthesis of interval strategies

We have also studied the synthesis of structurally-constrained interval strategies.

Parameterised interval strategy synthesis problem

Given parameters d and n ∈ N0, does there exists an interval partition I of N and an OEIS σ
such that

1 |I| ≤ d and all bounded I ∈ I satisfy |I| ≤ n;
2 σ is based on I and
3 Pσ

sinit
(Ω) ≥ θ.

Unbounded counter Bounded counter
Upper bound PSPACE NPETR

Lower bound Square-root-sum-hard and NP-hard
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Summary

Strategy complexity

Randomisation

RepresentationsMemory

Nash equilibria [Mai24] OC-MDPs [AMNR25]

Multi-objective MDPs [MR25]

Classifying Mealy
machines [MR24]
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Future work

Long-term goal

Developing an extensive and comprehensive framework of strategy complexity.

Other lines of work:
Understanding memory requirements for equilibria in multiplayer games.
Studying the power of (finite-memory) randomised strategies with respect to given
classes of payoffs.
Extending our results on multi-objective MDPs to also refer to memory.
Finding whether there exist well-structured optimal strategies in finite-horizon MDPs.
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Thanks!
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