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Motivations: a world of computing

We are surrounded by computer systems.

Bugs should not occur in safety-critical
systems.
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Reactive systems

A reactive system is a system that constantly interacts with its environment.

Self-driving car

Its environment

→ Testing does not guarantee the absence of bugs.
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Model checking

Transition system
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What is a game?

A game is a mathematical model of the interaction between entities called players.

There exist many game variants:
▷ one-shot games or sequential games;
▷ deterministic or with randomness;
▷ with perfect or imperfect information.

We focus on Markov decision processes: one player versus randomness.
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Markov decision processes

A Markov decision process (or MDP)
models the interaction of a player with a
stochastic environment.
It is described by

▷ a set of states S,
▷ a set of actions A and
▷ a randomised transition function
δ : S ×A → D(S).

A play of an MDP is an infinite path along
transitions.
Ex. · · ·

MDP example: commuting to work
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Strategies

A strategy describes the decisions to be made in all scenarios.
Mathematically, a strategy is a function σ : (SA)∗S → A.

Once an initial state and a strategy are chosen, we obtain a stochastic process known as a
Markov chain.
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Memory in strategies

Memoryless strategies are simpler strategies that make decisions based only on the
current state, i.e., they disregard the past.

Some goals may require memory to be satisfied.

Go to Go to

:

:

:

:

:

:

James C. A. Main The Many Faces of Strategy Complexity 13 / 33



Finite-memory strategies

A strategy has finite memory if it can
be encoded by a Mealy machine (i.e., a
finite automaton with outputs).

The memory of a strategy provides a
measure of its complexity.

Go to Go to
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The complexity of strategies

What makes a strategy complex?

p1

p2 p3 p4
p1 p2 p3 p4

↑ ↓

→ →

→

→ All memoryless strategies lead to the target, but the constant one is simplest.

My contribution in a nutshell: studying the complexity of strategies via different
angles.
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The need for richer strategies

We aim for a good performance in the worst case.
Some applications require richer strategies.
Simple example: rock paper scissors.
▷ If I choose rock, my opponent will play paper.
▷ If I choose paper, my opponent will play scissors.
▷ If I choose scissors, my opponent will play rock.

By using randomisation, I can improve my chances.
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What is a randomised strategy?

s0

a0

s1

a1

s2

a2

. . .

δ δ δ

Behavioural strategy
σ : (SA)∗S → D(A)

σ1 σ2

σ3 σ4

Mixed strategy
D(σ : (SA)∗S → A)

Kuhn’s theorem implies that mixed and behavioural strategies have the same expres-
siveness in MDPs and games with perfect information.
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Memory and randomness

How can we implement randomisation in Mealy machines?

Idea 1: mixing
Initial memory
distribution

Idea 2: random
actions choices

Randomised outputs

Idea 3: randomised
memory

Randomised updates

< <

In (M., Randour, Inf. Comp. 2024), we have compared the expressiveness of all variants
of stochastic Mealy machines and provided a full classification.
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Memory and randomness

What is the relationship between memory and randomisation?

To visit and infinitely often, we can:
▷ use a pure strategy with two memory

states;
▷ toss a coin to select an action in all

rounds ⇝ memoryless strategy.

There can be trade-offs between memory and randomness.
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Example: optimising your commute

Optimising two goals:
▷ reaching under 40 minutes with high

probability;
▷ minimising the expected time to reach .
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Another example

Optimising the number of coins obtained:
▷ add coins by pressing a button in a closed

room;
▷ collect them by exiting the room.
▷ no more coins can be obtained if the

door is opened.

Need more complex randomisation.

| +1

Possible payoffs:

0 1 2 3 4 5 ∞
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Randomisation requirements

General framework: Markov decision processes with multiple payoff functions.

Payoff functions: f : Plays(M) → R̄; quantify the quality of plays.

What can we say about randomisation requirements in multi-objective MDPs?

Theorem (M., Randour, 2025). If all payoffs f1, . . . , fd have finite expectations
under all strategies:
▷ mixing at most d+ 1 many pure strategies is sufficient to obtain any expected

payoff vector;
▷ Pays(f̄) = conv(Paypures (f̄)).
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Memory and randomness do not tell the whole story

There is more to strategy complexity than only memory and randomness.

Some strategies can admit small representations.

We focus on a setting with counters.
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One-counter MDPs

A one-counter MDP (OC-MDP) is an MDP with weights in {−1, 0, 1} on its transitions.
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Example: going up a slippery hill.
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Strategies over configurations

A memoryless strategy over configurations can be seen as an infinite table.

N0 1 2 3 4 5 . . .

. . .

. . .

. . .

We need specific representations for this context.
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Strategies over configurations

A memoryless strategy over configurations can be seen as an infinite table.

N0 {1} J2, 3K J4,∞K

We need specific representations for this context.
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Interval strategies

An interval strategy is a strategy that can be described by a finite interval partition
of N>0 and memoryless strategies for each interval.

N0 1 2 . . . k0 − 1 k0 k0 + 1 . . .

Q σ1 σ2 . . . σk0−1 σk0 σk0 . . .

constant

Inter. I1 I2 . . . Id = Jk0,∞K

Q τ1 τ2 . . . τd = σk0
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Verification of interval strategies

Verification problem. When following a given interval strategy, do we reach a target
state with probability greater than or equal to some given threshold?

Challenges
▷ Infinite Markov chain.
▷ Compressed Markov chains have irrational

or very precise probabilities.

Solutions
▷ Compression to finite Markov chain.
▷ Transition probabilities can be represented

by small logical formulae.

Algorithm (Ajdarów, M., Novotný, Randour). Construct a universal logical formula
and check if it is satisfied in the theory of the reals.

We have also built on these logical formulae to design synthesis algorithms.
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Summary

Strategy complexity

Randomisation

RepresentationsMemory

Nash equilibria [Mai24] OC-MDPs [AMNR25]

Multi-objective MDPs [MR25]

Classifying Mealy
machines [MR24]
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