

The Many Faces of Strategy Complexity

James C. A. Main

Thesis realised under the supervision of Mickael Randour

F.R.S.-FNRS & UMONS – Université de Mons, Belgium

Public PhD Defence – September 23, 2025

One does not journey alone

The wonderful
Mickael Randour

My **co-authors**, to whom I am grateful.

- ▷ Jeremy Sproston
- ▷ Michal Ajdarów
- ▷ Petr Novotný
- ▷ Thomas Brihaye
- ▷ Aline Goeminne

Table of contents

- 1 Introduction
- 2 Markov decision processes and strategies
- 3 The complexity of strategies
- 4 Randomness in decision making
- 5 Randomisation for multiple objectives
- 6 Representing strategies
- 7 Conclusion

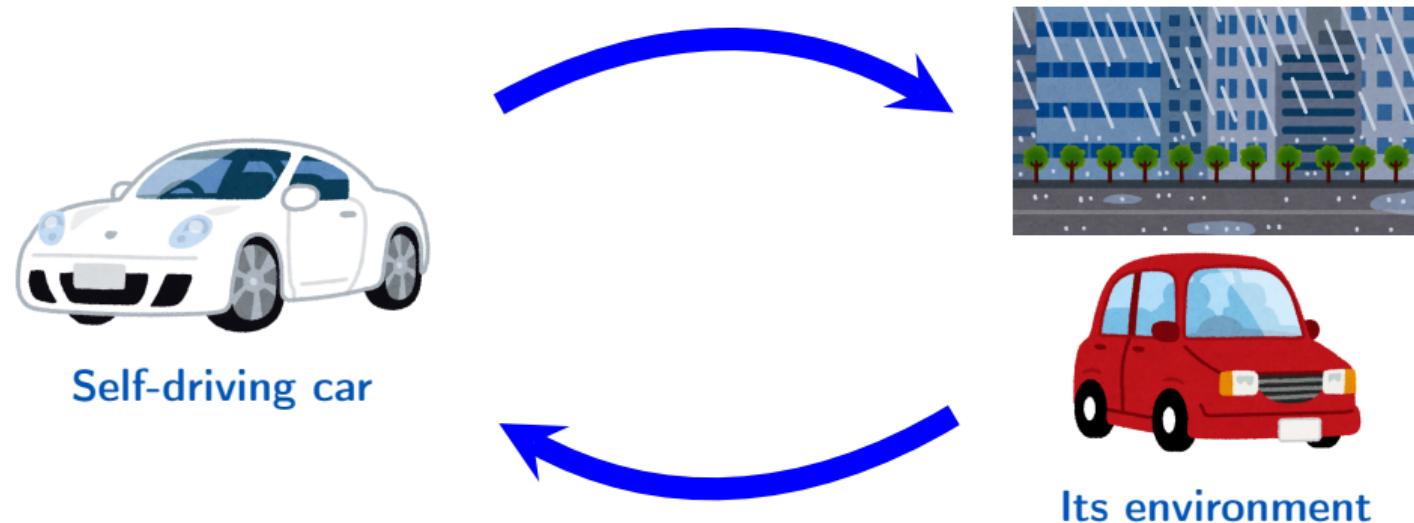
Motivations: a world of computing

We are surrounded by **computer systems**.

Bugs should not occur in **safety-critical** systems.

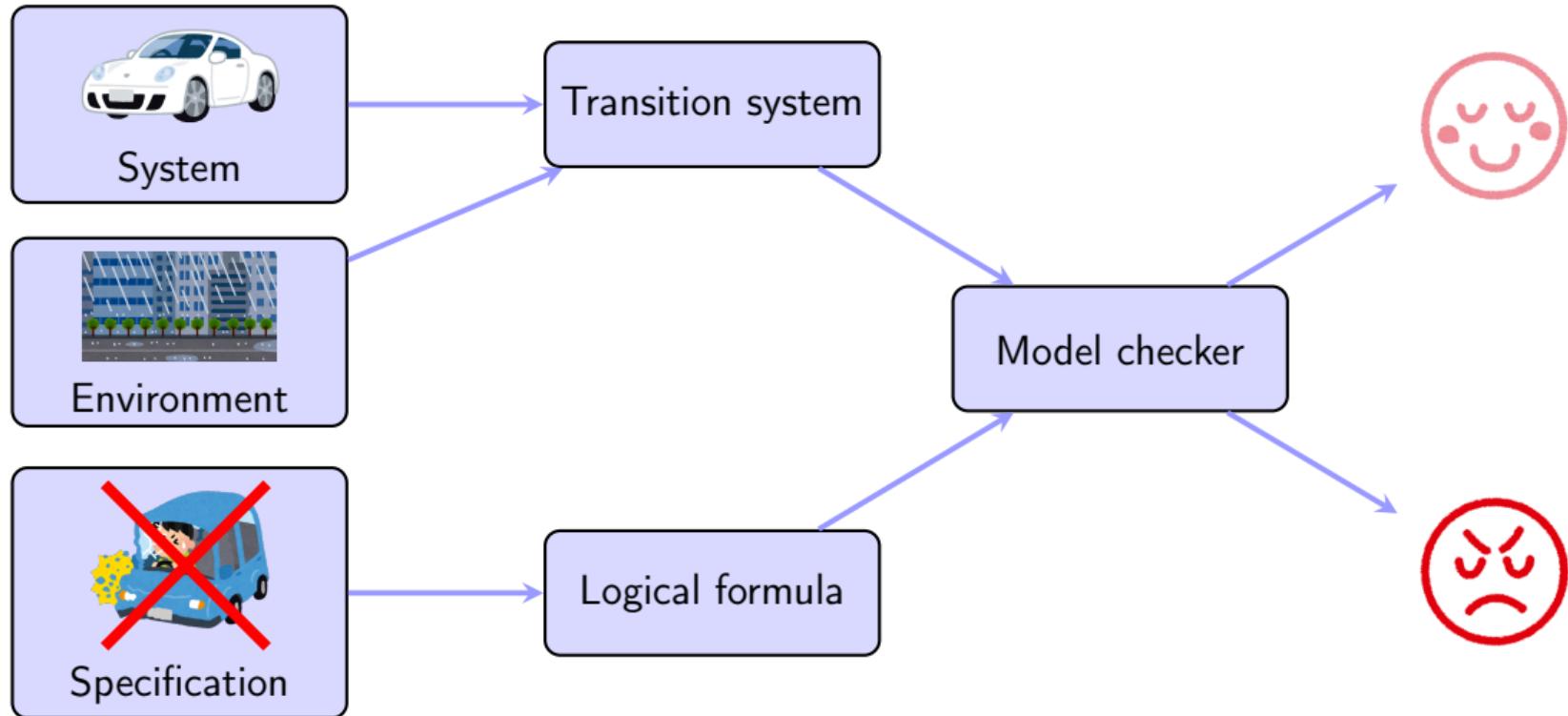
Reactive systems

A **reactive system** is a system that constantly interacts with its **environment**.

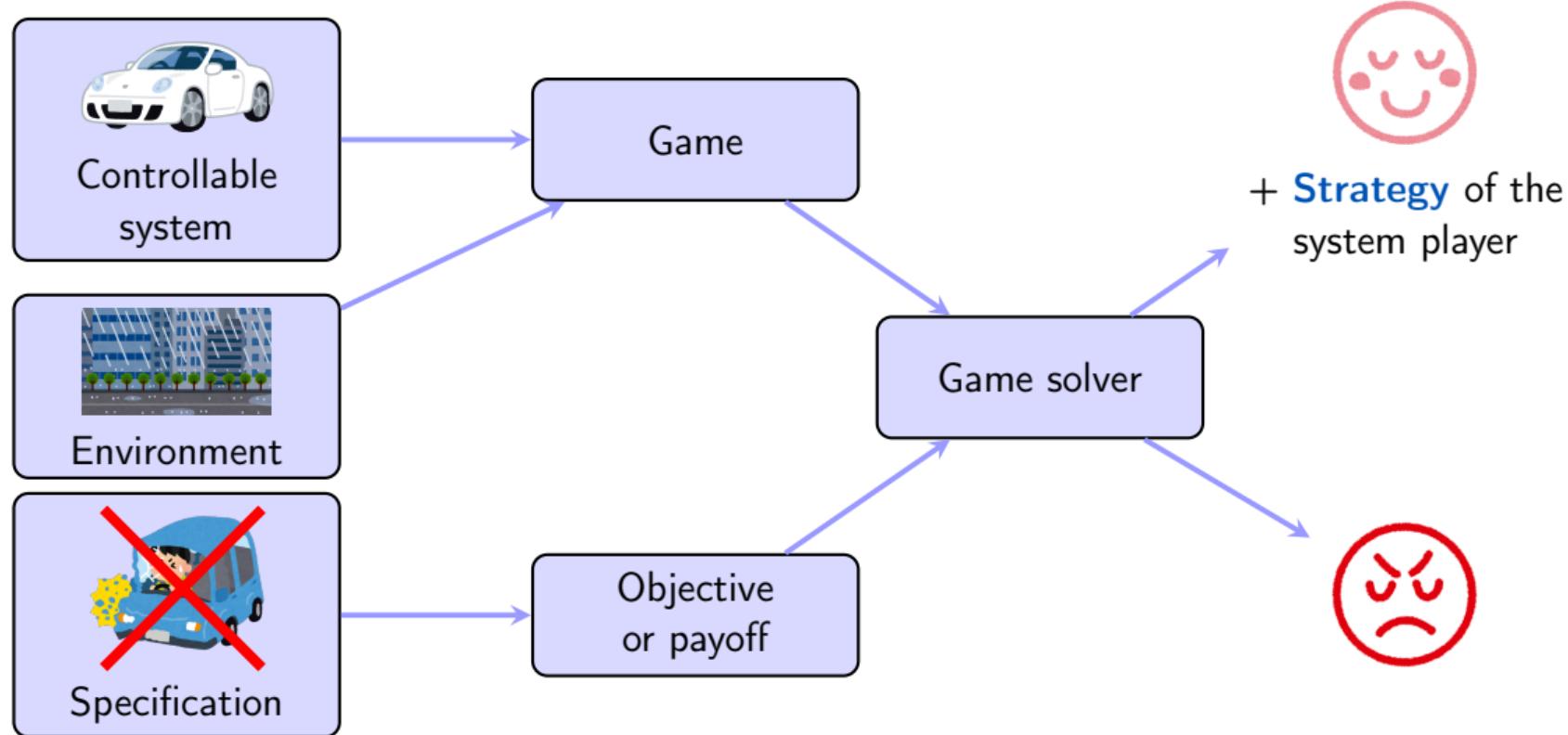


→ Testing does not guarantee the absence of bugs.

Model checking



Reactive synthesis



What is a game?

A **game** is a mathematical model of the **interaction** between entities called **players**.

There exist **many game variants**:

- ▷ one-shot games or **sequential games**;
- ▷ deterministic or with **randomness**;
- ▷ with **perfect** or imperfect information.

We focus on **Markov decision processes**: **one player versus randomness**.

Table of contents

- 1 Introduction
- 2 Markov decision processes and strategies**
- 3 The complexity of strategies
- 4 Randomness in decision making
- 5 Randomisation for multiple objectives
- 6 Representing strategies
- 7 Conclusion

Markov decision processes

A **Markov decision process** (or **MDP**) models the interaction of a **player** with a **stochastic environment**.

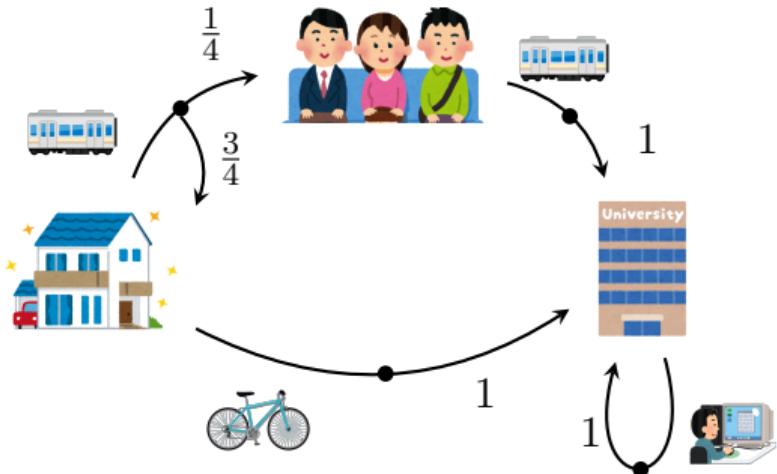
It is described by

- ▷ a set of **states** S ,
- ▷ a set of **actions** A and
- ▷ a **randomised transition** function $\delta: S \times A \rightarrow \mathcal{D}(S)$.

A **play** of an MDP is an **infinite path** along transitions.

Ex.

MDP example: commuting to work



Strategies

A **strategy** describes the decisions to be made **in all scenarios**.

Mathematically, a strategy is a **function** $\sigma: (SA)^*S \rightarrow A$.

Once an initial state and a strategy are chosen, we obtain a **stochastic process** known as a **Markov chain**.

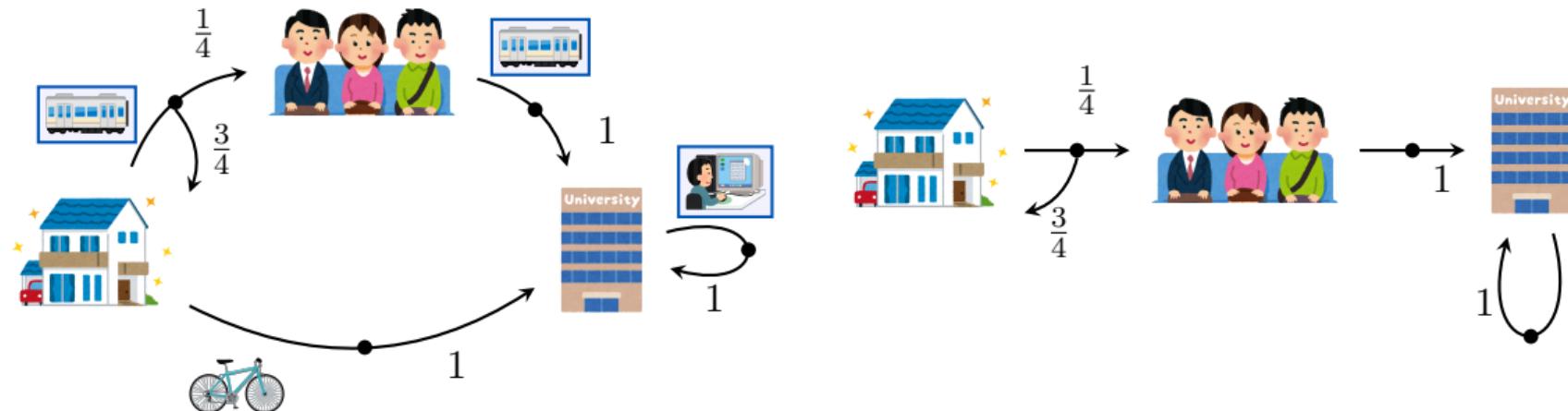


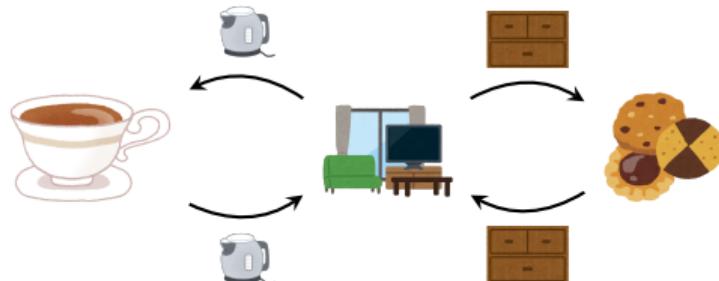
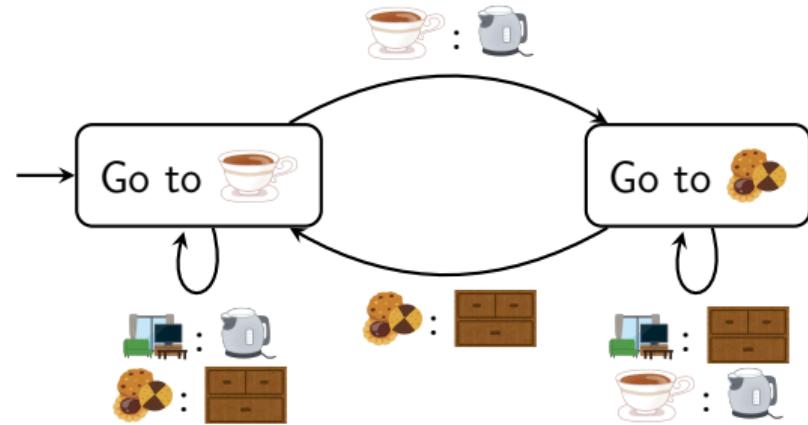
Table of contents

- 1 Introduction
- 2 Markov decision processes and strategies
- 3 The complexity of strategies**
- 4 Randomness in decision making
- 5 Randomisation for multiple objectives
- 6 Representing strategies
- 7 Conclusion

Memory in strategies

Memoryless strategies are simpler strategies that **make decisions based only on the current state**, i.e., they disregard the past.

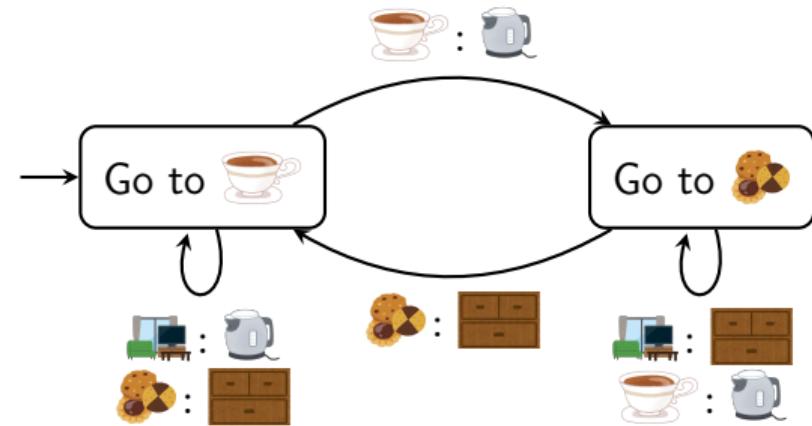
Some goals may require **memory** to be satisfied.



Finite-memory strategies

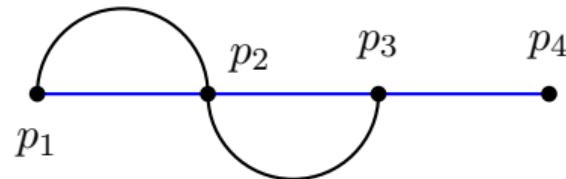
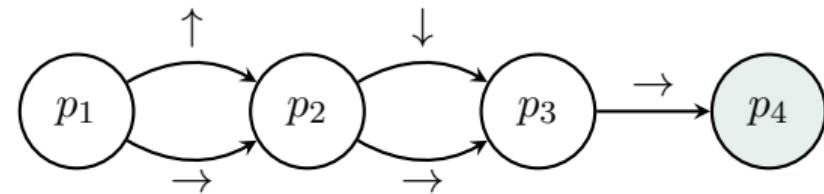
A strategy has **finite memory** if it can be encoded by a **Mealy machine** (i.e., a finite automaton with outputs).

The **memory of a strategy** provides a measure of its **complexity**.



The complexity of strategies

What makes a strategy complex?



→ All **memoryless** strategies lead to the target, but the **constant one** is simplest.

My contribution in a nutshell: studying the **complexity of strategies** via different angles.

Table of contents

- 1 Introduction
- 2 Markov decision processes and strategies
- 3 The complexity of strategies
- 4 Randomness in decision making**
- 5 Randomisation for multiple objectives
- 6 Representing strategies
- 7 Conclusion

The need for richer strategies

We aim for a good performance in the **worst case**.

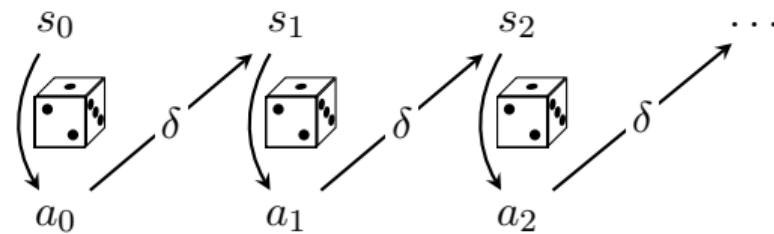
Some applications require **richer strategies**.

Simple example: **rock paper scissors**.

- ▷ If I choose **rock**, my opponent will play **paper**.
- ▷ If I choose **paper**, my opponent will play **scissors**.
- ▷ If I choose **scissors**, my opponent will play **rock**.

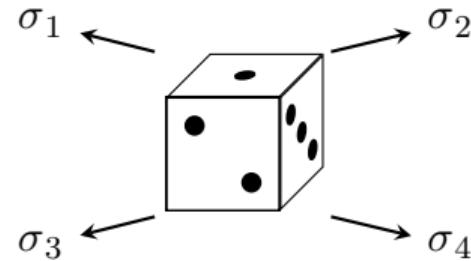
By using **randomisation**, I can improve my chances.

What is a randomised strategy?



Behavioural strategy

$$\sigma: (SA)^*S \rightarrow \mathcal{D}(A)$$



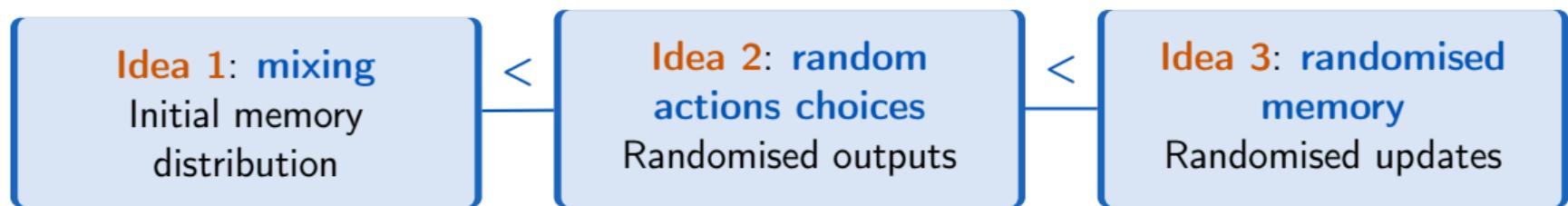
Mixed strategy

$$\mathcal{D}(\sigma: (SA)^*S \rightarrow A)$$

Kuhn's theorem implies that mixed and behavioural strategies have the **same expressiveness** in MDPs and games with perfect information.

Memory and randomness

How can we implement **randomisation** in **Mealy machines**?



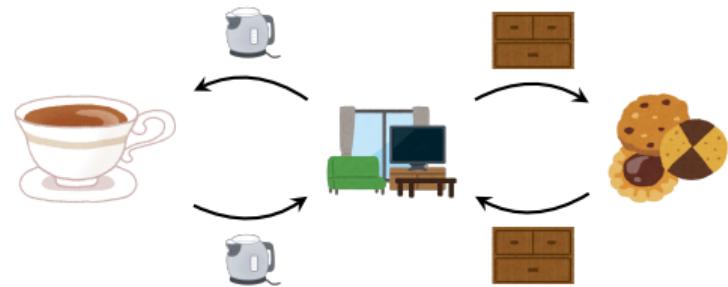
In (M., Randour, Inf. Comp. 2024), we have compared the **expressiveness** of all variants of **stochastic Mealy machines** and provided a **full classification**.

Memory and randomness

What is the relationship between **memory** and **randomisation**?

To visit and infinitely often, we can:

- ▷ use a pure strategy with **two memory states**;
- ▷ **toss a coin** to select an action in all rounds \rightsquigarrow **memoryless strategy**.



There can be **trade-offs** between **memory** and **randomness**.

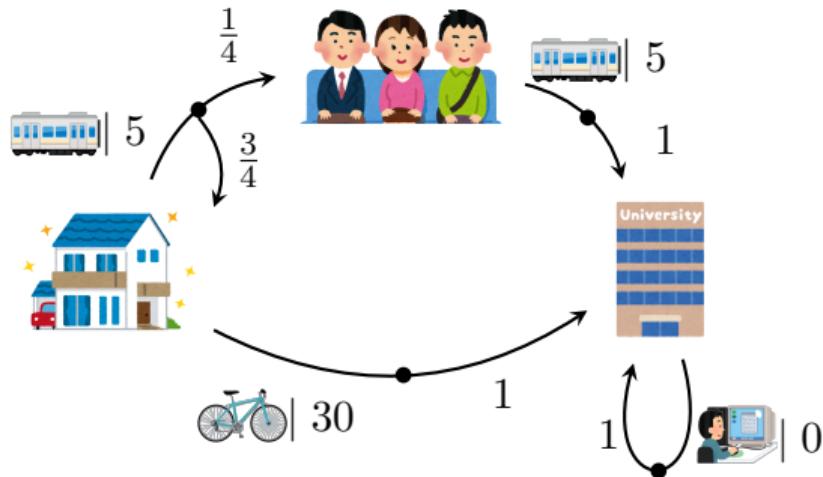
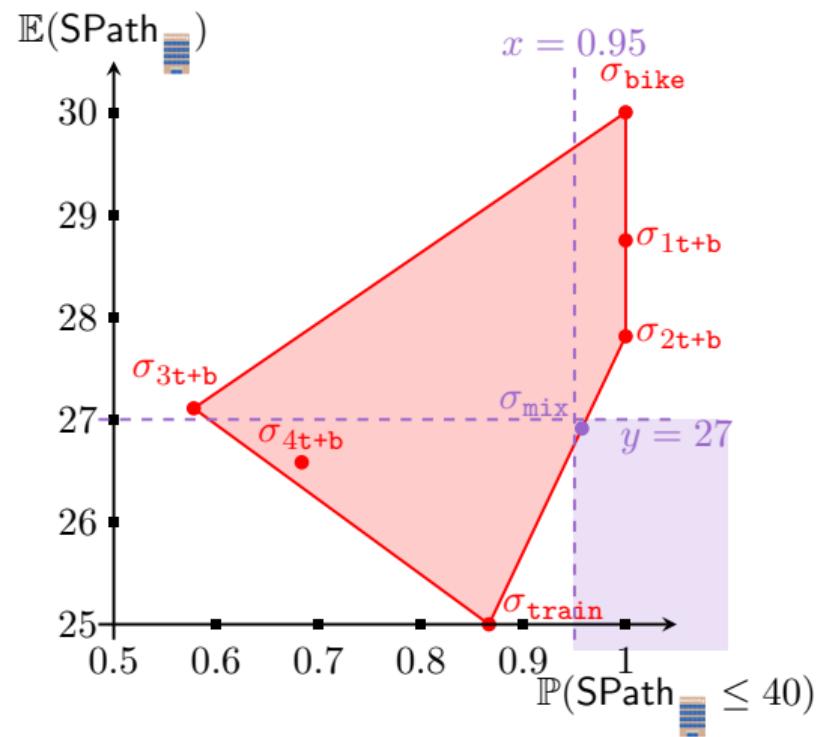
Table of contents

- 1 Introduction
- 2 Markov decision processes and strategies
- 3 The complexity of strategies
- 4 Randomness in decision making
- 5 Randomisation for multiple objectives
- 6 Representing strategies
- 7 Conclusion

Example: optimising your commute

Optimising two goals:

- ▷ reaching under 40 minutes with **high probability**;
- ▷ minimising the **expected** time to reach .

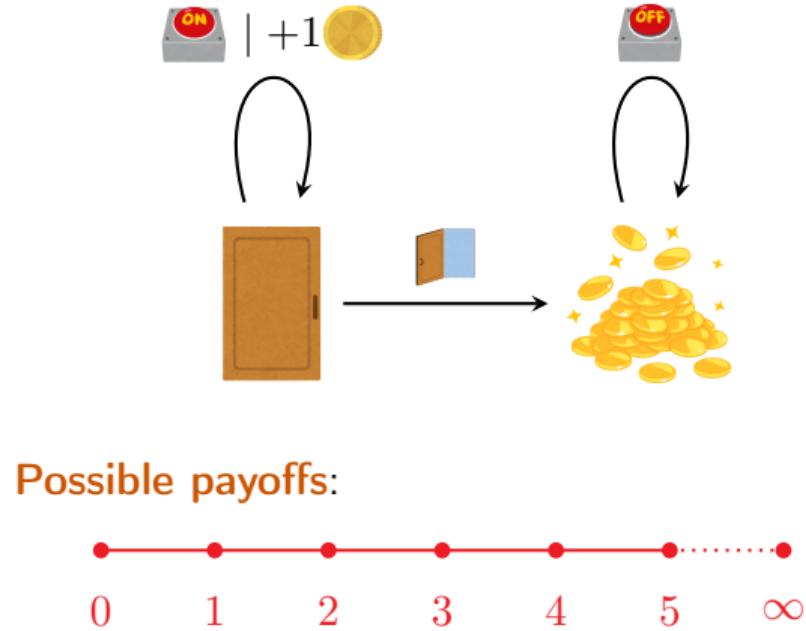


Another example

Optimising the number of **coins obtained**:

- ▷ add coins by pressing a **button** in a **closed room**;
- ▷ collect them by **exiting the room**.
- ▷ **no more coins** can be obtained if the **door is opened**.

Need more **complex randomisation**.



Randomisation requirements

General framework: Markov decision processes with **multiple payoff functions**.

Payoff functions: $f: \text{Plays}(\mathcal{M}) \rightarrow \bar{\mathbb{R}}$; quantify the quality of plays.

What can we say about **randomisation requirements** in multi-objective MDPs?

Theorem (M., Randour, 2025). If all payoffs f_1, \dots, f_d have **finite expectations under all strategies**:

- ▷ mixing at most $d + 1$ **many pure strategies** is sufficient to **obtain** any expected payoff vector;
- ▷ $\text{Pay}_s(\bar{f}) = \text{conv}(\text{Pay}_s^{\text{pure}}(\bar{f}))$.

Randomisation requirements

General framework: Markov decision processes with **multiple payoff functions**.

Payoff functions: $f: \text{Plays}(\mathcal{M}) \rightarrow \bar{\mathbb{R}}$; quantify the quality of plays.

What can we say about **randomisation requirements** in multi-objective MDPs?

Theorem (M., Randour, 2025). If all payoffs f_1, \dots, f_d have a **well-defined expectations under all strategies**:

- ▷ mixing at most $d + 1$ **many pure strategies** is sufficient to **approximate** any expected payoff vector;
- ▷ $\text{Pay}_s(\bar{f}) \subseteq \text{cl}(\text{conv}(\text{Pay}_s^{\text{pure}}(\bar{f})))$.

Table of contents

- 1 Introduction
- 2 Markov decision processes and strategies
- 3 The complexity of strategies
- 4 Randomness in decision making
- 5 Randomisation for multiple objectives
- 6 Representing strategies**
- 7 Conclusion

Memory and randomness do not tell the whole story

There is **more to strategy complexity** than only memory and randomness.

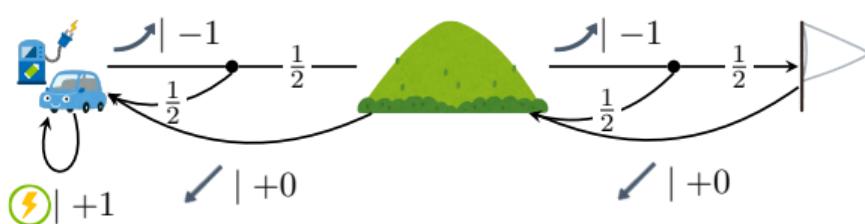
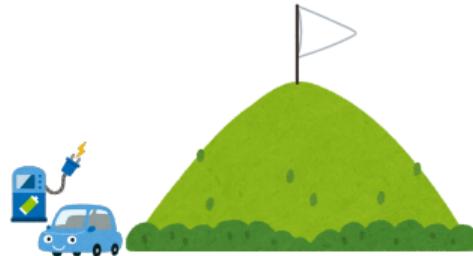
Some **strategies** can admit **small representations**.

We focus on a setting with **counters**.

One-counter MDPs

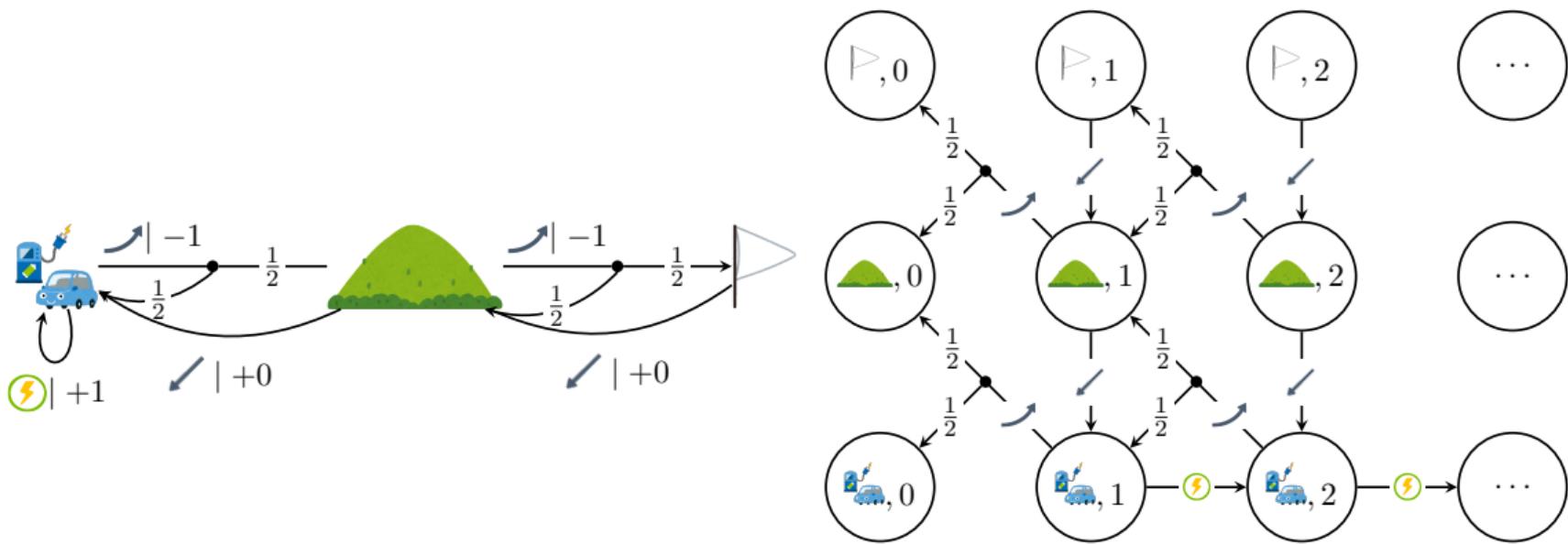
A **one-counter MDP** (OC-MDP) is an MDP with weights in $\{-1, 0, 1\}$ on its transitions.

Example: going up a slippery hill.



One-counter MDPs

A **one-counter MDP** (OC-MDP) is an MDP with weights in $\{-1, 0, 1\}$ on its transitions.



Strategies over configurations

A **memoryless strategy** over configurations can be seen as an **infinite table**.

\mathbb{N}_0	1	2	3	4	5	...
						...
						...
						...

Strategies over configurations

A **memoryless strategy** over configurations can be seen as an **infinite table**.

\mathbb{N}_0	$\{1\}$	$\llbracket 2, 3 \rrbracket$	$\llbracket 4, \infty \rrbracket$

We need **specific representations** for this context.

Interval strategies

An **interval strategy** is a strategy that can be described by a **finite interval partition** of $\mathbb{N}_{>0}$ and **memoryless strategies** for each interval.

\mathbb{N}_0	1	2	\dots	$k_0 - 1$	k_0	$k_0 + 1$	\dots
Q	σ_1	σ_2	\dots	σ_{k_0-1}	σ_{k_0}	σ_{k_0}	\dots
$\xrightarrow{\text{constant}}$							
Inter.	I_1	I_2	\dots	$I_d = \llbracket k_0, \infty \rrbracket$			
Q	τ_1	τ_2	\dots	$\tau_d = \sigma_{k_0}$			

Verification of interval strategies

Verification problem. When following a given interval strategy, do we **reach a target state** with probability greater than or equal to some given threshold?

Challenges

- ▷ **Infinite** Markov chain.
- ▷ Compressed Markov chains have **irrational** or **very precise** probabilities.

Solutions

- ▷ **Compression** to finite Markov chain.
- ▷ Transition probabilities can be represented by small **logical formulae**.

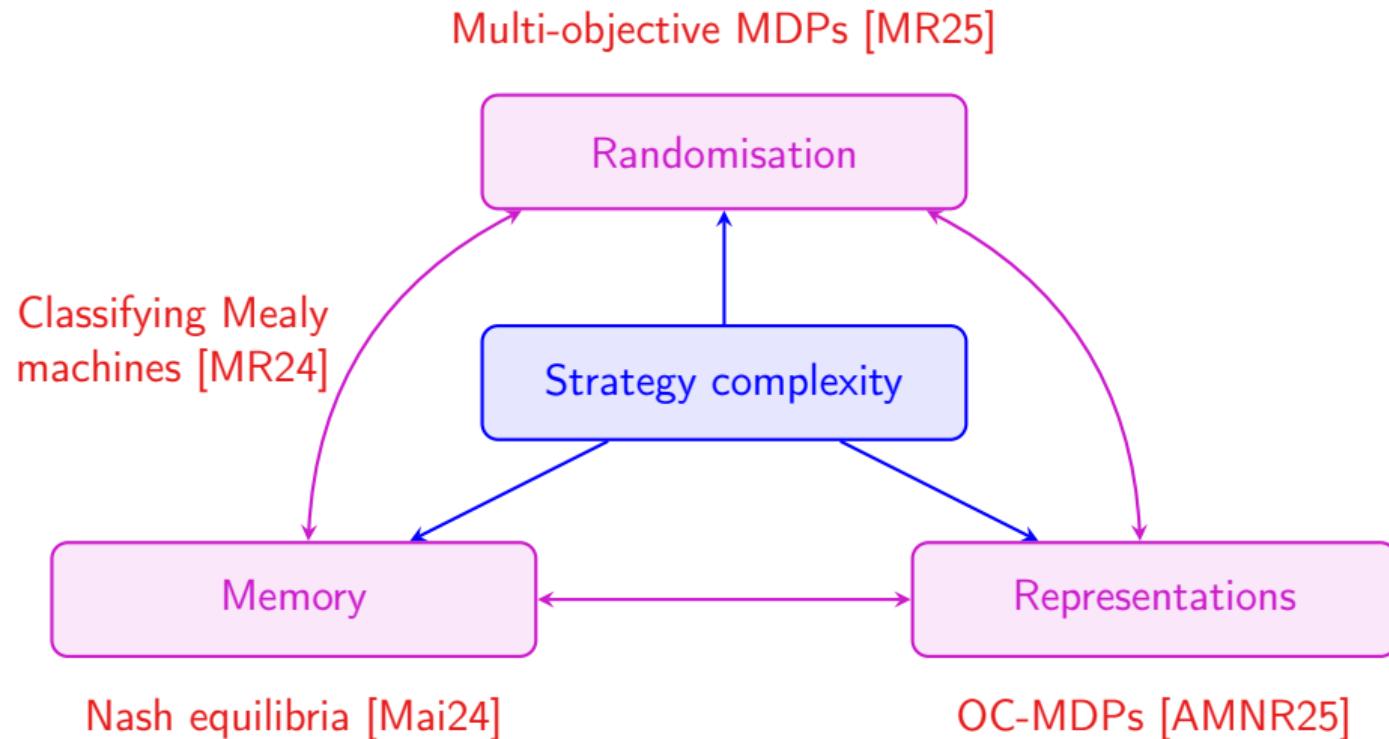
Algorithm (Ajdarów, M., Novotný, Randour). Construct a **universal logical formula** and check if it is satisfied in the **theory of the reals**.

We have also built on these logical formulae to design **synthesis algorithms**.

Table of contents

- 1 Introduction
- 2 Markov decision processes and strategies
- 3 The complexity of strategies
- 4 Randomness in decision making
- 5 Randomisation for multiple objectives
- 6 Representing strategies
- 7 Conclusion

Summary



THANK YOU

References I

Illustration images used in these slides originate from irasutoya.com.

- [Ajd+25] Michal Ajdarów et al. “Taming Infinity one Chunk at a Time: Concisely Represented Strategies in One-Counter MDPs”. In: *Proceedings of the 52th International Colloquium on Automata, Languages, and Programming, ICALP 2025, July 8–11, 2025, Aarhus, Denmark*. Ed. by Keren Censor-Hillel et al. Vol. 334. LIPIcs. Schloss Dagstuhl –Leibniz-Zentrum für Informatik, 2025.
- [Mai24] James C. A. Main. “Arena-Independent Memory Bounds for Nash Equilibria in Reachability Games”. In: *41st International Symposium on Theoretical Aspects of Computer Science, STACS 2024, March 12-14, 2024, Clermont-Ferrand, France*. Ed. by Olaf Beyersdorff et al. Vol. 289. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2024, 50:1–50:18. DOI: [10.4230/LIPIcs.STACS.2024.50](https://doi.org/10.4230/LIPIcs.STACS.2024.50). URL: <https://doi.org/10.4230/LIPIcs.STACS.2024.50>.

References II

- [MR24] James C. A. Main and Mickael Randour. “Different strokes in randomised strategies: Revisiting Kuhn’s theorem under finite-memory assumptions”. In: *Information and Computation* 301 (2024), p. 105229. DOI: 10.1016/J.IC.2024.105229. URL: <https://doi.org/10.1016/j.ic.2024.105229>.
- [MR25] James C. A. Main and Mickael Randour. “Mixing Any Cocktail with Limited Ingredients: On the Structure of Payoff Sets in Multi-Objective MDPs and its Impact on Randomised Strategies”. In: *CoRR* abs/2502.18296 (2025). DOI: 10.48550/arXiv.2502.18296.